采样控制系统分析

合集下载

自动控制原理第七章采样控制系统

自动控制原理第七章采样控制系统

第三节 信号复现与零阶保持器
一. 信号保持 把离散信号转换为连续信号,称为信号保持,该装置称
保持器。 保持器:用离散时刻信号复现连续时刻信号。
二. 零阶保持器
1. 作用:把采样信号e*(t) 每一个采样瞬时值e(kT)一直保持到下一个采 样瞬间e[(k+1)T], 从而使采样信号 e*(t)变成 阶梯信号eh(t)。
一阶保持器比零阶保持器信号恢复更
0 T 2T 3T 4T 5T 6T t
精确, 但相位滞后增加, 对稳定性不利.
图7-11 一阶保持器输出特性
第四节 Z变换理论
同拉氏变换一样, 是一种数学变换. 离散信号e*(t)的 拉氏变换为:

E*(s) e(nT )enTs n0
各项均含有 esT 因子,为S的超越函数。为便于应用,对 离散系统的分析一般采用Z变换.
G 0 ( s ) 1 s [ 1 e s] T 1 s 1 e 1 s T 1 s 1 1 s 1 T 1 T sT
零阶保持器的频率特性
信号e(t)在t = nT 及t = (n+1)T 之间的数值可以用一个级数来描述
单位脉冲响应
G h(s)L [gh(t) ]S 1S 1e TS 1 Se TS
G 0(j
)1ejT2sin T/(2 )ejT2 j
幅频特性: G 0(j)Tsi( n/ / ( s)s)2 s si( n/ / ( s)s)
上式是 eTs 的有理函数. 但 eTs是含变量S的超越函数,不便进行分析和运算, 因此常用Z变换代替拉氏变换。
三. 采样定理
从理论上指明了从采样信号中不失真的复现原连续信号 所必需的理论上的最小采样周期T.

零阶保持器

零阶保持器

T / 2
e
自动控制原理
第七章 采样数据控制系统分析
因为
T

s
,所以
j π
2 π sin ( π / s ) G h ( j ) e s π / s
|G h ( j ) |
s
零阶保持器的 频率特性:
T

O -
s
2s
3s
G h ( j )
≥ 2
s
m ax
时,则由采样得到的离散信号能无失真地恢 复到原来的连续信号,这就是采样定理,也 称为香农(Shannon)定理。
自动控制原理
第七章 采样数据控制系统分析
物理意义:如果选择这样一个采样角频率 ≥ 2 ,使得对连续信号中所含的最高 s m ax 频率信号来说,能做到在其一个周期内采 样两次以上,则在经采样所获得的离散信 号中将包含连续信号的全部信息。反之, 如果采样次数太少,就做不到无失真地再 现原连续信号。
自动控制原理
第七章 采样数据控制系统分析
第七章 采样数据控制系统分析
7.1 概 述 一、采样控制系统 采样控制系统,又称断续控制系统、离散 控制系统,它是建立在采样信号基础上的。 如果控制系统中有一处或几处信号是断续 的脉冲或数码,则这样的系统称为离散系统。 通常,把系统中的离散信号是脉冲序列形 式的离散系统,称为采样控制系统; 而把数字序列形式的离散系统,称为数字 控制系统或计算机控制系统。
自动控制原理
第七章 采样数据控制系统分析
7.2 信号的采样与保持 一、采样过程 把连续信号转换成离散信号的过程,叫作 采样过程。 实现采样的装置叫作采样开关或采样器。
e(t) e(t) T e * (t) e * (t)

采样控制系统的稳定性分析

采样控制系统的稳定性分析
1 只有当上述诸条件均满足时,离散系统才是稳定的, 否则系统不稳定。
z 或 w 特征方程的系数,按照下述方法构造(2n-3)行、(n+1)列朱利阵列,见表8-2:
w 1 其中比较常用的代数判据就是劳斯判据。
式中z和w均为复数,分别把它们表示成实部和虚部相加的形式,即
其模等于1,与频率ω无关;其相角为ωT,随频率ω 而改变。
可见,S平面上的虚轴映射到Z平面上,为以原 点为圆心的单位圆。
当s位于S平面虚轴的左边时,σ为负数, z eT
小于1。反之,当s位于s平面虚轴的右半平面时,为 正数,z eT 大于1。s平面的左、右半平面在z平 面上的映像为单位圆的内、外部区域。
z 1 z 1
当动点z在Z平面的单位圆上和单位圆之内时,应满足:
式中z和w均为复数,分别把它们表示成实部和虚部 |a0|< an, |b0|>|bn-1|, |c0|>|cn-2|
可见,S平面上的虚轴映射到Z平面上,为以原点为圆心的单位圆。 082, 满足|b0|>|b3|
根据给定的D(z)知:
相加的形式,即 1(s),试求系统稳定时k的变化范围。
(1)当采样周期T分别为1(s),0.
z x jy
w u jv
因此,必须采用一种新的变换,使z平面上的单位圆,在新的坐标系中的映象为虚轴。
化简后,得W域特征方程
显然,闭环系统特征方程的根λ1、λ2、…λn即是闭环脉冲传递函数的极点。
因此,必须采用一种新的变换,使z平面上的单位圆,在新的坐标系中的映象为虚轴。
线性采样系统稳定的充要条件 图8-21:线性采样系统结构图
线性采样系统如图8-21所示。 其特征方程为
D(z) 1 GH(z) 0

(自动控制原理)采样控制系统

(自动控制原理)采样控制系统
X(s )= M(s ) N(s ) 的多项式, 其中, 其中,M(s )及 N(s )分别为复变量s 的多项式,并
且有 deg M( s ) ≤ deg N( s )以及 deg N( s ) = n . 展开成部分分式和的形式, 将 X(s)展开成部分分式和的形式,即
n
Ai X(s)= ∑ i =1 s + si 式中: 的零点, 的极点, 式中: i 为 N(s)的零点,即 X(s) 的极点,且设为 s
①线性性质 若 Z[ x1(t )] = X 1( z ), Z[ x2(t )] = X 2( z ) , a1, a2为常数 则 Z[a1 x1(t )+ a2 x2(t )] = a1 X 1( z )+ a2 X 2( z ) ②平移定理 若 Z[ x(t )] = X( z )
Z[ x(t + kT )] = z k X( z )− z k − j x( j ) ∑ 则 j =0 Z[ x(t − kT )] = z − k X( z ) 若 k = 1时,有 Z[ x(t + T )] = z[ X( z )− x(0)] Z[ x(t − T )] = z −1 X( z )
若上述级数收敛,则称 E ( z ) 为采样信号的z变换。 为采样信号的z变换。 若上述级数收敛, 为了书写方便, 为了书写方便,通常写成 E ( z ) = Z [e(t )] ,但仍理 变换。 解为是对取 Z 变换。
(2)常用函数的 Z 变换和 Z 变换的性质 变换见表8 1)常用普通时间函数的 Z 变换见表8-1 表8-1 Z 变换表
* n=0
+∞
( n 式中 e nT ) = e t )t = nT , (

自动控制原理第七章采样系统

自动控制原理第七章采样系统

n>m
pi— 极点
Ai— 待定系数
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
F (s)=
1 S(S+1)
解:
F (s)=
1 S(S+1)
=
1 S

1 S+1
F (z)=
z z–1

z z–e –T
=
z(1–e –T ) (z–1)(z–e–T
)
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
+
=Σ k=0
8
f
(kT)∫0∞δ(t

kT
)e–stdt
+
=Σ f(kT)e –kTS k=0
第二节 采样控制系统的数学基础
二、求Z变换的方法
1.级数求和法
根据定义式展开
+
F (z)= Σ f (kT) k=0
= f (0)z0 + f (T)z-1 + f (2T)z-2 + f (3T)z-3 + ··· 利用级数求和法可求得常用函数
+(S+2)
S+3 (S+1)(S+2)
z z–eST S=-2
F (z)=
2z z–e –T

z–e
z
–2T
=
z2+z(e-T -2e-2T z2-(e-T +e-2T )z+e
)
-3T
ቤተ መጻሕፍቲ ባይዱ
第二节 采样控制系统的数学基础
三、Z变换的基本定理
例 z变求换Z[的t –基T 本] 定理为z变换的运算 提供了方便。

控制工程基础-计算机采样控制系统(2)

控制工程基础-计算机采样控制系统(2)

11
脉冲传递函数(10)
1.有采样开关分隔的两个环节串联时,其脉冲传递函数等于各 环节的脉冲传递函数之积。
X (z) G1(z) R(z)
C(z) G2 (z) X (z)
将X(z)代入C(z) C(z) G2 (z)G1zRz
Cz Rz
G1
z
G2
z
2.没有采样开关分隔的两环节串联时,其脉冲传递函数为各个
2021/2/20
第九章 计算机采样控制系统
15
脉冲传递函数(14)

G' p s Gp ss
并根据前面介绍的环节串、并联脉冲传递函数求取方法,参照上图
,则带保持器的广义控制对象脉冲传递函数
Gz
C1
z C2 U z
z
G1z
G2
z
G1z
C1 z U z
Z
Gp' s
Z
g p' t
G2z
1 G1H (z)
闭环传递函数 (z) 的推导步骤:
1) 在主通道上建立输出 C(z)与中间变量 E(z)的关系;
2) 在闭环回路中建立中间变量 E(z) 与输入 R(z) 的关系;
3) 消去中间变量 E(z),建立C(z) 和 R(z) 的关系。
2021/2/20
第九章 计算机采样控制系统
21
脉冲传递函数(20)
Gz ZGs
即符号 ZGs、ZL1Gs 和 Z g*(t) 、 ZgkT 是等价的。
Gz Zg*(t) ZgkT ZL1Gs ZGS
2021/2/20
第九章 计算机采样控制系统
7
脉冲传递函数(6)
如果系统的输入为任意函数 的采样脉冲序列 r(kT) ,其Z变换

北航自控原理实验五采样系统研究

北航自控原理实验五采样系统研究

北航自控原理实验五采样系统研究
采样系统是指从被测系统采集信号、将其转换为数字信号、利用数字
信号进行信号处理和反馈等。

本次实验要求设计和实现一个采样系统,用
以采集模拟信号,进行数字采样、处理,最后发出控制信号,实施反馈控制。

本次实验使用的采样系统是由工控机、采样卡、示波器、模拟信号源、四路输出模拟量信号和调试软件组成。

工控机用于数据采集与处理,采样
卡用于连接工控机,完成对模拟电压的采样与数据处理;示波器可以用来
监视实验过程中模拟电压和调制调整量的变化;模拟信号源模拟和产生各
种信号,提供给采样系统进行实验;四路输出模拟量信号模块可以输出四
种不同的信号,用于实验测试。

实验步骤:
一、查看实验目的,了解实验中用到的仪器状态
二、设置采样条件,检查模拟源输出的信号
三、用示波器检查采样系统和信号源的连接情况
四、使用调试软件,进行采样,编写采样程序
五、实验验证,随机改变被控对象,检查采样系统反馈控制的效果
六、实验报告,书写实验详细过程,以及采样系统的参数和调试软件的运行结果。

自动控制原理采样数据系统知识点总结

自动控制原理采样数据系统知识点总结

自动控制原理采样数据系统知识点总结自动控制原理采样数据系统是现代控制理论中重要的组成部分,广泛应用于各个领域,如工业控制、仪器仪表和机电设备等。

它通过对被控对象进行采样和处理,实现对系统的控制和监测。

本文将对自动控制原理采样数据系统的相关知识点进行总结。

一、采样基础知识采样是将连续时间的信号转换为离散时间的信号,即在一定时间间隔内对信号进行测量、记录或存储。

采样频率是采样的重要参数,它决定了信号的还原能力。

根据香农采样定理,采样频率应不小于信号最高频率的两倍。

二、理想采样器理想采样器是指对输入信号进行瞬时量化和保持的装置,它的输出是离散时间的序列。

理想采样器的输入输出关系可以用冲激函数表示,即输出等于输入乘以冲激函数。

三、采样定理采样定理是指信号在连续时间和离散时间之间的转换条件。

香农采样定理是其典型例子,它要求采样频率大于信号最高频率的两倍。

违反采样定理会导致混叠现象,即高频信号在离散频谱中出现。

四、模拟滤波器模拟滤波器用于对采样信号进行滤波,以去除混叠现象和噪声。

常见的模拟滤波器包括低通滤波器、带通滤波器和带阻滤波器等。

滤波器的设计要考虑滤波器类型、频率响应和滤波器阶数等参数。

五、采样保持电路采样保持电路用于对输入信号进行保持,使得采样结果能够在采样间隔内有效保存。

采样保持电路一般由开关、电容和运算放大器等组成。

在采样阶段,开关闭合,将输入信号传递到电容上;在保持阶段,开关断开,电容上的电压被保持。

六、数字滤波器数字滤波器用于对采样信号进行滤波和处理,以获取目标信号。

常见的数字滤波器包括FIR滤波器和IIR滤波器等。

滤波器的设计要考虑滤波器类型、截止频率和滤波器阶数等参数。

七、采样数据系统的实现采样数据系统的实现主要包括信号采样、信号处理和控制算法等步骤。

信号采样通过采样器和采样保持电路实现,信号处理通过模拟滤波器和数字滤波器实现,控制算法通过计算机或专用芯片实现。

八、采样数据系统的应用采样数据系统广泛应用于仪器仪表、机电设备和工业控制等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京联合大学
实验报告
实验名称:采样控制系统分析
学院:自动化专业:物流工程姓名:学号:
同组人姓名:学号:
班级:成绩:
实验日期:2014年12月18日
完成报告日期:2014年12月21日
实验5 采样控制系统分析
一.实验目的
1. 掌握判断采样控制系统稳定性的充要条件。

2. 掌握采样周期T对系统的稳定性的影响及临界值的计算。

3. 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。

二、实验内容及步骤
1.闭环采样系统构成电路如图5-1所示。

掌握采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T 时的瞬态响应曲线,填入表中。

2. 改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入表中。

图5-1 闭环采样系统构成电路
[a].闭环采样系统实验构成电路如图5-1所示,其中被控对象的各环节
参数:
积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S,
惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。

实验步骤:注:(B5)单元的‘S ST’不能用‘短路套’短接!
(1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。

(D1)单元选择“方波”,(B5)“方波输出”孔输出方波。

调节“设定电位器1”控制相应的输出频率。

(2 ) 用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t):
B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V 阶跃)。

阶跃信号输出(B1单元的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。

(3)构造模拟电路:按图5-1安置短路套及测孔联线,表如下。

(4)运行、观察、记录:
三、数据处理(现象分析)
①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。

观察相应实验现象,记录波形,并判断其稳定性,填入表5-1。

T=66.6Hz
T=11.8Hz T=11.1Hz
[b].,两个闭环采样系统的被控对象参数分别为:
(1)闭环采样系统实验构成电路如图5-1所示。

积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S,
惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。

(2)改变图5-1所示闭环采样系统积分环节(A3单元),惯性环节(A5单元)参数构成实验系统:
积分环节(A3单元)的积分时间常数Ti=R2*C2=0.1S,
惯性环节(A5单元)的惯性时间常数T=R1*C1=0.2S,增益K=R1/R3=2。

计算和测量两组系统的临界稳定采样周期T,填入表5-2。

表5-2
T=8.9Hz
四、实验结论。

相关文档
最新文档