《用树状图或表格求概率》习题1

合集下载

《用树状图或表格求概率》习题1

《用树状图或表格求概率》习题1

《用树状图或表格求概率》习题1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ).A .41 B .21 C .43 D .1.2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法有( )种. A .4 B .7 C .12 D .813.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ). A .13 B .112 C .14D .1.4.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ). A .25B .310C .320D .155.掷两个普通的正方体骰子,把两个点数相加.则下列事件中发生的机会最大的是( ).123453489A.和为11B.和为8C.和为3D.和为26.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会.某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是().1A.41B.61C.53D.207.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.8.为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是1,6,8,转盘B上的数字分别是4,5,7(两个转盘除表面数字不同外,其他完全相同).每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次).作为游戏者,你会选择A、B中哪个转盘呢?并请说明理由.BA。

3.1用树状图或表格求概率第1课时用树状图或表格求概率同步练习(含答案)

3.1用树状图或表格求概率第1课时用树状图或表格求概率同步练习(含答案)

第三章概率的进一步认识1用树状图或表格求概率第 1 课时用树状图或表格求概率重点问答① 何时用列表法或画树状图法求概率?①1. 2017 ·大连同时投掷两枚质地平均的硬币,两枚硬币所有正面向上的概率为()1 1 1 3A. 4B.3C.2D. 42.甲口袋中装有 2 个小球,分别标有号码1,2;乙口袋中装有 2 个小球,分别标有号码 1, 2;这些球除数字不一样外,其余完整同样.从甲、乙两个口袋中分别随机地摸出一个小球,求这两个小球上的号码都是 1 的概率.命题点1直接列举法求概率[热度: 93%]②3. 2017 ·恩施州小明和他的爸爸妈妈共 3 人站成一排摄影,他的爸爸妈妈相邻的概率是()1 1 1 2A. 6B.3C.2D.3易错警告② 利用列举法求事件的概率,所列结果要正确,不要出现遗漏或重复.4.③如图3- 1- 1,有以下三个条件:①AC= AB,② AB∥ CD ,③∠ 1=∠ 2.从这三个条件中任选两个作为条件,另一个作为结论,则构成的命题是真命题的概率是()图 3- 1-11 2A . 0 B.3 C.3 D. 1方法点拨③ 概率问题常常与其余知识综合在一同考察,求解过程中必定要注意回首所学知识.5.从长度分别为2,4,6,7 的四条线段中随机取三条,能构成三角形的概率是________.命题点2用列表法或画树状图法求“两步”试验的概率[ 热度: 93%]④2,3 和 4,5 的两组卡片中的一组中随机地抽取一张作为十位上的6.从分别标有数字数字,再从另一组中抽取一张作为个位上的数字,构成的两位数恰巧是“5的”倍数的概率为________.方法点拨④ 列表时,把此中的一次操作或一个条件作为横行,另一次操作或另一个条件作为竖列,列出表格计算概率.⑤7. 一个不透明的口袋中有四个完整同样的小球,把它们分别标号为1, 2, 3, 4,随机摸出一个小球后不放回,再从剩下的小球中随机摸出一个小球,则两次摸出的小球标号之和等于 5 的概率为 ________.易错提示⑤ 不放回,就是第一次摸出的球,在第二次摸时不会出现,因此在画树状图时必定要注意这一点 .8.一个不透明的袋中有 3 张形状和大小完整同样的卡片,编号分别为1, 2, 3,先从中任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n,则对于 x 的方程 x2+ mx+ n= 0 有两个不相等的实数根的概率是________.9.某市今年中考需进行体育测试,此中男生测试项目有“ 1000米跑”“立定跳远”“掷实心球”“一分钟跳绳”“引体向上”五个项目.考生须从这五个项目中选用三个项目.要求:“1000 米跑”必选,“立定跳远”和“掷实心球”二选一,“一分钟跳绳”和“引体向上”二选一.(1)写出男生在体育测试中所有可能选择的结果;(2) 若小明和小亮都做不了引体向上,请你用列表法或画树状图法求他们在体育测试中所选项目完整同样的概率.命题点3利用画树状图法求“三步”试验的概率[热度: 92%]⑥10.2017 ·台州三名运动员参加定点投篮竞赛,原定出场次序是:甲第一个出场,乙第二个出场,丙第三个出场.因为某种原由,要求这三名运动员用抽签方式从头确立出场次序,则抽签后每名运动员的出场次序都发生变化的概率为________.方法点拨⑥ 在碰到“三步”或“三步”以上的问题时,用列表法已经不可以解决,只好用画树状图的方法来解决.11. 2017 ·镇江改编某校 5 月份举行了八年级生物实验考察,有 A 和 B 两个考察实验,规定每名学生只参加此中一个实验的考察,并由学生自己抽签决定详细的考察实验,小明、小丽、小华都参加了本次考察.(1)小丽参加实验 A 考察的概率是________;(2)小明、小丽都参加实验 A 考察的概率是________;(3)他们三人都参加实验 A 考察的概率是 ________.12.⑦某乳品企业近来推出一款果味酸奶,共有红枣、木瓜两种口胃,若送奶员连续三天,每日从中任选一瓶某种口胃的酸奶赠予给某住户品味,则该住户收到的三瓶酸奶中,至罕有两瓶为红枣口胃的概率是多少?(请用画树状图的方法给出剖析过程,并求出结果) 解题打破⑦此题只好用画树状图的方法来做,不适适用列表法.13.⑧为落实“垃圾分类”,环卫部门要求垃圾要按A, B,C 三类分别装袋、投放,此中A 类指废电池、过期药品等有毒垃圾, B 类指节余食品等厨余垃圾,C 类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不一样类.(1)直接写出甲投放的垃圾恰巧是 A 类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.解题打破⑧ 解决这个问题分几步走?应当采纳哪一种方法剖析?“乙投放的两袋垃圾不一样类”在分析时需要注意什么?详解详析【重点问答】① 当一次试验波及两个要素,而且可能出现的结果数量许多时,为了不重不漏地列出所有可能的结果,往常采纳列表法;当一次试验波及多个要素 (三个或三个以上 )时,往常采纳画树状图法求概率.1. A[ 分析 ]画树状图以下:共有 4 种等可能的结果,此中两枚硬币所有正面向上的结果有 1 种,因此两枚硬币所有1正面向上的概率为4.应选 A.2.解:列表以下 .乙1 2甲1 (1, 1) (1,2)2 (2, 1) (2,2)由表可知,共有 4 种等可能的结果,此中两个小球上的号码都是 1 的结果仅有 1 种,1∴ P(两个小球上的号码都是1) =4.3.D [ 分析 ]设小明为 A ,爸爸为 B,妈妈为 C,则所有的可能结果是 (ABC) ,(ACB) ,(BAC) , (BCA) , (CAB) , (CBA) ,∴他的爸爸妈妈相邻的概率是46=23.应选 D.4. D [ 分析 ] 构成以下三个命题:假如①AC=AB ,② AB∥ CD,那么③∠ 1=∠ 2;如果② AB∥ CD ,③∠ 1=∠ 2,那么① AC= AB;假如① AC= AB,③∠ 1=∠ 2,那么② AB∥ CD. 这三个命题都是真命题.应选 D.1[分析 ] 从四条线段中随机取三条 ,有以下四个不一样的结果:① 2, 4, 6;② 2,4, 5.2 7;③ 2,6, 7;④ 4,6, 7.因为这四个结果出现的可能性相等 ,此中 ,能构成三角形的结果 有两个 ,因此,从长度分别为2,4, 6, 7 的四条线段中随机取三条 ,能构成三角形的概率2 1 1 .P == .故答案为2421 [分析 ]列表格 ,得:6.4452 24, 42 25, 52334, 4335, 53∴一共有 8 种等可能的结果 ,此中是 “5”倍数的结果有两种的 ,∴构成的两位数恰巧是 “5”21的倍数的概率为= .17.3 [ 分析 ] 画树状图以下:∵共有 12 种等可能的结果 ,两次摸出的小球标号之和等于 5 的有 4 种状况 , ∴两次摸出的小球标号之和等于5 的概率是4 112 = .318.3 [ 分析 ] 依题意列表以下:n123m1(1, 2)(1, 3)2 (2,1)(2, 3)3(3,1)(3, 2)当 m 2- 4n > 0 时,对于 x 的方程 x 2+ mx + n = 0 有两个不相等的实数根 ,而使得 m 2- 4n>0 建立的 m , n 有 2 组,即 (3, 1)和 (3, 2),则对于 x 的方程 x 2+ mx + n = 0 有两个不相等1的实数根的概率是3.9. 解: (1) 将“立定跳远 ”“掷实心球 ”“一分钟跳绳 ”和 “引体向上 ”分别用 A , B , C , D 表示,画树状图以下:由树状图可知可能选择的结果有四种:①“1000米跑 ”“立定跳远 ”和 “一分钟跳绳”;②“1000米跑 ”“立定跳远 ”和 “引体向上 ”;③ “1000米跑 ”“掷实心球 ”和 “一分钟跳绳 ”;④ “1000 米跑 ”“掷实心球 ”和 “引体向上 ”.(2)因为他们都做不了引体向上 ,因此不会选②④ .列表以下:①③①(①,①)(①,③)③(③,①)(③,③)∵所有可能出现的结果共有4 种,此中所选项目完整同样的有2 种,∴他们在体育测试21中所选项目完整同样的概率为= .110.3 [ 分析 ] 画树状图以下:∵共有 6 种等可能的结果 ,抽签后每名运动员的出场次序都发生变化的有2 种状况 ,2 1∴抽签后每名运动员的出场次序都发生变化的概率为6=3.1 (2)1(3)1[分析 ] (1) 小丽参加实验A 考察的概率是1 11. (1)2482.(2 画树状图以下图.∵两人参加的实验考察共有四种等可能的结果,而两人均参加实验 A 考察的结果有 1 种,1∴小明、小丽都参加实验 A 考察的概率为.(3)画树状图以下图.三人参加的实验考察共有8 种等可能的结果,此中三人都参加实验 A 考察的结果只有 1种,∴他们三人都参加实验 A 考察的概率为1 8.12.解:画树状图以下:共有 8 种等可能的结果,此中起码有两瓶为红枣口胃的结果数为4,因此该住户收到的三瓶酸奶中,起码有两瓶为红枣口胃的概率为4=1.8 213.解: (1) ∵垃圾要按A ,B , C 三类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰巧是 A 类的概率为1 3.(2)画树状图以下图:由图可知,共有 18 种等可能结果,此中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有 12 种,12 2因此乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是18=3.。

初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(含答案及解析)

初中数学北师大版九年级上学期 第三章 3.1 用树状图或表格求概率(含答案及解析)

初中数学北师大版九年级上学期第三章 3.1 用树状图或表格求概率一、单选题1.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择—个参加活动,两人恰好选择同—场馆的概率是( )A. B. C. D.2.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )A. B. C. D.3.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.4.如图,有一电路AB是由图示的开关控制,闭合a,b,c,d,e五个开关中的任意两个开关,使电路形成通路,则使电路形成通路的概率是()A. B. C. D.二、综合题5.箱子里有4瓶牛奶,其中有一瓶是过期的.现从这4瓶牛奶中不放回地任意抽取2瓶.(1)请用树状图或列表法把上述所有等可能的结果表示出来;(2)求抽出的2瓶牛奶中恰好抽到过期牛奶的概率.6.九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:15 20 10已知前面两个小组的人数之比是.解答下列问题:(1)________.(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)7.为了解学生的课外阅读情况,七(1)班针对“你最喜爱的课外阅读书目”进行调查(每名学生必须选一类且只能选一类阅读书目),并根据调查结果列出统计表,绘制成扇形统计图.男、女生所选类别人数统计表根据以上信息解决下列问题(1)________,________;(2)扇形统计图中“科学类”所对应扇形圆心角度数为________ ;(3)从选哲学类的学生中,随机选取两名学生参加学校团委组织的辩论赛,请用树状图或列表法求出所选取的两名学生都是男生的概率.8.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球. (1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.9.如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时为无效转次.)答案解析部分一、单选题1. A解:用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆画树状图为:共有9种等可能的结果数,其中两人恰好选择同一场馆的有3种情况,∴两人恰好选择同一场馆的概率=故答案为:A【分析】由题意可知,此事件是抽取放回,列出树状图,根据树状图求出所有等可能的结果数及两人恰好选择同一场馆的可能数,然后利用概率公式求解。

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案

北师大版九年级数学上册《3.1用树状图或表格求概率》同步测试题带答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为( )A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是( )A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是( )A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是( )A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是( )A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是( )A.14B.13C.12D.1参考答案·知识点1游戏的公平性问题1.小强和小华两人玩“剪刀、石头、布”的游戏,随机出手一次,则小强获胜的概率为(B)A.16B.13C.12D.232.小明、小颖和小凡都想去影院看电影,但现在只有一张电影票,三人决定一起做游戏,谁获胜谁就去,游戏规则是:连续掷两枚质地均匀的硬币,若两枚正面朝上,则小明获胜,若两枚反面朝上,则小颖获胜;若一枚正面朝上,一枚反面朝上,则小凡获胜,关于这个游戏,下列判断正确的是(D)A.三人获胜的概率相同B.小明获胜的概率大C.小颖获胜的概率大D.小凡获胜的概率大3.学生甲、乙在学习了概率初步知识后设计了如下游戏:甲手中有6,8,10三张扑克牌,乙手中有5,7,9三张扑克牌,两人从各自手中随机取一张牌进行比较,数字大的则本局游戏获胜.(1)请用列表或画树状图的方法列举出此游戏所有可能出现的情况;(2)求学生乙本局游戏获胜的概率.【解析】略·知识点2转盘问题4.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是(A)A.13B.14C.16D.185.(2023·聊城中考)如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在直角坐标系第二象限的概率是16.6.现有三张分别标有数字1,2,3的牌,它们除数字外完全相同,把牌背面朝上洗匀后,甲、乙两人进行摸牌游戏,甲从中随机抽取一张,记下数字后放回洗匀,乙再从中随机抽取一张,若两人抽取的数字之和为偶数,则甲胜,否则乙胜.则甲获胜的概率是(D)A.13B.23C.49D.597.甲、乙各抛一次质地均匀的正方体骰子,骰子的六个面上分别刻有1至6的点数,若甲、乙的点数相同时,算两人平手;若甲的点数>乙的点数时,算甲获胜;若乙的点数>甲的点数时,算乙获胜.则甲获胜的概率是(B)A.712B.512C.12D.138.从-2,-1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于13.9.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是13.【素养提升】10.福州国际马拉松赛事设有“马拉松(42.195千米)”,“半程马拉松(21.097 5千米)”,“迷你马拉松(5千米)”三个项目,小智和小慧参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到三个项目组.(1)小智被分配到“马拉松(42.195千米)”项目组的概率为.(2)用树状图或列表法求小智和小慧被分到同一个项目组进行志愿服务的概率.【解析】略【易错必究】·易错点:忽视等可能的前提条件【案例】用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是(C)A.14B.13C.12D.1。

3.1 用树状图或表格求概率 练习题 2024-2025学年北师大版九年级数学上册

3.1 用树状图或表格求概率 练习题 2024-2025学年北师大版九年级数学上册

3.1 用树状图或表格求概率一、单项选择题1.从1,2,3,4,5这五个数中任选两个数,其和为偶数的概率为( ) A .15 B .25 C .35 D .452.小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和白色围巾的概率是( ) A .12 B .23 C .16 D .563.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A .13B .23C .12D .1 4.现有4张卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案恰好是“天问”和“九章”的概率是( )A .16B .18C .110D .1125.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指(每次只能出一只手),若两人出拳的手指数之和为偶数时小李获胜,则小李获胜的概率为( )A .1325B .1225C .425D .126.小明与小刚一起玩抛掷两枚硬币的游戏,游戏规则:抛出两个正面——小明赢1分;抛出其他结果——小刚赢1分;谁先得到10分,谁就获胜.这是个不公平的游戏规则,要把它修改成公平的游戏,下列做法中错误的是( ) A .把“抛出两个正面”改为“抛出两个同面” B .把“抛出其他结果”改为“抛出两个反面” C .把“小明赢1分”改为“小明赢3分” D .把“小刚赢1分”改为“小刚赢3分”7.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )A .18B .16C .14D .128.转动两个转盘,当指针分别指向红色和蓝色时称为配紫色成功.如图,转动两个分别被均匀分成4等份和3等份的转盘各一次,配紫色成功的概率是( )A .12B .13C .14D .23二、填空题9.班长邀请A ,B ,C ,D 四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是__________.10.端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,则爷爷奶奶吃到同类粽子的概率为____________.11.如图,管中放置着三根同样的绳子AA1,BB1,CC1,小明在左侧随机选两个绳头打一个结,小红在右侧也随机选两个绳头打一个结,则这三根绳子能连接成一根长绳的概率为____________.12.在拼图游戏中,从如图①所示的4张卡片中任取2张卡片,若能拼成如图②所示的“房子”,则小静赢,否则小敏赢.判断这个游戏对双方____________ (填“公平”或“不公平”).13.用图中两个可以自由转动的转盘做“配紫色”游戏,分别转动两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,那么可配成紫色的概率是______.14.甲、乙两人用如图所示的两个转盘(每个转盘分别分成面积相等的3个扇形)做游戏,游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是_____.15.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为___.三、解答题16.甲、乙两位同学去食堂就餐,如图是食堂内的一张餐桌的示意图,甲、乙两位同学随机地坐在①,②,③,④这四个座位上,请用画树状图或列表的方法求甲、乙两位同学恰好坐在正对面的概率.17.小莉的爸爸买了一张某演唱会的门票,她和哥哥两人都很想去看,可门票只有一张,读九年级的哥哥想了一个抽牌游戏来决定谁去看演唱会:拿8张扑克牌,将数字为1,2,3,5的4张牌给小莉,将数字为4,6,7,8的4张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的4张牌中随机抽出一张,然后将抽出的2张牌的数字相加,如果和为偶数,则小莉去;否则哥哥去.(1)请用画树状图或列表的方法求小莉去看演唱会的概率;(2)哥哥设计的这个游戏对双方公平吗?为什么?若不公平,请你修改这个游戏,使其对双方公平.18.在一次数学兴趣小组活动中,小明和小刚两位同学设计了如图所示的两个转盘做游戏,游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后(若指针停在分界线上,则重转),若指针所指区域内两数之和小于11,则小明获胜;若指针所指区域内两数之和等于11,则为平局;若指针所指区域内两数之和大于11,则小刚获胜.(1)请用列表或画树状图的方法表示出上述游戏中两数之和的所有可能出现的结果;(2)这个游戏规则公平吗?为什么?答案 一、1-8 BCBAA DCC 二、 9. 12 10. 2511. 2312. 不公平 13. 51214. 5915. 14三、16. 解:画树状图如下:由树状图可知共有12种等可能的结果,其中甲、乙两位同学恰好坐在正对面的结果共有①②,②①,③④,④③这4种,∴甲、乙两位同学恰好坐在正对面的概率为412 =1317. 解:(1)画树状图如下:由树状图可知共有16种等可能的结果,其中小莉去看演唱会的结果有6种,∴小莉去看演唱会的概率为616 =38(2)不公平,理由如下:∵哥哥去看演唱会的概率为1-38 =58 ,而38 <58 ,∴小莉去看演唱会的概率低于哥哥去看演唱会的概率,∴哥哥设计的这个游戏对双方不公平.修改游戏的方法不唯一,合理即可,如:把小莉的数字5的牌与哥哥数字4的牌对调 18. 解:(1)上述游戏中两数之和的所有可能出现的结果如如下的树状图所示:(2)不公平,理由如下:由树状图可知共有12种等可能的结果,其中小明获胜、小刚获胜的结果分别有5种、3种,∴小明获胜的概率为512 ,小刚获胜的概率为312 =14 .∵512 >14 ,∴这个游戏规则不公平。

3.1用树状图或表格求概率(1)

3.1用树状图或表格求概率(1)
2.用列表法求概率时应注意什么情况? 用列表法求概率时应注意各种情况发生的可能性 务必相同.
做一做
连续掷两枚质地均匀的硬币,“两枚正面朝 上”“两枚反面朝上”“一枚正面朝上、一枚 反面 朝上”这三个事件发生的概率相同吗?
先分组进行试验,然后累计各组的试验数据, 分别计算这三个事件发生的频数与频率,并由此 估计这三个事件发生的概率.
议一议
在上面抛掷硬币试验中, (1)抛掷第一枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果? 它们发生的可能性是否一样? (3)在第一枚硬币正面朝上的情况下, 第二枚硬币可能出现哪些结果?它们发生 可能性是否一样?如果第一枚硬币反面朝 上呢?
习题
3.小明从一定高度随机掷一枚质地均匀的硬币,他 已经掷了两次硬币,结果都是“正面朝上”。那 么,你认为小明第三次掷硬币时,“正面朝上” 与“反面朝上”的可能性相同吗?如果不同,那 种可能性大?说说你的理由,并与同伴交流。
小结
1.本节课你有哪些收获?有何感想? 用列表法求随机事件发生的理论概率 (也可借用树状图分析)
3.1 用树状图或表格求概率(1)
学习方法报 数学周刊
小明、小颖和小凡都想去看周末电影,但只 有一张电影票,三人决定一起做游戏,谁获胜谁 就去看电影.游戏规则如下:
连续抛掷两枚均匀的硬币,若两枚正面朝上, 则小明获胜;若两枚反面朝上,则小颖获胜;如 果一枚正面朝上、一枚反面朝上,则小凡获胜.
你认为这个游戏公平吗?
4
小颖获胜的结果有1种:(反,反),所以小颖获 胜的概率也是 1;
4
小所凡以获小胜凡的获结胜果的有 概率2种是:42(. 正,反)(反,正),
因此,这个游戏对三人是不公平的.

九年级数学上册 3.1 用树状图或表格求概率(第1课时)练习题北师大版

九年级数学上册 3.1 用树状图或表格求概率(第1课时)练习题北师大版

3.1 用树状图或表格求概率
基础导练
1.同时掷两颗均匀的骰子,下列说法中正确的是( )
(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;
(2)“两颗的点数相同”的概率是16
; (3)“两颗的点数都是1”的概率最大;
(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.
A. (1)、(2)
B. (3)、(4)
C. (1)、(3)
D. (2)、(4)
2.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 .
3.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 .
能力提升
4.有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.
5.有两个质量均匀、大小相同的正四面体,其中一个的四个面上分别写着数字1、2、3、4,另一个的四个面上分别写着数字5、6、7、8. 将这两个正四面体同时
投掷到桌面上,并以它们底面上的数字之和来计分,问:
(1)共能组成多少种不同的计分?
(2)底面上的数字之和为素数的概率是多少?
(3)底面上的数字之和为偶数的概率是多少?
参考答案
1.D
2.25
3. 310
4.415
5.(1)7 (2)14 (3)12。

3.1用树状图或表格求概率课时练习(含答案解析)

3.1用树状图或表格求概率课时练习(含答案解析)

第一节用树状图或表格求概率同步测试一、选择题1.某校有一个两层楼的餐厅,甲、乙、丙三名学生各自随机选择此中的某个楼层的餐厅用餐,则甲、乙、丙三名学生在同一个楼层餐厅用餐的概率为()1 3 1 3A. B. C. D.4 4 8 8答案: A分析:解答:设两层楼分别为 A , B,共有 8 种状况,在一层的共有 2 种状况,因此甲乙丙同在一层楼吃饭的概率是1.4应选 A剖析 :列举出所有状况,让甲、乙、丙三名学生在同一个楼层餐厅用餐的状况数即AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB,除以总状况数即为所求的概率.2.如下图的两个转盘,每个转盘均被分红四个相同的扇形,转动转盘时指针落在每一个扇形内的时机均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为()1 1 1 1A. B. C. D.2 3 4 8答案: C分析:解答:列表得:1共有 16 种状况,两个指针同时落在标有奇数扇形内的状况有4 种状况,因此概率是,故4选 C .剖析 :本题考察了树状图来求概率 ,列举出所有状况,看两个指针同时落在标有奇数扇形内的状况占总状况的多少即可.3.在一个口袋中有 3 个完整相同的小球,把它们分别标号为1, 2, 3,随机地摸取一个小球而后放回,再随机地摸出一个小球.则两次取的小球的标号相同的概率为()A.1 1 1 1 B.C.2D.369答案: A分析: 解答: 列表,得:因此共有 9 种状况,两次取的小球的标号相同的有3 种状况;因此两次取的小球的标号相同的概率为3 1 9 .3应选 A .剖析 :本题考察了列表法求概率 ,本题是抽取再放回 ,用表格列出所有的 9 种状况是解决问题的重点 .4.学校准备从甲、乙、丙、丁四位同学中选两位参加数学比赛,则同时选中甲、乙两位同学的概率是 ()1 B.1 1 1 A.C.2D.648答案: A分析: 解答: 解:画树状图得:∵共有 12 种等可能的结果,同时选中甲、乙两位同学的有 2 种状况,2 = 1 .因此选 A .∴同时选中甲、乙两位同学的概率是:12 6剖析 :第一依据题意画出树状图,而后由树状图求得所有等可能的结果与同时选中甲、乙两位同学的状况,再利用概率公式求解即可求得答案5.随机闭合开关S1、 S2、S3中的两个,能让灯泡⊙发光的概率是( )3 2 1 1A. B. C. D.4 3 2 3答案: B,应选 B.2分析:解答:随机闭合开关S1、S2、S3中的两个出现的状况列表得,因此概率为3开关S1 S2 S1 S3 S2S3,结果亮亮不亮剖析 :本题第一要明确 ,并联电路的特色 ,用列表法 ,求出三个开关的所有闭合状况,再剖析出灯泡亮的状况 ,即可解决问题 .6.小兰和小潭分别用掷 A 、 B 两枚骰子的方法来确立P(x, y)的地点,她们规定:小兰掷得的点数为 x,小谭掷得的点数为 y,那么,她们各掷一次所确立的点落在已知直线y=-2x+6 上的概率为 ()6 1 1 1A. B. C. D.36 18 12 9答案: B分析:解答:列表得:∴一共有 36 种状况,她们各掷一次所确立的点落在已知直线y=-2x+6 上的有( 1, 4),(2, 2).∴她们各掷一次所确立的点落在已知直线y=-2x+6 上的概率为2 136 .18应选 B剖析 :用列表法先列出所有的36 种坐标 ,而后再分别代入直线,找出知足分析式的点的坐标,问题即可获得解决.7小红上学要经过三个十字路口,每个路口碰到红、绿灯的时机都相同,小红希望上学时经过每个路口都是绿灯,但实质这样的时机是()1 1 1 1A. B. C. D.2 3 4 8答案: D分析:解答:解:画树状图,得∴共有 8 种状况,经过每个路口都是绿灯的有一种,∴实质这样的时机是 1 .8应选 D.剖析 :本题可理解为两步实验,用树状图列出这两步实验的所有状况8 种 ,问题即可获得解决 .8.在数 -1,1,2 中任取两个数作为点坐标,那么该点恰幸亏一次函数y=x-2 图象上的概率是()1 1 1 1A. B. C. D.2 3 4 6答案: D分析:解答:画树状图如上:共有 6 种等可能的结果,此中只有(1, -1)在一次函数y=x-2 图象上,1因此点在一次函数y=x-2 图象上的概率=.6应选 D.剖析 :用树状图列出这四个数作为点的坐标的所有状况,注意有次序性,再代入找出知足分析式的点 ,问题即可获得解决.9.一枚质地平均的昔通硬币重复掷两次,落地后两次都是正面向上的概率是( )1 1 1B. C. D.2 3 4答案: D分析:解答:共有 4 种状况,落地后两次都是正面向上的状况数有 1 种,因此概率为1.应选D.4剖析 :用树状图列出所有可能出现的状况(正正 ;正反 ;反正 ;反反 )这是解决问题的重点.10.任意掷一枚平均的硬币两次,则两次都不是正面向上的概率是()1 1 1B. C. D.4 3 3答案: B分析:解答:∵任意掷一枚平均的硬币两次,等可能的结果有:正正,正反,反正,反反,∴两次都不是正面向上的概率是1.应选 B.4剖析:第一利用列举法可得任意掷一枚平均的硬币两次,等可能的结果有:正正,正反,反正,反反,而后利用概率公式求解即可求得答案.11.将分别标有数字 1,2,3,4 的四张卡片洗匀后,反面向上,放在桌面上,随机抽取一张(不放回 ),接着再随机抽取一张,恰巧两张卡片上的数字相邻的概率为()111 1A. B. C. D.543 2答案: D分析:解答:第一次可有 4 种选择,那么第二次可有 3 种选择,那么知共有4×3=12 种可能,恰巧两张卡片上的数字相邻的有 6 种,因此概率是 6 = 1 ,应选D.12 2剖析 :第一利用列举法可得抽取不放回的等可能的结果有:12 种,相邻的有 6 种 ,而后利用概率公式求解即可求得答案.12.有三张正面分别写有数字-1, 1, 2 的卡片,它们反面完整相同,现将这三张卡片反面朝上洗匀后随机抽取一张,以其正面数字作为 a 的值,而后再从节余的两张卡片随机抽一张,以其正面的数字作为 b 的值,则点 (a, b)在第二象限的概率为()1 1 1 2A. B. C D.6 3 2 3答案: B分析:解答:解:依据题意,画出树状图如上:一共有 6 种状况,在第二象限的点有(-1,1)( -1, 2)共 2 个,因此, P= 2 1 = .6 3应选 B.剖析 :第一利用树形图可得等可能的结果有 6 种,而后利用概率公式求解即可求得答案.13.一个盒子中有 4 个除颜色外其他都相同的玻璃球, 1 个红色, 1 个绿色, 2 个白色,现随机从盒子中一次取出两个球,这两个球都是白球的概率为( )1B. 1C.1A.36 2答案: A分析:解答:共12 种等可能的状况, 2 次都是白球的状况数有 2 种,因此概率为.应选 A.剖析 :列举出所有状况,看这两个球都是白球的状况数占总状况数的多少即可.14.小明同时向上掷两枚质地平均、相同大小的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,掷得面向上的点数之和是 3 的倍数的概率是 ( )1 1 8 5A. B. C. D.3 6 15 6答案: A分析:解答:明显和为 3 的倍数的概率为.应选 A.剖析 :本题可理解为两步实验,用列表法求出36 种所有可能的状况,而后找出和为 3 的倍数个数问题即可获得解决.15.甲、乙、丙、丁四位同学参加校田径运动会4×100 米接力跑比赛,假如任意安排四位同学的跑步次序,那么恰巧由甲将接力棒交给乙的概率是()1 1 1 5A. B. C. D.4 6 8 24答案: A分析:解答:画树状图得:一共有 24 种状况,恰巧由甲将接力棒交给乙的有甲乙丙丁、甲乙丁丙、丙甲乙丁、丁甲乙丙、丙丁甲乙、丁丙甲乙 6 种状况,∴恰巧由甲将接力棒交给乙的概率是6 = 1 ,应选 A.24 4剖析 :用树形图列举出所有状况,看恰巧由甲将接力棒交给乙的状况数占总状况数的多少即可.二、填空题16. 由 1, 2, 3 构成不重复的两位数,十位数字是 2 的概率是_____.答案:13分析:解答:由 1,2, 3 构成不重复的两位数有:则十位数字是 2 的状况有: 21、23 两种;12、 13、 21、 23、 31、 32 共六种状况;∴十位数字是 2 的概率是2÷6= 1.故答案为 1 .3 3剖析 :先依据题意列出切合条件的两位数有 6 种,此中十位数字是 2 的状况有 2 种,而后根据概率公式求解即可.17.如图,是两个能够自由转动的平均圆盘 A 和 B,A 、B 分别被平均的分红三等份和四等份.同时自由转动圆盘 A 和 B,圆盘停止后,指针分别指向的两个数字的积为偶数的概率是_____.答案:23分析:解答:画树状图得:∵由 12 种等可能的结果,指针分别指向的两个数字的积为偶数的有8 种状况,8 2∴指针分别指向的两个数字的积为偶数的概率是:.12 3故答案为:2.3剖析 :第一依据题意画出树状图,而后由树状图求得所有等可能的结果与指针分别指向的两个数字的积为偶数的状况,再利用概率公式求解即可求得答案.18.有四条线段,长度分别为1、 3 、 4 、5,任意取此中三条,能构成三角形的概率是_____答案:14分析:解答:四条线段,长度分别为1、3、4、5,任意取此中三条状况为:1, 3,4;1, 3,5; 1, 4, 5; 3, 4,5;能构成三角形的状况有:3,4, 5 只有 1 种状况,1 1则 P= .故答案为:4 4剖析 :找出四条选段,任意取此中三条的状况数,再找出能构成三角形的状况,即可求出所求的概率.19.从 1cm、3cm、5cm、7cm、9cm 的五条线段中,任选三条能够构成三角形的概率是_____.答案:310分析:解答:∵从 1cm、3cm、5cm、7cm、9cm 的五条线段中,任选三条,等可能的结果有:1cm、 3cm、 5cm, 1cm、 3cm、7cm, 1cm、 3cm、 9cm, 1cm、 5cm、 7cm, 1cm、5cm、 9cm,1cm、 7cm、 9cm, 3cm、 5cm、 7cm, 3cm、 5cm、 9cm, 3cm、 7cm、 9cm, 5cm、 7cm、 9cm 共 10 种,能构成三角形的有以上状况:3cm,5cm,7cm,3cm,7cm,9cm,5cm,7cm,9cm,3∴任选三条能够构成三角形的概率是:.10故答案为:3.10剖析 :第一利用列举法可得:任选三条,等可能的结果有:1cm、3cm、5cm,1cm、3cm、7cm,1cm、 3cm、 9cm, 1cm、 5cm、 7cm, 1cm、 5cm、 9cm, 1cm、 7cm、 9cm, 3cm、 5cm、7cm,3cm、5cm、9cm,3cm、7cm、9cm,5cm、7cm、9cm 共 10 种,能构成三角形的有以上状况:3cm, 5cm, 7cm, 3cm, 7cm, 9cm, 5cm, 7cm, 9cm,再利用概率公式即可求得答案.20.假如有两组牌,它们牌面数字分别为1、 2、3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于 4 的牌概率是 ____ .1答案:3分析:解答:解:画树状图如上:共有 9 种状况,两张牌的牌面数字和等于 4 的牌有 3 种,∴P(两张牌的牌面数字和等于4) = 3 1 .故答案为:1.9 3 3剖析 :用树形图按两步实验的方法列出9 种状况 ,数字之和等于 4 的有 3 种,即可得出答案 . 概率三.解答题21.有两组牌,每组牌都是 4 张,牌面数字分别是 1, 2, 3, 4,从每组牌中任取一张,求抽取的两张牌的数字之和等于 5 的概率,并画出树状图.答案:解:,共有 16 种等可能的状况,和为 5 的状况有 4 种,∴ P(和为 5) = 1.4分析:剖析 :画出树状图.列举出所有状况,看抽取的两张牌的数字之和等于 5 的状况占所有状况的多少即可.22.一个不透明的盒子中放有四张分别写有数字1,2,3,4 的红色卡片和三张分别写有数字1, 2, 3 的蓝色卡片,卡片除颜色和数字外完整相同.(1) 从中任意抽取一张卡片,求该卡片上写有数字 1 的概率;答案: 27(2)将 3 张蓝色卡片取出后放入此外一个不透明的盒子内,而后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数构成一个两位数,求这个两位数大于 22 的概率.答案:712分析:解答:( 1)∵在 7 张卡片中共有两张卡片写有数字1,∴从中任意抽取一张卡片,卡片上写有数字1 的概率是 2 ;7(2)构成的所有两位数列表为:十位数1 2 3 4个位数1 11 21 31 412 12 22 32 423 13 23 33 43或列树状图为:7∴这个两位数大于22 的概率为.12剖析 :本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出所有可能的结果,合适于两步达成的事件.用到的知识点为:概率 =所讨状况数与总状况数之比.依照题意先用列表法或画树状图法剖析所有等可能和出现所有结果的可能,而后依据概率公式求出该事件的概率.23.现将红、黄、蓝各一球放入不透明的盒子中,这三个球除颜色外完整相同,每次摇匀后,从中摸出一个球记录颜色并放回,共摸两次,求摸到同种颜色球的概率.答案:解:由树状图可知共有3×3=9 种可能,摸到同种颜色球的有 3 种,因此概率是3 1.9 3图法分析:剖析 :用树形图 ,先求出摸两次所有可能出现的状况共9 种 ,再找出同颜色的有 3 种 ,计算即可得到答案 .24.“十一”黄金周时期,小明要与父亲母亲出门游乐,带了 2 件上衣和 3 条长裤 (把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.问题为:(1)小明任意取出一条裤子和一件上衣配成一套,用( 画树状图或列表格 )中的一种列出所有可能出现结果;答案: 6 种;(2)配好一套衣服,小明正好拿到黑色长裤的概率是多少;答案:13(3)他任意取出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?答案:13分析:解答:解:( 1)列表如上:裤子红色黑色黄色上衣红色红色,红色红色,黑色红色,黄色黄色黄色,红色黄色,黑色黄色,黄色因此小明任意取出一条裤子和一件上衣配成一套,所有可能出现的结果有 6 种;(2)黑色长裤的有两种,因此概率是 1 ;3(3)颜色相同的占两种,因此概率是 1 .3剖析 :因为本题需要两步达成,因此采纳列表法或许采纳树状图法都比较简单;解题时要注意是放回实验仍是不放回实验.本题属于放回实验.(1)依据表格可得所有状况;(2)找到黑色长裤占所有状况的多少;(3)颜色相同的状况占所有状况的多少.25.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其他都相同),此中白球有 2 个,黄球有 1 个,现从中任意摸出一个是白球的概率为 1 .2(1)试求袋中蓝球的个数;答案: 1 个.(2)第一次任意摸一个球 (不放回 ),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.答案:1 6分析:解答:( 1)设蓝球个数为x 个,则由题意得 2 = 1, x=12+ 1+ x 2 答:蓝球有 1 个;(2)∴两次摸到都是白球的概率=2=1.12 6剖析 :求概率时要理解概率值等于出现的次数比上总的次数,因为给出了概率求个数,因此可列方程解之 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《用树状图或表格求概率》习题
1随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()
C .
2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某 人乘坐以上交通工具,从甲地经乙地到丙地的方法有()种.
3.设有12只型号相同的杯子,其中一等品
7只,二等品3只,三等品2只.则从中任意取
4.如图,图中的两个转盘分别被均匀地分成 个扇形上都标有数字, 同时自由转动两个转盘, 都落在奇数上的概率是()
5个和4个扇形,每 . 转盘停止后,指针 送 :81
5. 掷两个普通的正方体骰子,把两个点数相加.则下列事件中发生的机会最大的是().
C . 12 81
1只,是二等品的概率等于
()
1
12 C .
_3_ 10 C . _3_ 20
A .和为11
B .和为8
C.和为3
D .和为2
6. 中央电视台幸运52”栏目中的百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在
20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会. 某观众前两次翻牌均得若干奖金,
如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是().
1
4
1
6
1
5
2
20
7. 某商场在今年“十一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1, 2, 3, 4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇
匀,再摸出一个小球,又记下小球的标号•商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖•请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.
&为活跃联欢晚会的气氛,组织者设计了以下转盘游戏:A、B两个带指针的转盘分别被分
成三个面积相等的扇形,转盘A上的数字分别是1, 6, 8,转盘B上的数字分别是4, 5, 7
(两个转盘除表面数字不同外,其他完全相同) .每次选择2名同学分别拨动A、B两个转盘上的指针,使之产生旋转,指针停止后所指数字较大的一方为获胜者,负者则表演一个节目(若箭头恰好停留在分界线上,则重转一次) .作为游戏者,你会选择A、B中哪个转盘呢?并请说明理由.
A B
A.
B.
C.
D.。

相关文档
最新文档