小学数学竞赛几何题集锦

合集下载

四年级下册数学竞赛试题-几何.风筝模型和梯形蝴蝶定理C级.学生版-全国通用

四年级下册数学竞赛试题-几何.风筝模型和梯形蝴蝶定理C级.学生版-全国通用

6风筝模型和梯形蝴蝶定理例题精讲【例11【巩固1【例21C、、/如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC的面积;(2) AG:GC在^ABC中-B D=2:1,DC如图,平行四边形是2、4、4 和6.=?AE=I:3,求OB=?EC OEABCD的对角线交于0点,△ CEF、△ OEF、△ ODF、△ BOE的面积依次求:⑴求△ OCF的面积;⑵求△ GCE的面积.D【巩固】如右上图,已知 BO=2DO C0=5AO 阴影部分的面积和是 11平方厘米,求四边形 ABCD 的面积。

那么三角形DBE 的面积是O如图,边长为1的正方形ABCD 中,BE =2EC , CF =FD ,求三角形AEG 的面积.如图,长方形ABCD 中,BE: EC =2:3,DF :FC =1:2,三角形DFG 的面积为2平方厘米,求 长方形ABCD 的面积.如图,在 MBC 中,已知M 、N 分别在边AC 、BC 上,BM 与AN 相交于0 ,若AAOM 、虫ABO和人BON 的面积分别是3、2、1,则人MNC 的面积是如图4,在三角形 ABC 中,已知三角形 ADE 三角形DCE 三角形BCD 的面积分别是 89、28、26,-J f -I ”【例3】【巩固】【例4】 【巩固】CB【例5】已知ABCD是平行四边形,B C:CE=3:2,三角形ODE的面积为6平方厘米。

贝9阴影部分的面积是平方厘米。

AB E【巩固】在梯形ABCD中,上底长5厘米,下底长10厘米,S郎OC=20平方厘米,则梯形ABCD的面积是平方厘米。

【例6】如下图,一个长方形被一些直线分成了若干个小块,已知三角形ADG的面积是11,三角形BCH 的面积是23,求四边形EGFH的面积.【巩固】如图,长方形中,若三角形1的面积与三角形3的面积比为4比5,四边形2的面积为36,则三角形1的面积为在下图的正方形 ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1如图所示,BD 、CF 将长方形ABCD 分成4块,心DEF 的面积是4平方厘米,ACED 的面积是6 平方厘米.问:四边形 ABEF 的面积是多少平方厘米?如图, MBC 是等腰直角三角形,DEFG 是正方形,线段 AB 与CD 相交于K 点.已知正方形DEFG 的面积48, AK : KB =1:3,则虫BKD 的面积是多少?如图所示,ABCD 是梯形,AADE 面积是1.8,心ABF 的面积是9,也BCF 的面积是27 .那么阴影 MEC 面积是多少?【例7】 平方厘米,那么正方形 ABCD 面积是平方厘米.【巩固】【例8】【巩固】方厘米,则四边形 PMON 勺面积是平方厘米。

小学数学竞赛《几何图形》专题训练30题含答

小学数学竞赛《几何图形》专题训练30题含答

小学数学竞赛《几何图形》专题训练30题含答一、单选题1.同同按照一定的规律摆出了下面的四幅图。

如果按照这个规律继续摆,第5幅图用()根小棒。

A.23B.31C.352.一种长方形屏幕长与宽的比是16:9,下面几种规格屏幕合格的()A.长1.6米,宽1米B.长45米,宽920米C.长1.2米,宽80厘米D.以上都不对3.下图中,平行线间梯形A,B的面积相等,梯形B的下底是()cm。

A.5B.3C.3.3D.无法确定4.一条()长8cm。

A.直线B.线段C.射线5.下面哪一组的4根小棒能刚好拼成一个长方形?()A.B.C.D.二、填空题6.最大的—位数是,最小的两位数是,它们的和是.7.一块圆柱形橡皮泥,底面积是9平方厘米,高是6厘米。

把它捏成底面积是9平方厘米的圆锥形,高是厘米、如果捏成高是6厘米的圆锥形,底面积是平方厘米。

8.看图填空有个长方形.有个梯形.9.一个大三角形剪成两个小三角形,每个小三角形的内角和是度。

10.根据百位数表填数。

11.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连接AE、CE,则ΔADE的面积是。

12.数图形。

上图中有个正方体,个圆柱体,个球体。

13.把这个物体放到地面上,观察并填空。

是由个小正方体拼成的。

如果把这个图形的表面涂上绿色,不涂色的有个小正方体、一个面涂绿色的有个小正方体、有2个面涂绿色的有个小正方体、有3个面涂绿色的有个小正方体、有4个面涂绿色的有个小正方体、有5个面涂红色的有个小正方体。

14.观察用完全相同的正方体木块摆出的模型,把观察角度和图结合起来.①从前向后看是②从上向下看是③从左向右看是A.B.C.三、作图题15.按要求用一条线段把下面的图形分成两个图形。

①②③16.下面的长方形中,共有28个小方格,其中有4个小方格中分别写了“我”“爱”“数”“学”四个字,请你把这个长方形沿着格线剪成大小相等的四块,而且每块中要有1个字。

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。

小学六年级数学几何体练习试题

小学六年级数学几何体练习试题

小学六年级数学几何体练习试题一、选择题1、一个正方体的棱长总和是 60 厘米,它的表面积是()平方厘米。

A 150B 125C 216解题思路:正方体有 12 条棱,且每条棱长度相等。

已知棱长总和是 60 厘米,所以每条棱的长度是 60÷12 = 5 厘米。

正方体的表面积=棱长×棱长×6,即 5×5×6 = 150 平方厘米。

答案选 A。

2、用一根 52 厘米长的铁丝,恰好可以焊成一个长 6 厘米、宽 4 厘米、高()厘米的长方体框架。

A 2B 3C 4解题思路:长方体有 4 条长、4 条宽和 4 条高。

先算出长、宽、高的总和:52÷4 = 13 厘米,然后用总和减去长和宽,即 13 6 4 = 3 厘米。

答案选 B。

3、一个圆柱的侧面展开图是一个正方形,这个圆柱的底面直径与高的比是()A 1:πB 1:2πC 2:π解题思路:圆柱的侧面展开图是正方形,说明圆柱的底面周长和高相等。

底面周长=π×直径,设直径为 d,高为 h,则 h =πd,所以直径与高的比是 d : h = d :πd = 1 :π。

答案选 A。

4、把一个圆柱削成一个最大的圆锥,削去部分的体积是圆锥体积的()A 2 倍B 3 倍C 2/3解题思路:等底等高的圆柱体积是圆锥体积的 3 倍。

把圆柱削成最大的圆锥,圆锥与圆柱等底等高。

所以削去部分的体积是圆锥体积的 2 倍。

答案选 A。

5、一个圆锥的体积是 36 立方分米,底面积是 9 平方分米,它的高是()分米。

A 4B 12C 3解题思路:圆锥的体积= 1/3×底面积×高,所以高=体积×3÷底面积,即 36×3÷9 = 12 分米。

答案选 B。

二、填空题1、一个长方体的长、宽、高分别是 8 厘米、6 厘米、4 厘米,这个长方体的棱长总和是()厘米,表面积是()平方厘米,体积是()立方厘米。

小学数学几何图形经典30题(含解析)

小学数学几何图形经典30题(含解析)

小学数学几何图形经典30题(含解析)小学阶段常考的几何易错知识点1线、角1.直线没有端点,没有长度,可以无限延伸。

2.射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。

3.在一条直线上的一个点可以引出两条射线。

4.线段有两个端点,可以测量长度。

圆的半径、直径都是线段。

5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。

6.几个易错的角边关系:(1)平角的两边是射线,平角不是直线。

(2)三角形、四边形中的角的两边是线段。

(3)圆心角的两边是线段。

7.两条直线相交成直角时,这两条直线叫做互相垂直。

其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

8.从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距离。

9.在同一个平面上不相交的两条直线叫做平行线。

2三角形1.任何三角形内角和都是180度。

2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。

3.任何三角形都有三条高。

4.直角三角形两个锐角的和是90度。

5.两个三角形等底等高,则它们面积相等。

6.面积相等的两个三角形,形状不一定相同。

3正方形面积1.正方形面积:边长×边长2.正方形面积:两条对角线长度的积÷24三角形、四边形的关系1.两个完全一样的三角形能组成一个平行四边形。

2.两个完全一样的直角三角形能组成一个长方形。

3.两个完全一样的等腰直角三角形能组成一个正方形。

4.两个完全一样的梯形能组成一个平行四边形。

5圆1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。

则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r×2。

2.半圆的周长等于圆的周长的一半加直径。

3.半圆的周长公式:C=pd¸2+d或C=pr+2r4.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。

小学奥林匹克数学 竞赛数学 五年级 第6讲-几何计数

小学奥林匹克数学  竞赛数学 五年级 第6讲-几何计数

第6讲几何计数【例1】导引拓展篇第1题如图,数一数,图中有多少个三角形?包含1个小三角形的有25个包含4个小三角形的有13个包含9个小三角形的有6个包含16个小三角形的有3个包含25个小三角形的有1个++++=所以共有个251363148按照顺序数出图形个数【例2】导引拓展篇第2题数一数,两个图形中分别有多少个三角形?包含1块的三角形有5个;包含2块的三角形有4个;包含3块的三角形有1个;包含4块的三角形有1个;没有5块和6块的三角形;包含7块的大三角形1个;因此所有三角形一共有++++=5411112【例2】导引拓展篇第2题数一数,两个图形中分别有多少个三角形? 共有12个三角形 增加10个三角形 增加10个三角形因此原图中共有个三角形. B C BA DEF12101032++=【例3】导引拓展篇第3题数一数下面的三个图形中分别有多少个三角形.整个五边形被分成了11块由1块构成的三角形有10个;由2块构成的三角形是10个;由3块构成的三角形共10个;由5块构成的三角形有5个.共有10+10+10+5=35个三角形。

【例3】导引拓展篇第3题数一数下面的三个图形中分别有多少个三角形.加上虚线就加上6个三角形变成35个三角形原图共有35-6=29个三角形【例3】导引拓展篇第3题AB C增加了一条线段AC以AB为边增加三角形有4个,以BC为边增加三角形有2个,以AC为边增加三角形有6个,共增加12个共有35+12=47个三角形数一数下面的三个图形中分别有多少个三角形.【例4】导引拓展篇第4题数一数,图中有多少个三角形?两个部分中各有35个三角形第一种有10个第二种有5个原图中共有35×2+10+5=85个三角形【例5】导引拓展篇第5题数一数图中共有多少个长方形?(正方形是特殊长方形)由1块组成的长方形共有7个由2块组成的长方形共有4个由3块组成的长方形共有2个由4块组成的长方形有1个由5块组成的长方形有1个由6块组成的长方形有1个由7块组成的长方形有1个图中共有长方形7+4+2+1+1+1+1=17个【例6】导引拓展篇第5题如图所示的一个大菱形,那么图中共能数出多少个菱形?设最小的菱形边长为1边长为1的菱形共有4×4=16个边长为2的菱形共有3×3=9个边长为3的菱形共有2×2=4个边长为4的菱形有1×1=1个菱形共有16+9+4+1=30个2212+(⋅⋅⋅⋅⋅⋅)1-nn++【例7】导引拓展篇第7题这是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)包含黑点的长方形有多少个?(1)从5条横线中取2条横线共有种方法从10条竖线中取2条竖线共有中方法图中共有长方形 22510450C C ⨯=(2)黑点上面有2条横线,下面有3条横线所以有2×3=6种取法左边有6条竖线,右边有4条竖线 所以又4×6=24种取法 共有6×24=144个含黑点的长方形 21n 21m C C ++⨯m ×n 个网格中有 个长方形【例8】导引拓展篇第8题数一数,图中共有多少个长方形?左边阴影一共有长方形个 右方阴影一共有长方形个 被重复计算有个 图中一共包含长方形90+63-18=135个224690C C ⨯=227363C C ⨯=224318C C ⨯=【例9】导引拓展篇第9题图中共有多少个平行四边形?尖朝右、尖朝左和尖朝上三种最小的平行四边形有6个两个小平行四边形拼成的有6个三个小平行四边形拼成的有2个四个小平行四边形拼成的有1个共15个有15×3=45个平行四边形【例10】导引拓展篇第10题18个大小相同的小正三角形拼成了一个平行四边形.数一数,图中共有多少个梯形?左上右下的斜线、左下右上的斜线和竖线三种左上右下:6×3+4=22个梯形左下右上: 6×3+4=22个梯形竖线梯形:5×2+2=12个所以共有22+22+12=56个梯形【例11】导引拓展篇第11题木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?三角形由不在同一直线的三点组的 从12个点中任意选择3个点有 共线三点组共有12+8=20个 所以共有220-20=200个三角形220C 312【例12】导引拓展篇第12题方格纸上放了20枚棋子,以棋子为顶点,可以连出多少正方形?最小方格有9个小正方形小正方形个数有4个小正方形个数有2个小正方形个数有4个小正方形个数有2个一共有9+4+2+4+2=21个【例13】导引拓展篇第13题图中,共有多少个不同的曲边形?中间是1个五角星,边上是5个小块1个小块:5+5=10个曲边型2个小块: 3个小块: 4个小块: 5个小块:1个共有10+10+10+5+1=36个曲边型10C 25=10C 35=5C 45=【例14】导引拓展篇第14题一个2×3的网格中,每个小正方形的面积都是1.那么以格点为顶点,可以连成多少个面积为1的三角形?底是2高是1、底是1高是2底是2高是1: 底是1高是2: 底是1高是2又是底是2高是1:直角三角形重复 重复直角三角形为1×2直角三角形1×2的长方形中由4个这样的直角三角形 重复共有4×7=28种面积为1的三角形共有:50+48-28=70种4×2 +4×2×2 +4×2 +9×2 =50种 3×4×2 +2×3×4 =48种本讲知识点汇总一、按照顺序数出图形个数二、m ×n 的方格中长方形的个数为 三、正方形以及菱形的个数为 四、可以通过对称或者图形相似简化计数过程21n 21m C C ++⨯22211-n n ++)+(⋅⋅⋅⋅⋅⋅下节课见!。

小学六年级数学几何题目答案

小学六年级数学几何题目答案

小学六年级数学几何题目答案在小学六年级的数学学习中,几何题目常常让同学们感到既有趣又具有挑战性。

接下来,让我们一起来探讨几道典型的六年级数学几何题目及其答案。

题目一:一个长方形的长是 8 厘米,宽是 6 厘米。

求这个长方形的周长和面积。

答案:长方形的周长= 2×(长+宽),所以这个长方形的周长为2×(8 + 6)= 28 厘米。

长方形的面积=长×宽,所以这个长方形的面积为 8×6 = 48 平方厘米。

题目二:一个正方形的边长是 5 分米,求它的周长和面积。

答案:正方形的周长= 4×边长,所以这个正方形的周长为 4×5 =20 分米。

正方形的面积=边长×边长,所以这个正方形的面积为 5×5 = 25 平方分米。

题目三:一个三角形,底是 10 厘米,高是 8 厘米,求这个三角形的面积。

答案:三角形的面积=底×高÷2,所以这个三角形的面积为10×8÷2 = 40 平方厘米。

题目四:一个圆形的半径是 3 厘米,求这个圆形的周长和面积。

答案:圆的周长=2×π×半径,π通常取 314,所以这个圆形的周长为 2×314×3 = 1884 厘米。

圆的面积=π×半径×半径,所以这个圆形的面积为 314×3×3 =2826 平方厘米。

题目五:一个圆柱体,底面半径是 2 厘米,高是 5 厘米,求这个圆柱体的侧面积和体积。

答案:圆柱体的侧面积=底面周长×高,底面周长=2×π×半径,所以侧面积为 2×314×2×5 = 628 平方厘米。

圆柱体的体积=底面积×高,底面积=π×半径×半径,所以体积为314×2×2×5 = 628 立方厘米。

小学生奥数几何题、计算题、计数练习题

小学生奥数几何题、计算题、计数练习题

小学生奥数几何题、计算题、计数练习题1.小学生奥数几何题练习题1、一个长方体的长、宽、高分别是11厘米、6厘米、4厘米,如果高增加3厘米,表面积增加多少平方厘米?2、一个正方体木块,表面积是30平方分米,如果把它据成大小一样的8个小正方体木块,每个小木块的表面积是多少?3、一块长方体石料,长4分米,横截面是一个边长为0.5分米的正方形,这块石料的表面积是多少?如果每立方分米石料重2.7千克,这块石料有多重?4、长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的体积是多少立方厘米?5、把一个体积为460立方厘米的石块放入一个长方体容器中,完全进入水中后,水面由148厘米上升到150厘米,这个容器的底面积是多少?2.小学生奥数计算题练习题计算题:1、用竖式计算.18.25×34=2、用竖式计算.9.35×4.2=3、用竖式计算.15.07×9.8=4、用竖式计算.7.02×0.56=(得数保留两位小数)5、81.25×0.6×9.3=6、15×3.6+4.83=7、98.42×2.5-83.7=8、700×0.34×2=9、172.4×6.2+2724×0.38=10、4.75-9.64+8.25-1.36=11、3.17-2.74+4.7+5.29-0.26+6.3=12、(5.25+0.125+5.75)×8=13、34.5×8.23-34.5+2.77×34.5=14、6.25×0.16+264×0.0625+5.2×6.25+0.625×20=15、0.035×935+0.035+3×0.035+0.07×61×0.5=3.小学生奥数计算题练习题1、16+815+328-235-7442、456797+455457796+1153、(13+25+37+49)(113+135+157+179)4、2005200612004+122003200320055、(1996+19199696+191919969696)19191919969696966、(1+0.12+0.23)(0.12+0.23+0.34)-(1+0.12+0.23+0.34)(0.12+0.23)7、1+312+516+7112+9120+11130+13142+15156+17172+191908、325+358+3811++31972009、112+224+347+4711+51116+6162210、12+56+1112+1920+2930+4142+97019702+9899990011、123+246+369++100200300234+468+6912++20030040012、127+1712+11217+11722++19297+1971024.小学生奥数计数练习题1、把一包糖果分给小朋友们,如果每人分10粒,正好分完;如果每人分16粒,则3人分不到,这包糖有_________粒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学竞赛几何图形集锦
第一部分基础题
1、 (06年清华附中考题)
如图,在三角形ABC 中,,D 为BC 的中点,E 为AB 上的一点,且
BE=
1
3
AB,已知四边形EDCA 的面积是35,求三角形ABC 的面积.
2、 (06年西城实验考题)
四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米.
3、 (05年101中学考题)
一块三角形草坪前,工人王师傅正在用剪草机剪草坪.一看到小灵通,王师傅热情地招呼,说:“小灵通,听说你很会动脑筋,我也想问问你,这块草坪我把它分成东、西、南、北四部分(如图).修剪西部、东部、南部各需10分钟,16分钟,20分钟.请你想一想修剪北部需要多少分钟?
4、(05年三帆中学考题)
右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE 的面积是 平方厘米.
西 南 东 北
5、 (06年北大附中考题)
三角形ABC 中,C 是直角,已知AC =2,CD =2,CB=3,AM=BM ,那么三角形AMN (阴影部分)的面积为多少?
6、(★★)如右图所示,已知三角形ABC 面积为1,延长AB 至D ,使BD=AB ;延长BC 至E ,使CE=2BC ;延长CA 至F ,使AF=3AC ,求三角形DEF 的面积。

7、(★★)右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?
8、正方形ABFD 的面积为100平方厘米,直角三角形ABC 的面
积,比直角三角形(CDE 的面积大30平方厘米,求DE 的长是多少?
9、(★★★)如下图,已知D 是BC 的中点,E 是CD 的中点,F 是AC 的中点,且ADG ∆的
面积比EFG ∆的面积大6平方厘米。

?的面积是多少平方厘米
ABC ∆
A
B
C
D
E
F G
10、(★★)长方形ABCD 的面积为36平方厘米,E 、F 、G 分别为边AB 、BC 、CD 的中点,H 为AD 边上的任一点。

求图中阴影部分的面积是多少?
11、(★★)如图,甲、乙两图形都是正方形,它们的边
长分别是10厘米和12厘米,求阴影部分的面积。

12、如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.
13、求出图中梯形ABCD 的面积,其中BC=56厘米。

(单位:厘米)
14、(第十三届“华罗庚金杯”少年组数学邀请赛决赛试卷(小学组))
图中,ABCD 和CGEF 是两个正方形,AG 和CF 相交与H ,已知CH 等于CF 的三分之一,三角形CHG 的面积等于6平方厘米,求五边形ABGEF 的面积。

15、(清华附中考题)如图,在三角形ABC 中,D 为BC 的中点,E 为AB 上的一点,且BE=3
1AB ,已知四边形EDCA 的面积是35,求三角形ABC 的
面积
G H
F
E
D C
B A
16、(101中学考题)求图中阴影部分面积:
π≈)
(3.14
17、(第十三届“华罗庚金杯”少年组数学邀请赛决赛试卷(小学组))图1是小明用一些半径为1厘米,2厘米,4厘米,和8厘米的圆,半圆,圆弧和一个正方形组成的一个鼠头
π≈)
图案,图中阴影部分的总面积为_______平方厘米。

(3.14
18、(三帆中学考试题)有一个棱长为1米的立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体,这60个小长方体的表面积总和为_____平方米。

第二部分竞赛测试题
1、(第四届《小学生数学报》邀请赛决赛试题)
有9个同样大小的小长方形,拼成一个大长方形(如图5.54)的面积是45厘米2,求这个大长方形的周长。

2、(全国第四届“华杯赛”决赛试题)
图5.55中图(1)和图(2)是两个形状、大小完全相同的大长方形,在每个大长方形内放入四个如图(3)所示的小长方形,斜线区域是空下来的地方,已知大长方形的长比宽多6厘米,问:图(1),图(2)中画斜线的区域的周长哪个大?大多少?
3、(北京市第十届“迎春杯”小学数学竞赛试题)
如图5.56,长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF的面积是4,那么三角形ABC的面积是______。

4、(1992年武汉市小学数学竞赛试题)
如图5.58,在等边三角形ABC中,AF=3FB,FH垂直于BC,已知阴影部分的面积为1平方厘米,这个等边三角形的面积是多少平方厘米?
5、(1993年全国小学数学奥林匹克总决赛第一试试题)
三条边长分别为5厘米、12厘米、13厘米的直角三角形如图5.60(1),将它的短直角边对折到斜边上去与斜边相重合如图5.60(2)。

那么,图5.60(2)中阴影部分(即未被盖住部分)的面积是______平方厘米。

6、(广州市小学数学竞赛试题)
如图5.61,ABCD是一个梯形,已知三角形ABD的面积是12平方厘米,三角形AOD的面积比三角形BOC的面积少12平方厘米,那么梯形ABCD的面积是______平方厘米。

7、(小学数学奥林匹克通讯赛决赛试题)
梯形ABCD被两条对角线分成了四个三角形S1、S2、S3、S4。

已知S1=2厘米2,
S2=6厘米2。

求梯形ABCD的面积。

8、(海口市小学数学竞赛试题)
正方形边长为20厘米(如图5.63),已知DD′=EE′,CE=6厘米。

则阴影部分三角形的面积最大值是______平方厘米。

9、(全国第四届“华杯赛”决赛试题)
图5.64是一个正方形,图中所标数字的单位是厘米。

问:阴影部分的面积是多少平方厘米?
10、(1992年全国小学数学奥林匹克决赛试题)
一个正方形(如图5.66),被分成四个长方形,它们的面积在图中标出(单位:平方米)。

图中阴影部分是一个正方形。

那么,它的面积是______。

11、(1988年北京市奥林匹克邀请赛试题)
把大的正三角形每边8等分,组成图5.68所示的三角形网。

如果每个小三角形面积是1,那么图中粗线围成的三角形面积是______。

相关文档
最新文档