第七节 旋转体的体积计算
绕某一直线旋转的旋转体体积的求法

一、概述在数学和物理学中,我们经常会遇到关于旋转体积的问题。
绕某一直线旋转的旋转体是一种常见的几何体,在工程设计、建筑学和动力学等领域都有重要的应用。
了解如何求解绕某一直线旋转的旋转体体积是非常重要的。
二、旋转体积的基本概念旋转体积指的是一个平面图形绕某一条直线旋转而成的立体。
常见的旋转体包括圆锥体、圆柱体和旋转抛物面等。
在求解旋转体积时,我们通常需要根据给定的图形和旋转轴来确定积分的区间,并使用定积分的方法来求解。
三、圆柱体体积的求法圆柱体是一种常见的旋转体,其体积的求法非常简单。
设半径为r的圆绕与半径平行且与圆心距为h的直线旋转,即可得到一个圆柱体。
根据圆柱体的定义,其体积可以表示为V=πr²h。
我们可以直接使用该公式来求解圆柱体的体积。
四、圆锥体体积的求法与圆柱体类似,圆锥体的体积求解也可以通过积分的方法来进行。
设半径为r的圆绕与顶点到底面的距离为h的直线旋转,即可得到一个圆锥体。
根据圆锥体的定义,其体积可以表示为V=1/3πr²h。
我们可以通过积分来求解圆锥体的体积,即∫πr²dy,其中y的区间为0到h。
五、旋转曲面体积的求法对于其他类型的旋转体,如旋转抛物面或旋转曲线体,其体积的求法也是类似的。
我们需要先确定旋转轴以及图形的方程,然后使用定积分的方法来求解体积。
由于旋转曲面的形状多样化,其体积的求解可能会更加复杂,需要根据具体情况来确定积分的区间和方程。
六、典型问题求解1. 求半径为r的圆的绕x轴旋转所得旋转体的体积。
解:根据圆绕x轴旋转所得的旋转体为圆柱体,其体积为V=πr²h,其中h为圆心到x轴的距离。
可以通过积分∫πr²dy来求解。
2. 求y=x²在x轴和直线x=2所围成的区域绕x轴旋转所得旋转体的体积。
解:首先需要确定积分的区间为x=0到x=2,然后根据给定的函数y=x²来求解面积。
然后再通过积分的方法来求解旋转体的体积。
积分求旋转体体积公式

积分求旋转体体积公式
积分求旋转体体积公式是用于计算通过旋转曲线或曲面而形成的立体图形的体积的公式。
该公式是通过对曲线或曲面的积分计算得出的,具体公式如下:
1. 对于曲线绕 x 轴旋转:
V = π∫a^b[(f(x))^2]dx
其中,a 和 b 分别为曲线的起点和终点,f(x) 表示曲线在 x 坐标上的高度。
2. 对于曲线绕 y 轴旋转:
V = π∫c^d[(f(y))^2]dy
其中,c 和 d 分别为曲线在 y 轴上的起点和终点。
3. 对于曲面绕 x 轴旋转:
V = 2π∫a^b[(f(x))^2]dx
其中,a 和 b 分别为曲面的起点和终点,f(x) 表示曲面在 x 坐标上的高度。
4. 对于曲面绕 y 轴旋转:
V = 2π∫c^d[(f(y))^2]dy
其中,c 和 d 分别为曲面在 y 轴上的起点和终点。
需要注意的是,当计算体积时,应根据具体情况选择合适的公式,并注意积分边界和被积函数的正确表达式。
- 1 -。
求旋转体体积的两种方法

求旋转体体积的两种方法
当平面图形绕着某一直线(旋转轴)旋转时,所得到的旋转体的体积,我们可以用切片法或者圆桶法求出。
总结起来,有几种情形:
情形1:平面图形由及 x 轴围成,
利用切片法,这个图形绕 x 轴旋转所得的体积为
而它绕 y 轴所得的体积,我们利用圆桶法求得它的体积为
情形2:如果平面图形由及 y 轴围成,
那么由圆桶法,绕 x 轴旋转的体积为
而由切片法,可以得到绕 y 轴旋转所得的旋转体体积为
情形3:如果平面图形由两条曲线以及两条直线所围成,
那我们用上曲线旋转所得的体积减去下曲线旋转所得的体积,则得到绕 x 轴旋转的体积为
同样,绕 y 轴旋转所得的体积为
情形4:类似可以得到由以及
围成的图形分别绕 x 轴及 y 轴旋转所得的体积
现在我们来看几个例子。
例1:求由曲线以及两个坐标轴所围成的图形分别绕 x 轴与绕 y 轴旋转所得的旋转体的体积。
解:与求平面图形的面积一样,我们先画出区域的图形。
所以,由切片法得到绕 x 旋转所得的体积为由圆桶法得到绕 y 轴旋转所得的体积为。
旋转体体积公式绕x轴和绕y轴的公式

标题:旋转体体积公式绕x轴和绕y轴的公式概述旋转体体积公式是数学中的重要概念,它用于计算由曲线或曲面旋转产生的立体图形的体积。
在这篇文章中,我们将重点讨论旋转体体积公式绕x轴和绕y轴的具体公式及推导过程。
一、绕x轴旋转体积公式当曲线y=f(x)在x轴的区间[a,b]上绕x轴旋转一周时,所形成的旋转体的体积Vx可由以下公式计算:Vx = π∫[a,b] f(x)² dx其中,π为圆周率。
推导过程:为了推导该公式,我们可以将曲线y=f(x)绕x轴旋转一周后,得到不同x处的截面面积πf(x)²。
然后利用定积分的性质,将这些截面面积相加,即得到旋转体的体积公式。
举例说明:假设我们有曲线y=x²,要计算其在区间[0,1]上绕x轴旋转一周所形成的旋转体的体积。
根据公式,我们可以得到Vx = π∫[0,1] x^4 dx = π/5二、绕y轴旋转体积公式当曲线x=g(y)在y轴的区间[c,d]上绕y轴旋转一周时,所形成的旋转体的体积Vy可由以下公式计算:Vy = π∫[c,d] g(y)² d y推导过程:同样地,为了推导该公式,我们可以将曲线x=g(y)绕y轴旋转一周后,得到不同y处的截面面积πg(y)²。
然后利用定积分的性质,将这些截面面积相加,即得到旋转体的体积公式。
举例说明:假设我们有曲线x=y²,要计算其在区间[0,1]上绕y轴旋转一周所形成的旋转体的体积。
根据公式,我们可以得到Vy = π∫[0,1] y^4 dy = π/5总结通过本文的讨论,我们可以得出绕x轴和绕y轴旋转体积的计算公式,并了解到其推导过程。
这些公式在数学和工程领域有着广泛的应用,能够帮助我们计算由曲线旋转产生的立体图形的体积,具有重要的理论和实际意义。
为了更深入地理解旋转体体积公式绕x轴和绕y轴的推导过程,我们可以进一步探讨不同类型曲线的旋转体积公式,并应用这些公式解决实际问题。
旋转体求体积的方法

旋转体求体积的方法旋转体求体积是数学中一个重要的计算方法,它可以应用于各种实际问题的建模和解决。
首先,我们需要了解旋转体的概念。
旋转体是通过将一个曲线或者一条线段沿着某个轴线旋转一周而形成的立体图形。
常见的例子有圆锥和圆柱体。
接下来,我们介绍一种常见的方法——圆盘法。
该方法适用于当旋转体的截面是一个平行于底面的圆盘时。
以一个简单的圆柱体为例,假设它的底面半径为r,高度为h。
我们可以将圆柱体沿着垂直于底面的轴线旋转一周,形成一个立体图形。
使用圆盘法,我们可以将整个旋转体分解为无数个很小的圆盘,这些圆盘的半径随着高度的增加而变化。
每个圆盘的面积可以通过πr²计算得出,其中π是一个常数。
要计算旋转体的体积,我们需要对所有圆盘的面积进行求和。
由于每个圆盘的厚度很小,我们可以用ΔV代表一个很小的圆盘的体积。
根据圆盘的面积和厚度,可以得到ΔV = πr²Δh,其中Δh是圆盘的厚度。
接下来,我们对所有的圆盘体积进行求和,即将每个ΔV加起来。
这可以通过求极限的方法得到,即将Δh趋近于0时的极限。
最后的结果即为旋转体的体积,可以表示为V = ∫(0到h) πr²dh。
除了圆盘法,还有其他方法可以求解旋转体的体积。
例如,壳法和柱面法。
这些方法在不同的情况下有其适用性,可以根据实际问题的需要选择合适的方法。
总结起来,旋转体求体积是通过将立体图形沿着某个轴线旋转一周,并将其分解为无数个很小的圆盘,利用圆盘的面积和厚度进行求和,最后求得的体积。
通过应用不同的方法,我们可以解决各种实际问题,例如计算容器的容量、建模自然现象等。
在实际问题中,我们需要根据具体情况选择合适的方法,并进行数学推导和计算,以得到准确的解答。
希望这些内容对你理解旋转体求体积的方法有所帮助。
第七节 旋转体的体积计算

y
y f ( x)
o
x x dx
x
取以 dx 为底的窄边梯形绕 x 轴旋转而成的薄片的体积 为体积元素,dV [ f ( x )]2 dx
旋转体的体积为 V [ f ( x )] dx
2 a
b
y dx a
2
[(b a 2 y 2 )2 (b a 2 y 2 )2 ]dy
a
a
4b
a a
a y dy 8b
2 2
a
0
2 2 a 2 y 2 dy 2a b
2.平行截面面积为已知的立体的体积
A( x ) 设一立体位于 过点 x =a, x =b y 且垂直于 x 轴的两平面之间, 用垂直于 x 轴的任一平面截 此立体所得的截面积 A(x) 是 x 的已知函数, 求这个立体的体积V . x x+dx o a 用微元法: 取 x 为积分变量,在区间 [a, b] 上任取一小区间 [x , x+dx] ,过其端点作垂直 x 轴的平面,
1 2 1
2 1
2
0
例4 求星形线 x y a (a 0) 绕 x 轴旋转
构成旋转体的体积 . 解 y a x ,
2 3 2 3 2 3
y
2 3
2 3
2 3
y a x
2 2 3
a
2 3
3
x [ a , a ]
-a
o
a
x
由旋转体的体积公y 4 x 2及y 0所围成的图形为底, 而垂
直于y轴的所有截面均是高为 2的矩形的立体的体积 .
旋转体体积公式

其实对于曲线()y f x =在[],a b 上与x 所围图形绕x 轴旋转和绕y 轴旋转所形成的旋转体的体积,绕x 轴旋转的话我们一般用()2b a v f x dx π=
⎰这个公式,绕y 轴旋转的话一般用()2b a
v x f x dx π=⎰这个公式来计算,这两个都是用微元法推导出来的,()2b
a v f x dx π=⎰我就不解释了,你应该都记住了,()2b
a v x f x dx π=⎰是按柱体的旋转轴一圈一圈的分割
的,每一小圈的体积()()22dv x dx f x x f x dx ππ=⋅⋅=,总体积就是两边同时积分 如果实在不懂就记住好了
如上图所示,22,22b
b
a a dv x dx y xydx v dv xydx xydx ππππ=⋅⋅=∴===⎰⎰⎰ 其实这里的分割是一圈一圈分割的,就是相当于是一个底面半径为R 的柱体,当半径增大dR 时,体积相应的增大2R dR h π⋅⋅,其中h 是柱体的高,所以这个公式也是这样一圈一圈的分割的然后求每一圈的体积dv ,再积分,就像下图这样的分割法,就是一圈一圈的分割,然后用微元法求每一圈的体积,每一圈的体积你把它咱开的话就是一个长方体,长为这一圈柱体的底面周长2x π,宽为圆柱体的高y ,厚度就是dx。
圆的旋转体体积

圆的旋转体体积圆的旋转体体积是指由一个圆绕某一条轴线旋转造成的立体形状的体积,其计算方法与一般的立体体积计算方法略有不同。
下面将详细介绍圆的旋转体体积的计算方法及其应用。
我们需要知道一个圆绕其直径旋转一周所得到的旋转体为一个圆柱体。
在这个基础上,如果我们将一个圆绕其直径旋转一周,得到的圆柱体体积为:圆柱体体积=πr²h其中,r为圆的半径,h为圆的直径。
接着,我们考虑一个圆绕其切线旋转一周所得到的旋转体。
这个旋转体形状如同一个圆锥体,其体积为:圆锥体体积=1/3πr²h其中,r为圆的半径,h为圆的直径。
除了以上两种情况,我们还可以考虑一个圆绕任意一条轴线旋转所得到的旋转体。
这个旋转体形状不再是简单的圆柱体或圆锥体,而是一个复杂的形状。
在这种情况下,我们可以通过积分的方法来计算旋转体的体积。
具体来说,我们将圆分成若干个小块,将每个小块绕轴线旋转得到的小体积加起来,就可以得到整个旋转体的体积。
数学上,这个过程可以表示为:旋转体体积=∫a^bπf(x)²dx其中,a和b分别为圆的起点和终点,f(x)为圆上某一点到轴线的距离。
需要注意的是,在计算圆的旋转体体积的时候,我们需要先确定旋转轴线的位置,然后再根据旋转轴线的位置来确定旋转体的形状和计算方法。
如果我们选择的旋转轴线与圆的位置关系比较复杂,那么计算过程也会比较复杂。
在实际应用中,圆的旋转体体积有很多种应用。
例如,在工程中,我们可以通过计算圆柱体或圆锥体的体积来确定某个零件的体积,从而为工艺设计和材料选择提供依据。
另外,在数学和物理学中,圆的旋转体体积也是一个重要的研究对象,通过研究其性质和计算方法,我们可以深入理解立体的形状和变换,为后续的研究提供基础。
圆的旋转体体积是一个重要的数学和物理概念,其计算方法较为复杂,但在实际应用中有着广泛的应用。
对于学习者来说,理解和掌握圆的旋转体体积的计算方法是非常必要的,可以帮助我们更好地理解和应用立体几何的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
x3
3
x [a, a]
-a
o
a
x
由旋转体的体积公式,知:
V
a [ f ( x)]2dx
a
2
a3
2
x3
3
dx
32a3 .a源自a 105
4
例5 求圆 ( x a)2 y2 a2 (0 a b) 绕 y 轴旋转一周所
体积微元为dV A( x)dx,
从而
V
b
A( x)dx.
a
例6 一平面经过半径为R 的圆柱体的底圆中心,
并与底面交成角 ,计算这平面截圆柱体所得立
体的体积.
解 取坐标系如图
R
底半圆方程为
o
y
y R2 x2
垂直于 x轴的截面为直角三角形 R
x2 y2 R2
x
截面面积 A( x) 1 y y tan 1 (R2 x2 )tan
旋转体的体积为 V b [ f ( x)]2 dx b y2dx
a
a
类似地,如果旋转体是由连续曲线
x ( y)、直线 y c 、 y d 及 y 轴所围成的
曲边梯形绕 y 轴旋转一周而成的立体,体积为
y
V d [ ( y)]2 dy c d x 2dy c
环体体积为 V
a
(
a
x12
x22
)dy
a
[(b
a2 y2 )2 (b
a2 y2 )2 ]dy
a
a
4b
a2 y2dy 8b a a2 y2 dy 2a2b 2
a
0
2.平行截面面积为已知的立体的体积
设一立体位于 过点x=a, x=b y 且垂直于 x 轴的两平面之间,
绕 y轴旋转体的体积, 选y为积分变量
Vy
1
(
0
4 y )2 dy
1
4 ydy 4
y2
1
2
0
2
0
2
2
2
例4 求星形线 x3 y3 a3 (a 0) 绕 x 轴旋转
构成旋转体的体.积
y
2
2
2
解 y3 a3 x3,
y2
2 a 3
0
练习
求以抛物 线y 4 x2及y 0所围成的 图形为底而,垂
直于y轴的所有截面 均是高为2的矩形的立体 的体积.
解 设截面面积为 A( y) y
A( y) 2 4 y 2
4 4 y
V 404
4
y dy
64 3
o
x
分别绕 x 轴, y 轴旋转一周所生成的旋转体的体积.
y
解 如图, 绕 x 轴旋转体的体积,
选x为积分变量
(2, 1)
1
Vx
12 2 2 ( x 2 )2 dx 04
2 16
2 x 4dy 2
0
16
x5 5
2
o
8 5
y2 4x
x
0
y
成的旋转体(环体)的体积
C
a
解 右半圆弧方程为 x x1( y) b a2 y2
b
左半圆弧方程为 x x2( y) b a2 y2 O A
Bx
体积微元
-a
D
dV [ x1( y)]2 dy [ x2( y)]2 dy [ x12 ( y) x22 ( y)]dy
c
c
作业:P118. 1(1)(3),2
练习
求 由 椭 圆x2 a2
y2 b2
1,绕x轴 旋 转 所 成 旋 转 体 的 体积.
解
上 半 椭 圆 的 方 程 为 :y2
b2 a2
(a2
x2)
由公式知:V a y2dx a
a a
b a
2 2
(a
2
x2 )dx
4 ab2 .
2
2
立体体积
V
R
R
A( x)dx
1 2
R (R2 x2 ) tan dx
R
2 R3 tan. 3
小结
V b [ f ( x)]2 dx by 2dx
a
a
y
d
y
y f (x)
o
x x dx
x ( y) c
x
o
x
V d [( y)]2dy d x 2dy
3
同 理 得 椭 圆 绕y轴 旋 转 所 成 的 旋 转 体 的
体积为V
b b
a2 b2
(b2
y2 )dy
4 a2b.
3
练习
求摆线
x a(t sin t)
y
a(1
cos t )
的一拱与
y
= 0所围成的
图形绕 x 轴 旋转构成旋转体的体积.
解 绕 x轴旋转的旋转体体积 y
第七节 旋转体的体积计算
• 内容提要 1.旋转体的体积; 2.平行截面面积为已知的立体的体积.
教学要求 熟练掌握应用元素法求体积的方法。
1.旋转体的体积
旋转体就是由一个平面图形绕这平面内一条直 线旋转一周而成的立体.这直线叫做旋转轴.
圆柱
圆锥
圆台
一般地,如果旋转体是由连续曲线 y f ( x)、直
A( x)
用垂直于 x 轴的任一平面截
此立体所得的截面积 A(x)
是 x 的已知函数,
求这个立体的体积V . 用微元法:
o a x x+dx b x
取 x 为积分变量,在区间 [a, b] 上任取一小区间 [x , x+dx] ,过其端点作垂直 x 轴的平面,
作体积微元:以A(x) 为底,dx 为高作柱体,
d
x ( y) c
o
x
例1. 求由曲线 y x ,直线x = 1及x轴所围成的平面图形
绕x轴旋转一周所生成的旋转体的体积.
解 如图, 选x为积分变量
y
y x
由旋转体的体积公式,得
1
Vx
(
0
x )2 dx
1
xdx
0
o
x
x2
1
22
0
例2. 求由曲线 x 2 4 y,直线y = 1及y轴所围成的图形
Vx
2a
y 2dx
0
o
2a x
2 a2(1 cos t)2d[a(t sin t)] 0
2 a2 (1 cos t)2 a(1 cos t)dt 0
a3
2
(1
3cos t
3 cos2
t
cos3
t )dt
52a3 .
线 x a、 x b及 x轴所围成的曲边梯形绕 x轴旋
转一周而成的立体,体积为多少?
取积分变量为 x
y
y f (x)
x [a,b]
在[a, b]上任取小区
o
x x dx
x
间[ x, x dx],
取以dx 为底的窄边梯形绕 x轴旋转而成的薄片的体积 为体积元素,dV [ f ( x)]2 dx