(完整版)波动方程
第二章波动方程

第二章 波动方程一、小结本章主要提供了波动方程初值问题与混合问题的求解方法。
对于不同的方程或同一类方程,由于维数的不同,定解条件的不同,它的定解问题的求解方法往往也是不同的。
1.波动方程的初值问题20(0,)(I)(,0)(),(,0)()tt xx t u a u t x u x x u x x ϕψ⎧-=>-∞<<∞⎪⎨==⎪⎩可用达朗贝尔方法求解,得到解的表达式为11(,)[()()]()22x atx atu x t x at x at d a ϕϕψξξ+-=++-+⎰当21(,),(,)C C ϕψ∈-∞+∞∈-∞+∞,利用上面公式可直接验证问题(I )是适定的。
(2)半无弦自由振动的混合问题20(0,0)(II)(,0)(),(,0)()(0,)0tt xx t u a u t x u x x u x x u t ϕψ⎧-=>>⎪==⎨⎪=⎩可将初始函数(),()0x x x ∞∞=在(-,+)上关于j y 作奇延拓,把问题(II )化为问题(I )。
对于第二边值的混合问题20(0,0)(II)(,0)(),(,0)()(0,)0tt xx t xu a u t x u x x u x x u t ϕψ⎧-=>>⎪'==⎨⎪=⎩可将初始函数(),()0x x x ∞∞=在(-,+)上关于j y 作偶延拓,也可把问题化为问题(I )。
(3)三维齐次波动方程的初值问题2312312312300(0,(,,))(III)(,,),(,,),tt t t t u a u t x x x R u x x x u x x x ϕψ==⎧=∆>∈⎪⎨==⎪⎩用球平均法求解,得到解的表达式(泊松公式)为:1232211(,,,)[]44x xatatat at S S u x x x t dS dS t a t a t ϕψππ∂=+∂⎰⎰⎰⎰ 当32(,),(,)C C ϕψ∈-∞+∞∈-∞+∞,由上式确定的123(,,,)u x x x t 是问题(III)的解。
helmholtz equation 波动方程

helmholtz equation 波动方程
波动方程(Helmholtz equation)是一个常见的偏微分方程,描述了波动现象的传播过程。
它通常用于描述声波、光波、电磁波等在空间中的传播。
一维波动方程的数学形式为:
∂²u/∂x² + k²u = 0
其中,u是波函数,k是波数,x是空间坐标。
二维波动方程的数学形式为:
∂²u/∂x² + ∂²u/∂y² + k²u = 0
其中,u是波函数,k是波数,x、y是空间坐标。
三维波动方程的数学形式为:
∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z² + k²u = 0
其中,u是波函数,k是波数,x、y、z是空间坐标。
波动方程描述了在各个坐标轴方向上的二阶偏导数之和与波函数自身之间的关系,表达了波动现象的传播规律。
它是研究波动现象的基础方程,在物理学、工程学中有广泛的应用。
波动方程_精品文档

l
=
=
12
50
600
s
=
1
(
)
υ
例题:有一列向x 轴正方向传播的平面简谐波,
它在t = 0 时刻的波形如图所示其波速为:
u = 600m/s 。试写出波动方程。
=
5m
A
24m
l
=
从波形图中可知:
ω
=
π
2
=
π
50
(
)
rad.
s
1
υ
原点处质点的振动方程为:
波动方程为:
y
0
2
π
由旋转矢量法:
u
l
=
=
=
t
+
cos
(
)
y
A
ω
0
1.时间推迟方法
x
x
u
y
o
P
·
A
已知振源(波源)的振动方程为:
振源的振动状态从0点以传播速度u传送到P 点,显然时间要落后:
´
u
x
=
t
u
x
j
=
t
+
cos
(
)
A
ω
-
j
=
t
+
cos
(
)
y
A
ω
0
´
t
j
=
t
+
cos
(
)
y
A
ω
-
P
介质中任一质点(坐标为 x)相对其平衡位
置的位移(坐标为 y)随时间t 的变化关系。
=
0
第2章波动方程

2.齐次方程的初值问题(Cauchy 问题)
考察问题
⎧⎪ ⎨ ⎪⎩
utt
u(
− a2uxx =
x,0) = ϕ (
0,
x)
,
ut
( x,0)
x ∈ \, t > 0,
=ψ ( x), x∈\.
利用齐次波动方程的通解表达式:
(1.1)
u( x, t ) = F ( x − at ) + G ( x + at ) ,
u = F ( x − at ) , a > 0
显然是弦振动方程的解。给 t 以不同的值,就可以看出作一维自由振动的物体在各时刻的相
应位置。在 t = 0 时, u = F ( x ) 对应于初始的振动状态,而 u = F ( x − at ) 作为 ( x, u ) 平
面 上 的 曲 线 是 曲 线 u = F ( x ) 向 右 平 移 了 at 个 单 位 , 所 以 齐 次 弦 振 动 方 程 的 形 如
=
1 2a
⎧∂
⎨ ⎩
∂t
ϕ x+at (ξ )dξ +
x − at
ψ x + at
(ξ
)dξ
⎫ ⎬
.
x − at
⎭
u2 满足非齐次方程的初值问题
4
⎧⎪ ⎨ ⎪⎩
utt
u(
− a2uxx =
x, 0) = 0,
f ut
( (
x, x,
t), 0) =
x∈ 0,
\
, t> x∈
0, \.
为了求解(1.4),首先求解
条件无关。称这个三角形区域为区间 ⎡⎣ x1 , x2 ⎤⎦ 的决定区域。
第三章波动方程

2 t2V p 2 2 2 t2V p 2divg r(a t)d
▪ 将点震源用半径r=a的小球代替,小球体积为W。对上式 求体积分,并令r->0,其极限情况就是点震源的达朗贝 尔解。
lr i0m W2 t2 dW Vp2lr i0m Wdivgd raW dlr i0m W(t)dW
▪ 各种算子在球坐标系中的表达式为:
u 1u 1 u
gradru errersine
对于球面u只 纵存 波 r方在 , 向位 上 u只 移 , (是 r,t)的 即函数 u, u0 则
u rer u rrr
拉普拉斯算子:
2u
1 r2
r
(r2
ur )r
s1in(sin1r u
)r29;1(tV rp)rr
➢ 2、近震源的球面纵波( 1/r2 >> 1/r)
1
rr
up4r2Vp 2 1(tVp)r
26
3.3 地震波的动力学特点
▪ 在近震源区域,质点振动规律(波 函数)主要与震源函数 (t)有关;而 在远震源区域,质点振动主要与震 源函数的导数 '(t)有关。
2u
2
u u 0
1 r2
(2r
ur2 r
2u r2 )
2u 2
r2
r
u r
15
3.2 无限大、均匀各向同性介质中的球面波
将各种算子带入纵波的波动传播方程,得到著名的弦方程:
2 t21V P 2 2 r210
1r
可用达朗贝尔法 解r得:c(tr )c(tr )
1
波动方程的达朗贝尔公式

1.一维波动方程Cauchy问题的 D’Alembert公式
⎧ utt = a u xx , − ∞ < x < ∞, t > 0, ⎪ ⎨ ⎪u |t =0 = ϕ ( x ) , ut |t =0 = ψ ( x ) , −∞ < x < ∞ ⎩
2
(1) (2)
即
u ( x, t ) = F ( x − at ) + G ( x + at )
(3)
容易验证, 只要 F G 具有二阶连续偏导, 表达式(3)就是 方程(1)的通解. 再由初始条件
F ( x) + G ( x) = ϕ ( x) −aF ′ ( x ) + aG′ ( x ) = ψ ( x )
启发人们把数学上解的概念加以扩充:用一个充分光滑的初始 函数序列来逼近不够光滑的初始函数,前者所对应的解的序列 的极限就是定义为后者所确定的解,称为问题的广义解.这就是 首先由索波列夫所引入的广义定义的解概念.引入广义解概念 的好处,就在于对定解条件的要求放宽了,从而使方程所能描述 的物理现象更为广泛.
z
( x, y, z ) 在球面上的平均值为 2π π 1 v ( x, y , z , t ) = ω (α , β , γ )ds 2 2 ∫0 ∫0
4π a t
θ (α , β , γ ) M ( x, y , z ) at
1 2π π = ∫0 ∫0 ω (α , β , γ )d Ω 4π a = x + at sin θ cos ϕ β = y + at sin θ sin ϕ γ = z +n θ dθ dϕ d Ω = sin θ dθ dϕ
波动方程和振动方程的表达式(3篇)

第1篇一、波动方程波动方程是描述波动在连续介质中传播的偏微分方程。
常见的波动方程有弦振动方程、声波方程、光波方程等。
以下列举几种常见的波动方程及其表达式:1. 弦振动方程弦振动方程描述了弦在受到外力作用下的振动规律。
假设弦的线密度为λ,张力为T,弦上某点的位移为y(x,t),则弦振动方程可表示为:∂²y/∂t² = (T/λ)∂²y/∂x²其中,x表示弦的长度,t表示时间,y(x,t)表示弦上某点的位移。
2. 声波方程声波方程描述了声波在介质中的传播规律。
假设介质的密度为ρ,声速为c,声波在介质中的波动函数为p(x,t),则声波方程可表示为:∂²p/∂t² = c²∂²p/∂x²其中,x表示声波传播的距离,t表示时间,p(x,t)表示声波在介质中的波动函数。
3. 光波方程光波方程描述了光波在介质中的传播规律。
假设光波在介质中的波动函数为E(x,t),介质的折射率为n,则光波方程可表示为:∂²E/∂t² = (n²/c²)∂²E/∂x²其中,x表示光波传播的距离,t表示时间,E(x,t)表示光波在介质中的波动函数。
二、振动方程振动方程描述了物体在受到外力作用下的振动规律。
常见的振动方程有单摆运动方程、弹簧振动方程等。
以下列举几种常见的振动方程及其表达式:1. 单摆运动方程单摆运动方程描述了单摆在重力作用下的振动规律。
假设单摆的摆长为L,摆球质量为m,摆球偏离平衡位置的角度为θ,则单摆运动方程可表示为:mL²θ'' = -mgLsinθ其中,θ'表示摆球偏离平衡位置的角度对时间的导数,θ''表示摆球偏离平衡位置的角度对时间的二阶导数。
2. 弹簧振动方程弹簧振动方程描述了弹簧在受到外力作用下的振动规律。
假设弹簧的劲度系数为k,弹簧的位移为x,则弹簧振动方程可表示为:mω²x = -kx其中,ω表示弹簧振动的角频率,m表示弹簧的质量。
(大学物理 课件)波动方程

表示 x1 处质点的振动方程
结束
返回
2. t = t 1 (常数) y
o y = A cos ω ( t 1 x )+j u x
表示在 t 1 时刻的波形
结束
返回
3. t 与 x 都发生变化 x t = t1 y 1 = A cos ω ( t 1 u ) + j x t = t 1+Δ t y ´= A cos ω ( t 1+Δ t u ) + j y
波 动 方 程
返回16章 结束
波动方程 一、平面简谐波的波动方程 y u x
§16-2平面简谐波
o
B
x
参考点O点的振动方程为: y = A cos ( t + j ) ω
任意点(B点)的振动方程,即波动方程为: y = A cos ω ( t x ) + j u 结束 返回
平面简谐波的波动方程为: x j y = A cos ω ( t u ) + t x j y = A cos 2π ( T l ) +
A cos 2π (x +120 t ) = 60
π
3
例2. 有一列向 x 轴正方向传播的平面简 谐波,它在t = 0时刻的波形如图所示,其波 速为u =600m/s。试写出波动方程。 y(m)
u 5 x (m)
o
12
.
结束
返回
解: o 由图可知, 在t = 0时刻
y(m)
u 5 x (m)
12
.
y1 y´ ut
.
O
x
x´
t
令 y 1= y ´
得: ´= x +uΔ t x 这表示相应于位移y1的相位,向前传播了 uΔ t的距离。 结束 返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y (1.0m) cos[2 π( t x ) π] 2.0s 2.0m 2
t 1.0s y (1.0m) cos[ π (π m1)x]
波形方程
2
(1.0m) sin(π m1)x
y/m
1.0
o
2.0
x/m
-1.0
t 1.0 s 时刻波形图
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t x ) π] 2.0s 2.0m 2
第二节 波动方程
用数学表达式表示波动----波函数 波函数—任意时刻任意位置处的质点的振动位移。
y y(x,t)
各质点相对于平衡位置的位移
波线上各质点平衡位置
一、平面余弦行波的波函数
1、从无穷远处来到无穷远处去
已知 原点的振动
(1)前进波(波沿X轴正方向传播) 已知:一列平面简谐波从无穷远处来到无穷远处去,沿X
原点处的质点位于平衡位置沿 O y 轴正方向运动 . 求
1)波动方程
解 写出波动方程的标准式
O
y
A
y Acos[2π ( t x ) ] T
t0 x0
y 0, v y 0
π
2
t
y (1.0m) cos[2π( t x ) π] 2.0s 2.0m 2
2)求t 1.0s 波形图.
已知波源的振动 y(0,t) Acos(t 0 )
求波线上任意位置x处质点的振动方程: y(x,t)
x 0处 前进波 x 0处 后退波
y( x, t ) y( x, t )
A cos[ (t A cos[ (t
x) ux ) u
0 ] 0 ]
4、已知真实波源的振动,波源不在原点
已知波源的振动
x x0处 前进波 x x0处 后退波
y(x0 ,t) Acos(t 0 )
y( x, t )
A cos[ (t
x
x0 u
)
0
]
y( x, t )
A cos[ (t
x
x0 u
)
0 ]
注意: 振动方程与波函数的区别
x A cos(t )
x f (t ) x
x为振动位移,是时间 t 的函数 o
u cos(t 2
) 0 ]
x
0
Acos[2 ( t
T
) Acos(t
x)
kx
0
0 )
]
注意:a) x为正、负,均适用; b)对横、纵波均适用;
2、从无穷远处来到无穷远处去
已知 x x0的振动 y(x0 ,t) Acos(t 0 )
求波线上任意位置x处质点的振动方程:
y( x, t )
Acos[(t x
u Acos(t 2
) 0 ]
x
0
Acos[2 ( t
T
) Acos(t
x
)
0
kx 0)
]
注意:a)不论x为正、负,均适用; b)对横、纵波均适用;
1、从无穷远处来到无穷远处去
已知 原点的振动
(2)后退波(波沿X轴负方向传播) 已知:一列平面简谐波从无穷远处来到无穷远处去,沿X轴
y[0, (t
t )]
A cos[ (t
x) u
0 ]
ii)相位法
点 P 比点 O 落后的相位
2π x
点 P 振动方程:
A y u
P
x
Ox *
A
y(x,t) Acos(t 0 )
A cos( t
2
x
0 )
平面简谐波前进波的波函数(表达式、波函数、波动
方程、运动学方程):
y(
x,
t)
求波线上任意位置x处质点的振动方程:
y( x, t )
u
(2)后退波
y(x,t) y(x0 ,t t)
o·····x·0·······x····x
y(x0 ,t
x x0 ) u
A cos[ (t
x
x0 u
)
0
]
Acos[2 ( t
T
x
x0
)
0 ]
A cos( t
2
x
x0
0 )
3、已知真实波源的振动,波源在原点
T
把题中波动方程改写成
y (5cm) cos2π [(2.50s-1)t (0.01cm-1)x]
2
2
比较得
T 2 s 0.8 s 2cm 200 cm u 250 cms1
2.5
0.01
T
例2 一平面简谐波沿 O x 轴正方向传播, 已知振
幅 A 1.0m ,T 2.0s , 2.0m . 在 t 0 时坐标
A
cos[ (tx u) Nhomakorabea0
]
ii)相位法
A y u
点 P 比点 O超前的相位
P
x
2π x
Ox *
A
点 P 振动方程:
y( x, t )
A cos( t
0
)
A cos( t
2
x
0 )
平面简谐波后退波的波函数(表达式、波函数、波动
方程、运动学方程):
y( x, t )
A A
cos[(t x
轴正向传播,波速为u,已知原点的振动 y(0,t) Acos(t 0 )
求波线上任意位置x处质点的振动方程 y(x,t)。
解: X处的振 动规律y(x,t) 与原点的振动 规律的关系:
i)时间法
点O 的振动状态 t 时刻点 P 的运动
t x u
点P
t-x/u时刻点O 的运动
y( x, t )
(1)前进波
y(x,t) y(x0 ,t t)
o···· ·x·0······u ·x····x
y(x0
,t
x
x0 u
)
Acos[(t
x
u
x0
)
0
]
Acos[2 ( t
T
x
x0
)
0
]
Acos(t 2
x x0
0 )
2、从无穷远处来到无穷远处去
已知 x x0的振动 y(x0 ,t) Acos(t 0 )
为某一时刻各质点的振动位移,给这列波拍的“照片”
y t 0
y t T /4
o
x
o
x
y t T /2
o
x
y t 3T / 4
o
x
例1 已知波动方程如下,求波长、周期和波速.
y (5cm) cosπ [(2.50s -1)t (0.01cm-1)x].
解:方法一(比较系数法).
y Acos2π ( t x )
t
x 为波线上各质元的平衡 位置,y 为 t 时刻 x 处质 点振动位移,波函数是x 和 t 的函数。
y f (x,t)
y
o
x
y
A
cos
t
x u
二、波函数的物理意义
y
A
cos
t
x u
1.当 x x0(常数)时,
y
y f (t )
o
t
为波线上 x0处质点的振动方程。
2.当 t c (常数)时, y f (x )
负向传播,波速为u,已知原点的振动 y(0,t) Acos(t 0 )
求波线上任意位置x处质点的振动方程 y(x,t)。
解: X处的振动规律y(x,t) 与原点的振动规律的关系:
i)时间法
t x
P点 的振动状态
u
原点
t 时刻点 P 的运动
t+x/u时刻点O 的运动
y(x,t)
y[0, (t t)]