波动方程或称波方程
第六章_波动方程

一、波动方程
7.2.3 一维势垒的简单讨论 粒子在I区,具有能量E>0。各区 的势垒如下,求粒子在各区出现 的几率。
0 (0<x<x1) [I区] V=
V2>E (x1<x<x2) [II区]
0 (x>x2) [III区]
一、波动方程 列出此问题的薛定谔方程:
2 d 2u V x u Eu 2 2m dx d 2u 2m 2 V E u 2 dx
此方程比较难解,令 x,
2
2
(1)
mk 2
4
那么
d 2u 2mE mk 2 2 2 2 4 u 0 2 d
(2)
一、波动方程 令括号内第二项的常数部分为1,用λ代替括号内第一项,那么 2化简为:
d 2u 2 u 0, 2 d
波动方程
一、波动方程
第七章 波动方程
波动方程(wave equation)是一种重要的偏微分方程,主要 描述自然界中的各种的波动现象,例如声波,光波和水波。波动方 程抽象自声学,电磁学,和流体力学等领域。
历史上许多科学家,如达朗贝尔、欧拉、丹尼尔²伯努利和拉格朗日等在研 究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。
px i x
所以动量px可以用算符 i 来表示。同理有 x
p y i y
pz i z
一、波动方程
那么
p p p p 2 2 2 x y z 2 2
2 2 2 2 2 x 2 y 2 z 2
波函数两边取对t的偏导
i E , t
经典波动方程

经典波动方程经典波动方程是描述波动现象的重要数学工具,广泛应用于物理学、工程学和其他领域。
下面将列举一些关于经典波动方程的重要内容,希望能够帮助读者更好地理解这一概念。
1.波动方程的基本形式波动方程是描述波动传播的偏微分方程,通常具有形式∂^2u/∂t^2=c^2∇^2u,其中u是波函数,c是波速,∇^2是拉普拉斯算子。
这个方程描述了波动在空间和时间上的演化规律。
2.一维波动方程在一维情况下,波动方程可以简化为∂^2u/∂t^2=c^2∂^2u/∂x^2,这是最简单的波动方程形式。
它描述了沿着一根直线传播的波动,如弦上的横波或纵波。
3.二维波动方程对于二维情况,波动方程可以写为∂^2u/∂t^2=c^2(∂^2u/∂x^2+∂^2u/∂y^2),描述了在平面上传播的波动现象,比如水面的波动或者声波在二维空间中的传播。
4.三维波动方程在三维空间中,波动方程形式为∂^2u/∂t^2=c^2(∂^2u/∂x^2+∂^2u/∂y^2+∂^2u/∂z^2),描述了在三维空间中传播的波动,比如光波在空气中的传播或者地震波在地球内部的传播。
5.波动方程的解波动方程是一个线性偏微分方程,可以通过分离变量、变换法或者格林函数等方法求解。
波动方程的解通常包含波函数的形式,描述了波动的幅度和相位随时间和空间的变化。
6.波动方程的应用波动方程在物理学、工程学和其他领域有着广泛的应用,如声波传播、光波传播、地震波传播等。
通过波动方程,可以研究波的传播特性、反射折射现象以及波的干涉和衍射现象。
7.波动方程的数值模拟对于复杂的波动现象,常常需要借助数值方法对波动方程进行求解。
有限差分法、有限元法和谱方法等数值方法可以有效地模拟波动方程的解,并得到更加精确的结果。
8.波动方程的稳定性和收敛性在数值模拟波动方程时,需要考虑方案的稳定性和收敛性。
稳定性保证了数值解不会发散或者产生奇异现象,收敛性保证了数值解能够逐渐接近真实解。
9.波动方程的数学性质波动方程是一个双曲型方程,具有良好的数学性质。
波动方程或称波方程

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。
波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域.历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。
波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t的标量函数u(代表各点偏离平衡位置的距离)满足:这里c通常是一个固定常数,代表波的传播速率。
在常压、20°C的空气中c为343米/秒(参见音速).在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大.而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒.在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。
此时,c应该用波的相速度代替:实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程:另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。
这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。
三维波动方程描述了波在均匀各向同性弹性体中的传播。
绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。
在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波:式中:•和被称为弹性体的拉梅常数(也叫“拉梅模量”,英文Lamé constants 或 Lamé moduli),是描述各向同性固体弹性性质的参数;•表示密度;•是源函数(即外界施加的激振力);•表示位移;注意在上述方程中,激振力和位移都是矢量,所以该方程也被称为矢量形式的波动方程。
电动力学中的波动方程及其应用

电动力学中的波动方程及其应用电动力学是物理学中的一个重要分支,主要研究电磁场的产生及其相互作用。
其中,波动方程是电磁场中最基本、最重要的方程之一。
本文将从波动方程的定义、推导及其应用三个方面来详细探讨这一问题。
一、波动方程的定义波动方程描述了电磁波在空间中向各个方向传播的规律。
它是电动力学中最常见、最基本的方程之一。
其一般形式为:$$\nabla^2E=\frac{1}{c^2} \frac{\partial^2E}{\partial t^2}$$其中,$E$表示电场强度,$c$表示光速,$\nabla^2$表示拉普拉斯算子,$\frac{\partial^2E}{\partial t^2}$表示电场强度随时间的二阶导数。
这个方程的物理意义在于,它描述了电磁波在空间中的传播过程中,电场强度随时间和空间的变化规律。
它告诉我们,电磁波在空间中的传播速度是恒定的,即光速$c$。
此外,可以从波动方程中推导出很多与电磁波有关的重要物理现象,如光的反射、折射、干涉、衍射等。
二、波动方程的推导波动方程的推导需要用到麦克斯韦方程组(包括高斯定律、安培环路定理、法拉第电磁感应定律和安培-麦克斯韦定律)和洛伦兹力公式等知识。
这里不进行详细介绍,只给出波动方程的简要推导步骤。
首先,根据麦克斯韦方程组,可以得到电场强度与磁场强度之间的关系:$$\nabla\times H = \frac{1}{c}\frac{\partial E}{\partial t}$$其中,$H$表示磁场强度。
将这个式子带入安培环路定理式中,可以得到:$$\nabla\times\nabla\times E = \nabla(\nabla\cdot E) - \nabla^2 E = -\frac{1}{c^2}\frac{\partial^2 E}{\partial t^2}$$于是,波动方程就可以表示为:$$\nabla^2E=\frac{1}{c^2} \frac{\partial^2E}{\partial t^2}$$三、波动方程的应用波动方程是电磁学中最重要的方程之一,它具有广泛的应用领域。
14-2平面简谐波的波动方程

u
振动曲线 图形
A O
波形曲线
t A O t 0 P
t0 P
T
v
v
u x
研究 某质点位移随时间 对象 变化规律
由振动曲线可知
某时刻,波线上各质点 位移随位置变化规律
由波形曲线可知 该时刻各质点位移 波长 , 振幅A 只有t=0时刻波形才能提供初相
物理 周期 T 振幅 A 初相 0 意义
14-2 平面简谐波的波动方程
一、波函数的建立
波函数(wave function): 描述波传播媒质中不同质点的 运动规律,又称波动表达式(或波动方程).
y f x, t
依据:各质点沿波传播方 向相位依次落后. 平面波在传播过程中,波 线上的各质点都作同频率 同振幅的简谐运动—叫做 平面简谐行波(traveling wave). 波面为平面 传播中的波(相对于“驻波”而言)
x y A cos t u
(1)
P为任意点,波动表达式为
u O P( x )
x
方法2 波线上沿传播方向每走一个,相位落后2
P点相位比O落后
y P A cos(t
即
x
2π
x
y A cos(t
2π
P在 t=0 时刻过平衡位置向负向运动 ——波向左移
y(m)
0.2 O 1
t=0 P
2
yP(m) x(m)
0.2 O 0.1 0.2
t (s)
3 yO 0.2 cos(10πt π) 2 x 3 波向-x方向传播 y 0.2 cos[10 π(t ) π] 10 2 π π b) 以 P 为参考点 P yP 0 2cos( 10π t ) 2 2 波向-x方向传播 x 1 π 0 2 cos[10 π(t x ) π ] y 0 2 cos[10 π(t ) ] 10 2 10 2
大学物理(第四版)课后习题及答案-波动

第十四章波动14-1 一横波再沿绳子传播时得波动方程为[]x m t s m y )()5.2(cos )20.0(11---=ππ。
(1)求波得振幅、波速、频率及波长;(2)求绳上质点振动时得最大速度;(3)分别画出t=1s 和t=2s 时得波形,并指出波峰和波谷。
画出x=1.0m 处质点得振动曲线并讨论其与波形图得不同。
14-1 ()[]x m t s m y )(5.2cos )20.0(11---=ππ分析(1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率ν、振幅A 及彼长 等),通常采用比较法。
将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y μ书写,然后通过比较确定各特征量(式中前“-”、“+”的选取分别对应波沿x 轴正向和负向传播)。
比较法思路清晰、求解简便,是一种常用的解题方法。
(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别。
例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即dt dy v =;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定。
介质不变,彼速保持恒定。
(3)将不同时刻的t 值代人已知波动方程,便可以得到不同时刻的波形方程)(x y y =,从而作出波形图。
而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程)(t y y =,从而作出振动图。
解(1)将已知波动方程表示为()()[]115.25.2cos )20.0(--⋅-=s m x t s m y π 与一般表达式()[]0cos ϕω+-=u x t A y 比较,可得0,5.2,20.001=⋅==-ϕs m u m A则 m v u Hz v 0.2,25.12====λπω(2)绳上质点的振动速度()()()[]1115.25.2sin 5.0---⋅-⋅-==s m x t s s m dt dy v ππ 则1max 57.1-⋅=s m v(3) t=1s 和 t =2s 时的波形方程分别为()[]x m m y 115.2cos )20.0(--=ππ()[]x m m y 125cos )20.0(--=ππ波形图如图14-1(a )所示。
波动方程及其解法

波动方程及其解法波动方程是常见的偏微分方程之一,它描述的是波的传播和变化。
而在实际问题中,如声波、光波、电磁波等的研究中,波动方程的解法是被广泛使用的。
本文将介绍波动方程的基本概念及其解法。
一、波动方程的基本概念波动方程最基本的形式是一维波动方程,其数学表达式如下:$\frac{\partial^2 u}{\partial t^2}=c^2\frac{\partial^2 u}{\partial x^2}$其中,$u(x,t)$表示波的位移,$c$是波的速度。
可以看出,波动方程是一个描述时间和空间之间关系的方程。
在这个方程中,偏微分算子表达了波动的传播和变化的规律。
二、波动方程的解法1. 分离变量法分离变量法是解波动方程的最常见方法之一。
其主要思想是,将变量$x$和$t$分离出来,分别让它们满足不同的微分方程。
如一维波动方程可以假设其解为$u(x,t)=X(x)T(t)$,将其代入波动方程可得:$XT''=c^2X''T$进一步变形,可得:$\frac{T''}{c^2T}=\frac{X''}{X}$由此得到两个方程:$\frac{T''}{c^2T}=-\omega^2$$X''=-\omega^2X$其中,$\omega$为角频率,$-\omega^2$为分离出来的常数倍。
对于这两个微分方程,可以分别求解。
2. 叠加原理在叠加原理中,可以将波看做是多个波的叠加。
这种方法可以用于特定场合下的波动方程求解。
例如,在弹性绳的研究中,可以将弹性绳的振动看作是多个波的叠加。
在这种情况下,可以对不同的波求解,并把它们的解加起来成为最终的解。
3. 直接积分法直接积分法是一种基本的解微分方程的方法,同样也适用于波动方程的求解。
在直接积分法中,可以通过对波动方程进行积分,逐步求解出波的变化规律。
这种方法的实现需要考虑初值条件的限制,而条件的不同可能导致问题的复杂性。
平面简谐波的波函数

也可以通过相位差来进行推导,则P点的振动在相位上比O点落后,故P点的振动为
不
难验证,以上两个方程实际上是同一个振动的两个不同的表述。它们都表示的是波线上(坐标为x)的任一点处质点的振动方程,这正是我们希望得到的沿x轴方向前进的平面简谐波的波动方程。
或
这是波动方程常用的形式。
3、振动曲线与波形曲线
为了弄清楚波动方程的物理意义,我们作进一步的分析。在波动方程中含有x和t两个自变量,如果x给定(即考察该处的质点),那么位移y就只是t的周期函数,这时这个方程表示x处质点在各不同时刻的位移,也就是该质点的振动方程,方程的曲线就是该质点的振动曲线。下图(a)中描出的即一列简谐波在x=0处质点的振动曲线。如果波动方程中的t给定,那么位移y将只是x的周期函数,这时方程给出的是t时刻波线上各个不同质点的位移。波动中某一时刻不同质点的位移曲线称为该时刻波的波形曲线,因而t给定时,方程就是该时刻的波形方程。下图(b)中描出的即是t=0时一列沿x方向传播的简谐波的波形曲线。无论是横波还是纵波,它们的波形曲线在形式上没有区别,不过横波的位移指的是横向位移,表现的是峰谷相间的图形;纵波的位移指的是纵向位移,表现的是疏密相间的图形。在一般情况下,波动方程中的x和t都是变量。这时波动方程具有它最完整的含义,表示波动中任一质点的振动规律:波动中任一质点的相位随时间变化,每过一个周期T相位增加,任一时刻各质点的相位随空间变化,距离波源每远一个
三、平面简谐波的波动方程
下面我们通过对相位的分析给出平面简谐波的波动方程。如下图所示,设有一列平面简谐波沿x轴的正方向传播,波速为u。取任意一条波线为x轴,设O为x轴的原点。假定O点处(即x=0处)质点的振动方程为
推导波动方程用图
现在考察波线上任意一点P的振动,设该点的坐标为x。如上所述,P点和O点振动的振幅和频率相同,而P点振动的相位比O点落后。O点到P点的波程为x,则P点的振动在时间上比O点落后,故P点的振动为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。
波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。
历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。
波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t的标量函数u(代表各点偏离平衡位置的距离)满足:这里c通常是一个固定常数,代表波的传播速率。
在常压、20°C的空气中c为343米/秒(参见音速)。
在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大。
而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。
在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。
此时,c应该用波的相速度代替:实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程:另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。
这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。
三维波动方程描述了波在均匀各向同性弹性体中的传播。
绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。
在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波:式中:•和被称为弹性体的拉梅常数(也叫“拉梅模量”,英文Lamé constants 或 Lamé moduli),是描述各向同性固体弹性性质的参数;•表示密度;•是源函数(即外界施加的激振力);•表示位移;注意在上述方程中,激振力和位移都是矢量,所以该方程也被称为矢量形式的波动方程。
其他形式的波动方程还能在量子力学和广义相对论理论中用到。
目录[隐藏]• 1 标量形式的一维波动方程o 1.1 波动方程的推导o 1.2 初值问题的解• 2 标量形式的三维波动方程o 2.1 球面波▪ 2.1.1 时间箭头的讨论o 2.2 广义初值问题的解• 3 标量形式的二维波动方程• 4 边值问题o 4.1 一维情形o 4.2 多维情形• 5 注释• 6 参考文献•7 参看•8 外部链接标量形式的一维波动方程[编辑]波动方程的推导[编辑]一维波动方程可用如下的方式推导:一列质量为m的小质点,相邻质点间用长度h的弹簧连接。
弹簧的弹性系数(又称“倔强系数”)为k:其中u(x) 表示位于x的质点偏离平衡位置的距离。
施加在位于x+h处的质点m 上的力为:其中代表根据牛顿第二定律计算的质点惯性力,代表根据胡克定律计算的弹簧作用力。
所以根据分析力学中的达朗贝尔原理,位于x+h处质点的运动方程为:式中已注明u(x) 是时间t的显函数。
若N个质点间隔均匀地固定在长度L = N h的弹簧链上,总质量M = N m,链的总体劲度系数为K = k/N,我们可以将上面的方程写为:取极限N, h就得到这个系统的波动方程:在这个例子中,波速。
初值问题的解[编辑]一维标量形式波动方程的一般解是由达朗贝尔给出的。
原方程可以写成如下的算子作用形式:从上面的形式可以看出,若F和G为任意函数,那么它们以下形式的组合必然满足原方程。
上面两项分别对应两列行波("行"与在"行动"中同音)——F表示经过该点(x点)的右行波,G表示经过该点的左行波。
为完全确定F和G的最终形式还需考虑如下初始条件:经带入运算,就得到了波动方程著名的达朗贝尔行波解,又称达朗贝尔公式:在经典的意义下,如果并且则。
但是,行波函数F和G也可以是广义函数,比如狄拉克δ函数。
在这种情况下,行波解应被视作左行或右行的一个脉冲。
基本波动方程是一个线性微分方程,也就是说同时受到两列波作用的点的振幅就是两列波振幅的相加。
这意味着可以通过把一列波分解成它的许求解中很有效。
标量形式的三维波动方程[编辑]三维波动方程初值问题的解可以通过求解球面波波动方程得到。
求解结果可用于推导二维情况的解。
球面波[编辑]球面波方程的形式不随空间坐标系统的转动而变化,所以可以将它写成仅与距源点距离r相关的函数。
方程的三维形式为:将方程变形为:此时,因变量ru满足一维波动方程,于是可以利用达朗贝尔行波法将解写成:其中F和G为任意函数,可以理解为以速度c从中心向外传播的波和从外面向中心传播的波。
这类从点源传出的波强度随距点源距离r衰减,并且属于无后效波,可以清晰地搭载信号。
这种波仅在奇数维空间中存在(原因将在下一小节中详细解释)。
幸运的是,我们生活的空间是三维的,所以我们可以清晰地通过声波和电磁波(都属于球面波)来互相交流。
时间箭头的讨论[编辑]上面方程的解里面,分成了两部分,一部分表示向外传播的波,一部分则是向内。
很明显,只要将t换成-t,就可以在这两部分之间转换。
这体现了原始方程对于时间是对称的,任意的一个解在时间轴上倒过来看仍然是一个解。
然而,我们所观察到的实际的波,都是属于向外传播的。
除非精心地加以调整,我们无法在自然界观察到向内的波,尽管它们也是波动方程的合法的解。
关于这个现象,引起了不少讨论。
有人认为,实际上它们即使存在,也无法加以观察。
想想如果四周的光向一个物体集中,则因为没有光到达我们的眼睛,我们不可能看见这个物体或者发现这个现象(见参考文献[2])。
广义初值问题的解[编辑]波动方程中u是线性函数,并且不随时间和空间坐标的平移而改变。
所以我们可以通过平移与叠加球面波获得方程各种类型的解。
令φ(ξ,η,ζ) 为任意具有三个自变量的函数,球面波形F为狄拉克δ函数(数学语言是:F是一个在全空间积分等于1且非零区间收缩至原点的连续函数的弱极限)。
设(ξ,η,ζ)位一族球面波的源点,r为距源点的径向距离,即:可定义称为三维波动方程的影响函数,其意义为(ξ,η,ζ)点在t=0 时刻受到短促脉冲δ函数作用后向空间中传出的波的影响,系数分母 4πc 是为方便后续处理而加上的。
若u是这一族波函数的加权叠加,且权函数为φ,则从δ函数的定义可知,u还能写成式中α、β和γ是单位球面S上点的坐标,dω为S上的面积微元。
该结果的意义为:u(t,x,y,z) 是以(x,y,z) 为圆心,ct为半径的球面上φ的平均值的t倍:从上式易得平均值是关于t的偶函数,所以若那么以上得出的便是波动方程初值问题的解。
从中可以看出,任意点P在t时刻受到的波扰动只来自以P为圆心,ct为半径的球面上,而这个球的内部点在这一时刻对P点的状态完全没有影响(因为它们的影响之前就已经传过P点了)。
换一个角度分析,假设三维空间中任意点P'在t=0 时刻受到一个脉冲扰动δ,那么由此发出的球面波在传过空间中的任意其它点Q后,便再也不会对Q的运动状态产生影响,这就是在物理学中也非常著名的惠更斯原理(Huygens' principle),也称为无后效现象,表示传过的球面波不会留下任何后续效应。
下面我们便可以解释上一小节中留下的问题了。
事实上,前面所得到的球面波解仅在奇数维空间中存在。
偶数维空间中波动方程的解是弥散的,也就是说波阵面掠过区域仍然会受其影响。
以下面的二维波动方程(极坐标形式,注意和上一小节三维形式的差别)为例:可以从三维形式的解通过降维法得到二维波动方程的影响函数:其中设点M(x,y) 到点(ξ,η) 距离为d,那么从影响函数中可以看出,当t>d/c即初始扰动已传过M点后,M仍在受到它的影响。
二维球面波(柱面波)的这一性质决定了它不能作为传递信号的工具,因为这种波(事实上包括所有偶数维空间中的球面波)经过的点受到的是交织在一起的各个不同时刻的扰动。
标量形式的二维波动方程[编辑]二维波动方程的直角坐标形式为:如前所述,我们可以从三维波动方程的解中将u视为与其中一个自变量无关(降维法)来得到二维形式的解。
将初始条件改写为则三维形式的解就变成其中α和β是单位球面上点的头两个坐标分量,dω是球面上的面积微元。
此积分可变换为在(x,y) 为中心,ct为半径的圆域D上的积分:从这个结果也能得到上一小节最后的结论。
二维波动方程解的一个例子是紧绷的鼓面的运动。
边值问题[编辑]一维情形[编辑]一根自身绷紧,两端分别固定于x=0和x=L的弹性弦在t>0 时刻,0 < x< L上运动满足波动方程。
在边界点处,可以要求u满足各种边界条件。
通常遇到的边界条件都可归纳成下列形式:其中a、b非负。
若要弦的两端固定不动,对应上面式子中a、b趋于无穷大。
求解偏微分方程的分离变量法要求寻找以下形式的解:将上述假设形式代入原方程中可以得到:为使边值问题有非平凡解,本征值λ须满足这是固有值问题的斯图姆-刘维尔理论的一个特例。
若a、b为正数,则对应的所有本征值均为正数,方程的解为三角函数。
使u和u t满足平方可积条件的解可以通过适当选取u和u t三角级数展开来求得。
多维情形[编辑]一维初始值-边值理论可以拓展至任意维空间中。
考虑m维空间(坐标简写为x)中的域D,B为D的边界。
当0<t时,位于D内的点x满足波动方程。
在D的边界上,解u须满足其中n是B上指向域外的法向矢量,a是定义在B上的非负函数。
要求u在B 上始终为0的边界条件相当于令a趋于无穷。
初始条件为其中f和g是定义在D内的函数。
这个问题可以通过将f和g展开成域D内拉普拉斯算子满足边界条件的本征函数系的叠加来求解(这是分离变量法的一般步骤)。
也就是求解在域D内满足在边界B上满足的本征函数系v。
在二维情形下,上述本征函数系可以理解成绷紧地张在边界B上的鼓面的自由振动模态。
若B是一个圆,则这些本征函数是关于极角自变量θ的三角函数与关于极轴自变量r的整阶贝塞尔函数的乘积。
更详细的说明参见英文版条目亥姆霍兹方程。
在三维形式下,若边界是空间中的球面,那么本征函数是关于球坐标下两个极角自变量的球面调和函数,乘以关于径向自变量ρ的半奇数阶贝塞尔函数。
注释[编辑]参考文献[编辑]•[1] 严镇军编,《数学物理方程》,第二版,中国科学技术大学出版社,合肥,2002,第210页~第224页,ISBN 7-312-00799-6/O·177 •[2] [英]胡·普赖斯著,肖巍译,《时间之矢与阿基米德之点—物理学时间的新方向》,上海科学技术出版社,上海,2001,ISBN 7-5323-5737-6•[3] M. F. Atiyah, R. Bott, L. Garding, Lacunas for hyperbolic differential operators with constant coefficients I, Acta Math.,124 (1970), 109–189.•[4] M.F. Atiyah, R. Bott, and L. Garding, Lacunas for hyperbolic differential operators with constant coefficients II, Acta Math., 131 (1973), 145–206.•[5] R. Courant, D. Hilbert, Methods of Mathematical Physics, vol II. Interscience (Wiley) New York, 1962.。