七年级数学 第四章一元一次方程 教案 青岛版

合集下载

青岛版数学七年级上册《解一元一次方程的一般步骤》教学设计

青岛版数学七年级上册《解一元一次方程的一般步骤》教学设计

青岛版数学七年级上册《解一元一次方程的一般步骤》教学设计一. 教材分析《解一元一次方程的一般步骤》是青岛版数学七年级上册的教学内容。

本节课的主要任务是让学生掌握解一元一次方程的一般步骤,能够独立地解简单的一元一次方程。

教材通过具体的例子引导学生理解并掌握解方程的方法,培养学生的逻辑思维能力。

二. 学情分析学生在进入七年级之前,已经学习了代数的基础知识,对于方程的概念有一定的了解。

但是,对于解一元一次方程的一般步骤和方法还需要进一步的学习和掌握。

学生的学习兴趣较高,但是解方程的能力参差不齐,需要针对性地进行教学。

三. 教学目标1.知识与技能目标:让学生掌握解一元一次方程的一般步骤,能够独立地解简单的一元一次方程。

2.过程与方法目标:通过具体的例子,引导学生理解并掌握解方程的方法,培养学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:解一元一次方程的一般步骤。

2.难点:理解并掌握解方程的方法。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过提问引导学生思考,通过具体的例子讲解解方程的方法,通过小组合作让学生互相交流和讨论。

六. 教学准备1.准备一些简单的一元一次方程,用于课堂练习和巩固。

2.准备PPT,用于展示和解题的示例。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾方程的概念和一元一次方程的定义。

让学生思考解方程的意义和方法。

2.呈现(15分钟)通过PPT展示一些简单的一元一次方程,引导学生尝试解题。

在解题过程中,逐步引导学生理解和掌握解方程的一般步骤。

3.操练(15分钟)让学生分成小组,互相合作解一些简单的一元一次方程。

教师巡回指导,解答学生的疑问,并给予鼓励和评价。

4.巩固(10分钟)让学生独立解答一些一元一次方程,检查学生对解方程方法的掌握情况。

对解答正确的学生给予表扬,对解答错误的学生给予指导和帮助。

七年级《一元一次方程》教学设计(通用6篇)

七年级《一元一次方程》教学设计(通用6篇)

七年级《一元一次方程》教学设计七年级《一元一次方程》教学设计(通用6篇)作为一名教师,时常需要用到教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。

教学设计应该怎么写才好呢?以下是小编整理的七年级《一元一次方程》教学设计,欢迎大家分享。

七年级《一元一次方程》教学设计篇1一、教学目标1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、培养学生获取信息,分析问题,处理问题的能力。

二、教学难点、知识重点1、重点:建立一元一次方程的概念。

2、难点:理解用方程来描述和刻画事物间的相等关系。

三、教学方法讲练结合、注重师生互动。

四、教学准备课件五、教学过程(师生活动)(一)情境引入教师提出教科收第79页的问题,并用多媒体直观演示。

问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。

)教师可以在学生回答的基础上做回顾小结问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:问题3:能否用方程的知识来解决这个问题呢?(二)学习新知1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.2、教师引导学生寻找相等关系,列出方程.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.4、归纳列方程解决实际问题的两个步骤:(1)用字母表示问题中的未知数(通常用x,y,z等字母);(2)根据问题中的相等关系,列出方程.(三)举一反三讨论交流1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.列算式:只用已知数,表示计算程序,依据是间题中的数量关系;列方程:可用未知数,表示相等关系,依据是问题中的等量关系。

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】

七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。

方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。

)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。

教学建议:关于移项法则,不应只强调记忆,更应强调理解。

学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。

方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。

[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。

②在移项时,学生常会犯一些错误,如移项忘记变号等。

这时,教士不要急于求成,而要引导学生反思自己的解题过程。

必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。

5.小结回顾:学生谈本节课的收获与体会。

师强调:移项法则。

七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。

2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。

3、掌握检验某个数值是不是方程解的方法。

过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。

七年级数学上册 8.4一元一次方程教案 青岛版 教案

七年级数学上册 8.4一元一次方程教案 青岛版 教案

解一元一次方程 教学案学习目标:掌握解一元一次方程的步骤,熟练解一元一次方程。

重点、难点:移项、去括号、去分母时要注意的事项。

一、 复习: 1、 等式的性质1等式的两边 ,结果仍相等。

若251063xx x ==-=a b =,那么a c ±=2、 等式的性质2等式的两边乘以 ,或除以 ,结果仍相等。

如果ab =,那么ac =如果()0a b c =≠,那么ac=例:下列变形错误的是( ) A.若a bc c=,则a b = B.若ac bc =,则a b =C.若ab =则2a b b +=D.若a x b x +=+,则a b =方程及一元一次方程:叫方程 判断是否是方程的两个条件① ② 指出下列哪些是方程?1x y +=74x y +510x =358+=(1)(1)0x y ++=的方程是一元一次方程。

“元”指 ,“次”指指出下列方程中的一元一次方程18x x+= 72085x x -=+ 32524x x -+=36x y += 210x x ++=若方程()176m m x ++=是关于x 的一元一次方程,则m =二、 自学过程:1、 你能利用学过和知识解下列方程吗?510x =x =(理由: )263x -= x =(理由: )我们把这一步称为“系数化为1”,“系数化为1”的依据是: 2、 你认为解如24140x x x ++=这样的方程,应先 要做什么?试解方程:24140x x x ++= 解:合并同类项,得系数化为1,得练习:解下列方程529x x -= 3722x x+=3.50.512x x -+= 23418x x x ++=13153x x x --=- 16 2.57.55y y y --=2.51061521.5y y y +-=-3、如果含有未知数的项或常数项不在方程的同一边,怎么办?如320425x x +=- 试解方程?734x -=利用等式的性质1,在方程的两边同时加上3,使方程左边只含有未知数的项,得: 系数化为1,得: 试解方程:743x x =--利用等式的性质1,在方程的两边同时加上4x ,使方程右边不含有求知项,得: 合并同类项,得: 系数化为1,得:我们在解734x -=和方程743x x =--时,利用等式的性质1,在方程的左右两边同时加或减同一个数或式子,使方程的左边只含有未知项,右边只含有常数项。

【教案】青岛版数学七年级上册7.4《一元一次方程的应用》教案1

【教案】青岛版数学七年级上册7.4《一元一次方程的应用》教案1

【教案】青岛版数学七年级上册7.4《一元一次方程的应用》教案1教案:青岛版数学七年级上册7.4《一元一次方程的应用》教案1一. 教材分析本节课的内容是《一元一次方程的应用》,这是学生在学习了代数基础知识后的进一步应用。

通过本节课的学习,学生能够理解一元一次方程在实际生活中的应用,提高解决实际问题的能力。

教材通过具体的例题,引导学生运用一元一次方程解决问题,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在之前的学习中已经掌握了一元一次方程的基本知识,但是对于如何将实际问题转化为方程,以及如何运用方程解决问题,可能还存在一定的困难。

因此,在教学过程中,教师需要通过具体的例题,引导学生理解和掌握一元一次方程在实际问题中的应用。

三. 教学目标1.理解一元一次方程在实际问题中的应用。

2.能够将实际问题转化为方程,并运用方程解决问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:一元一次方程在实际问题中的应用。

2.难点:如何将实际问题转化为方程,以及如何运用方程解决问题。

五. 教学方法采用问题驱动法,通过具体的例题,引导学生理解和掌握一元一次方程在实际问题中的应用。

同时,运用小组合作学习法,培养学生的团队合作意识和解决问题的能力。

六. 教学准备1.教学PPT。

2.相关例题和练习题。

3.投影仪和白板。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何用数学方法解决问题。

例如,假设一个水果店苹果和香蕉的价格分别是每千克3元和2元,如果苹果和香蕉的总价是20元,请问苹果和香蕉各买了多少千克?2.呈现(10分钟)呈现教材中的例题,引导学生分析问题,并运用一元一次方程解决问题。

例如,教材中的例题:甲、乙两地相距120km,甲地一辆汽车以60km/h的速度前往乙地,同时乙地一辆汽车以80km/h的速度前往甲地,问两辆汽车相遇需要多少时间?3.操练(10分钟)学生分组讨论,尝试解决其他类似的问题。

青岛版数学七年级上册7.4《一元一次方程的应用》教案 1

《一元一次方程的应用》教案教学目标1、了解一元一次方程在解决实际问题中的应用、体会运用方程解决问题的关键是抓住等量关系,建立数学模型.2、学会通过分析图形问题中的基本等量关系,并由此关系列方程解相关的应用题.3、能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决问题.熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语言到符号语言的转换.4、整体把握打折问题中的基本量之间的关系:商品利润=商品售价-商品成本价;商品的利润率=利润÷成本×100%.5、探索打折问题中的等量关系,建立一元一次方程.教学重点与难点重点:(1)寻找图形问题中的等量关系,建立方程;(2)根据具体问题列出的方程,掌握其简单的解方程的方法.难点:寻找图形问题中的等量关系,建立数学模型,建立一元一次方程,使实际问题数学化.教学准备多媒体课件、例题用到的实物.教学过程一、创新情境,引入新课教师:怎样解答本章“情景导航”中的问题?与同学交流教师:根据题意,请思考下列问题:(1)题目中哪些是已知量?哪些是未知量?……(3)题目中的等量关系是什么?……二、合作探究,展示交流根据题意列出方程:x+2x+4x+8x+16x+32x+64x=381.我们可以把这个方程看做“宝塔问题”的一个“数学模型”.教师:很好,我这儿有一个问题:某居民楼顶有一个底面直径和高均为4m的圆柱形储水箱、现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4 m减少为3.2m,那么在容积不变的前提下,水箱的高度将由原先的4m增高为多少米?你能帮他吗?学生:用一元一次方程来解、这个问题的等量关系:旧水箱的体积=新水箱的体积.教师:同学们分析得很好,列方程时,关键是找出问题中的等量关系.下面我们如果设新水箱的高为x m,通过填写下表来看一下旧水箱的体积和新水箱的体积、旧水箱新水箱底面半径/m2 1、6高/m 4 x体积/m3π×22×4π×1、62×x学生:旧水箱的圆柱的底面半径为4÷2=2m,高为4米,所以旧水箱的圆柱的体积为π×22×4m3;新水箱的圆柱的底面半径为3.2÷2=1.6m,高设为x m,所以新水箱的体积为π×1.62×x.由等量关系我们便可得到方程:π×22×4=π×1.62×x.教师:列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢?学生:将π换成3.14,算出x的系数π×22,然后将系数化为1就解出了方程.学生:我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单.教师:这位同学的想法很好、下面我们共同把这个题的过程写一下.解:设新水箱圆柱的高为x厘米,根据题意,列出方程π×22×4=π×1.62×x,解得x=254.答:高变成了254米.教师:通过本题的解答过程,你能总结一下列一元一次方程解决实际问题的步骤吗?(学生认真思考后,小组内交流、教师适时引导共同归纳出列一元一次方程解决实际问题的步骤:理解题意、寻找等量关系、设未知数列方程、解方程、作答.) 设计意图:设置丰富的问题情境,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.。

数学《一元一次方程》教学设计(青岛版)

青岛版七年级上册7.2 一元一次方程教学设计7.2 一元一次方程教学设计知识目标:会说一元一次方程的意义,会识别一元一次方程。

能力目标:经历探索一元一次方程的解的过程,体验估算方程的解的方法。

情感目标:经历用不同方法建立方程模型过程,体验数学化的意义。

教学重点:一元一次方程的意义,会识别一元一次方程。

教学难点:一元一次方程的解的探索。

教法:引导学生实际操作,将问题“数学化”建立方程模型。

采用教师引导,学生自主探索、观察、归纳的教学方式。

学法:自主探索与小组合作相结合。

教具:纸,剪刀。

教学过程:一:情境导入:展示图片:师:想知道我的年龄吗?我要先知道你们的年龄。

生:说出自己的年龄12,13,或14。

师:我比13岁年龄的3倍少5岁。

生:34岁。

师:能算出我女儿的年龄吗?我比她年龄的三倍多4岁。

生:用各种方法计算。

二:引出课题:(板书:方程)三:旧知回顾:1、方程:2、方程的解:3 、方程3x-2=x+2的解() A 2 B -1.5 C 1.5 D -24、小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约15厘米,大约几周后树苗长高到100厘米?四:新知探究(一)实验探究:生:读实验过程。

师:课件演示。

生:四人一组,一人剪纸、一人摆放、一人填表,组长总指挥协助完成。

师:指导,启发解决以下三个问题:(1)第1次,第2次,第3次,第4次,第5次,······分别共剪得多少张纸片?师:剪纸过程中有什么规律?第六次呢?第七次呢?…(2)如果剪了x次(x为正整数),那么共剪得多少张纸片?你是怎样得到的?与同学交流。

师:第一次4片,以后每剪一次多出3片。

(3)如果剪得的纸片共64片,一共剪了多少次?你怎么解决?师:剪x次得64片。

(二)观察总结:3x+4=34,40+15 x=100,3x+1=64, 4+3(X-1)=64他们有什么共同特点?这些方程,,像这样的方程叫做方程。

青岛版七年级上8.2《一元一次方程》WORD版教案

▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^= 成就梦想▁▂▃▄▅▆▇█▉▊▋▌8.2一元一次方程一、素质教育目标(-)知识教学点1.了解二元一次方程、二元一次方程组和它的解的概念.2.会将一个二元一次方程写成用含一个未知数的代数式表示另一个未知数的形式.3.会检验一对数值是不是某个二元一次方程组的解.(二)能力训练点培养学生分析问题、解决问题的能力和计算能力.(三)德育渗透点培养学生严格认真的学习态度.(四)美育渗透点通过本节的学习,渗透方程组的解必须满足方程组中的每一个方程恒等的数学美,激发学生探究数学奥秘的兴趣和激情.二、学法引导1.教学方法:讨论法、练习法、尝试指导法.2.学生学法:理解二元一次方程和二元一次方程组及其解的概念,并对比方程及其解的概念,以强化对概念的辨析;同时规范检验方程组的解的书写过程,为今后的学习打下良好的数学基础.三、重点·难点·疑点及解决办法(-)重点使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.(二)难点了解二元一次方程组的解的含义.(三)疑点及解决办法检验一对未知数的值是否为某个二元一次方程组的解必须同时满足方程组的两个方程,这是本节课的疑点.在教学中只要通过多举一系列的反例来说明,就可以辨析解决好该问题了.四、课时安排一课时.五、教具学具准备电脑或投影仪、自制胶片.六、师生互动活动设计1.教师通过复习方程及其解和解方程等知识,创设情境,导入课题,并引入二元一次方程和二元一次方程组的概念.2.通过反复的练习让学生学会正确的判断二元一次方程及二元一次方程组.3.通过二元一次方程组的解的概念的教学,通过教师的示范作用,让学生学会正确地去检验二元一次方程组的解的问题.▃▄▅▆▇██■▓点亮心灯 ~~~///(^v^)\\\~~~ 照亮人生▃▄▅▆▇██■▓。

七年级数学_第四章一元一次方程_教案_青岛版

一元一次方程第1课时 从问题到方程(1)目的与要求 对实际问题的分析,体会方程作为实际问题的数学模型的作用。

知识与技能 会列一元一次方程解决一些简单的实际应用情感、态度与价值观 初步认识方程与现实世界的密切联系,感受数学的价值。

教学教程 一、情境引入我国古代民间流传“百僧分百馍”问题:100个和尚分食100个馒头,大和尚1人吃3个,小和尚3人合吃1个馒头,100个和尚恰好分完100个馒头,问大和尚和小和尚各多少人? 二、新授阅读课本P148-150试一试像这样这含有一个末知数(元)且末知数的指数是1(次)的方程叫做一元一次方程 (linear equation with one unknown) 例1、下列各式是方程的是( )例2、下列各式是一元一次方程的是( )例3、已知例4、根据下列条件列出方程 (1)某数的2倍与3的和等于4 (2)用某数去除14得商2,余数为4 (3)某数增加4倍后得20例5、毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他::“尊敬的毕达哥位斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课:其中在学习数学,学习音乐,沉默无言,此外还有三名妇女。

”(只列方程不必解答)例6、买5瓶饮料,4只面包。

共15.8元钱。

每瓶饮料2.2元,每只面包第2课时从问题到方程教学目的同上知识与技能同上情感、态度与价值观同上教学过程一、情境引入强强今年12岁,他的爷爷72岁,想一想,几年后强强的年龄是他爷爷年龄的?二、知识新授什么是等式?表示相等关系的式子叫做等式。

什么是方程?含有未知数的等式叫做方程?什么叫做一元一次方程?含有一个未知数(元),并且未知数的次数是一次的方程叫做一元一次方程。

注意:未知数在分母中时,他的次数不能看成是1次。

(分式方程)例1、甲,乙两城市间的铁路经过技术改造,列车在两城市间的运行速度从80km/h提高到100km/h,运行时间缩短了3h。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 一元一次方程第1课时 从问题到方程(1)目的与要求 对实际问题的分析,体会方程作为实际问题的数学模型的作用。

知识与技能 会列一元一次方程解决一些简单的实际应用情感、态度与价值观 初步认识方程与现实世界的密切联系,感受数学的价值。

教学教程 一、情境引入我国古代民间流传“百僧分百馍”问题:100个和尚分食100个馒头,大和尚1人吃3个,小和尚3人合吃1个馒头,100个和尚恰好分完100个馒头,问大和尚和小和尚各多少人? 二、新授阅读课本P148-150试一试像这样这含有一个末知数(元)且末知数的指数是1(次)的方程叫做一元一次方程 (linear equation with one unknown) 例1、下列各式是方程的是( )例2、下列各式是一元一次方程的是( )例3、已知例4、根据下列条件列出方程 (1)某数的2倍与3的和等于4 (2)用某数去除14得商2,余数为4 (3)某数增加4倍后得20例5、毕达哥拉斯是古希腊著名的数学家,有一次有位数学家问他::“尊敬的毕达哥位斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课:其中在学习数学,学习音乐,沉默无言,此外还有三名妇女。

”(只列方程不必解答)例6、买5瓶饮料,4只面包。

共15.8元钱。

每瓶饮料2.2元,每只面包三、课堂随练课堂练习四、课堂作业作业纸五、课堂小结这节课你学会了什么六、课后反馈补充:请你编拟一道符合实际生活的应用题,使编拟的应用题所列出的方程为一元一次方程。

第2课时从问题到方程教学目的同上知识与技能同上情感、态度与价值观同上教学过程一、情境引入强强今年12岁,他的爷爷72岁,想一想,几年后强强的年龄是他爷爷年龄的?二、知识新授什么是等式?表示相等关系的式子叫做等式。

什么是方程?含有未知数的等式叫做方程?什么叫做一元一次方程?含有一个未知数(元),并且未知数的次数是一次的方程叫做一元一次方程。

注意:未知数在分母中时,他的次数不能看成是1次。

(分式方程)例1、甲,乙两城市间的铁路经过技术改造,列车在两城市间的运行速度从80km/h提高到100km/h,运行时间缩短了3h。

甲,乙两城市间的路程是多少?例2、我国很多城市水资源缺乏,为了加强居民的节水意识,合理利用水资源,很多城市制定了用水收费标准。

A市规定了每户每月的标准用水量,不超过标准用水量的部分按每立方米1.2元收费,超过标准用水量的部分按每立方米3元收费。

该市张大爷5月份用水9立方米,需交费16.2元,A市规定的每户每月标准用水量是多少立方米?(只列方程)例3、某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念。

全班共送出2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2例4、七年级8个班进行足球友谊赛,比赛采用单循赛制(参加比赛的队每两队之间只进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某七(4)班积17分,并以不败战绩获得冠军,那么七(4)班共胜几场?例5、一批树苗按下列方法依次由各班领取;第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,......最后树苗全部被取完,且各班的树苗数相等。

求树苗总数(只列方程)三、课堂练习练习纸四、课堂小结这节课你学会了什么?五、课堂作业作业本六、课后反馈补充:若方程(a-1)x b+2=1是关于x的一元一次方程,则a,b必须满足条件是______2、有一些分别标有6,12,18,24,······的卡片,后一张卡片上的数字比前一张卡片上的数字大6,小王拿了相邻的3张卡片,且这些卡片上的数字之和为342。

(1)猜猜小王拿了哪三张卡片?(2)小王能否拿到相邻的3张卡片,使得这三张卡片上的数之和等于86?若能拿,试求出;若不能拿,说明理由。

第3课时 解一元一次方程目的与要求 会解一元一次方程,灵活运用解方程的五大步骤 知识与技能 观察天平实验,思考归纳方程的变形,进而灵活运用。

情感、态度与价值观 体会转化思想,将复杂变简单,变未知为已知的作用。

教学过程 一、情境的引入 填写下表当x=__________时,方程2x+1=5成立分别把0,1,2,3,4代入下列方程,哪一个值能使方程成立: (1)2x-1=5 (2)3x-2=4x-3 二、新授能使方程左右两边相等的未知数的值叫做方程的解(solution of equation) 求方程的的过程叫做解方程(solving equation).方程2x+1=5可以变形如下:如图3x=3+2x 是怎样变形的。

等式的基本性质:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式 等式两边都乘以或除以同一个不等于0的数,所得结果仍是等式。

例1、用适当的数或整式填空,使所得的结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的。

(1)若5x=4x+7,则5x_______=7 (2)若2a=15,则6a=_________ (3)若-3y=18,则y=_________x 12 3 4 5 2x+1(4)若a+8=b+8,则a=________(5)若-5x=5y,则x=__________例2、解方程(1)x+5=2 (2)-2x=4(3)4x-15=9 (4)2x=5x-21方程中的某些项改变符号后,可以从方程的一边移到另一边,这样的变形叫做移项(moving terms) 例3、解下列方程例4、解方程(1)-3(x-1)=6(2)3(2y-1)-2(1-y)=0(3)2(x-2)-3(4x-1)=9(1-x)三、课堂练习练习纸四、课堂小结这节课你学会了什么?五、课堂作业作业纸六、课后反馈第4课时解一元一次方程目的与要求同上知识与技能同上情感、态度与价值观同上教学过程一、情境引入关于x的一元一次方程经过变形后都可以化为ax=b的形式,而ax=b这一形式的方程可能有唯一解,也可能有无数解,也可能无解。

问a,b满足什么条件时,方程ax=b有唯一解、有无数解、无解?二、新授例1、解下列方程例2、解方程例3、若方程的解相同,求m的值。

例4、解方程思考题若关于x的方程有无穷多个解,m应取何值三、课堂练习见练习纸四、课堂小结这节课你学会了什么?五、课堂作业作业纸六、课后反馈1、根据等式的性质,解方程(a-3)x=42、k为何值时,2是关于x的方程3|k|-2x=6x+4的解?3、当a为何值时,方程4、当a为何值时,方程(a-3)x|a|-2+b=7是关于x的一元一次方程?第5课时解一元一次方程目的与要求同上知识与技能同上情感、态度与价值观同上教学过程一、情境引入对于方程x+y=2来说,可以变形为y=2-x,也就是说,一旦x的值确定,y的值就随之确定,换句话说,方程x+y=2有无数多组解,如x=1,y=1;x=2,y=0;x=3,y=-1,......当然方程2x-y=3也有无数组解,如x=1,y=-1;x=2,y=1,......你能快速求出x+y=2与2x-y=3的一组完全相同的解吗?试试看。

二、新授例1、解下列方程例2、解方程例3、解方程例4、解方程30%x+70%(200-x)=200×30%例5、若x=1是方程的解(1)问a,b满足什么样的条件?(2)当b=2时,求a的值。

三、课堂练习练习纸四、课堂小结这节课你学会了什么?五、课堂作业见作业纸六、课堂反馈第6课时 用方程解问题目的与要求:会根据具体实际问题中的数量关系列出一元一次方程并求解,并根据问题的实际意义检验所得结果是否合理.知识与技能:结合实践与探索,让学生经历“问题情景—建立数学模型—解释.应用与拓展”的过程,提高分析问题.解决问题的能力,提高思维品质,增强学习能力.情感.态度与价值观:通过列方程解决实际问题的过程,体会教学的价值,增强学习数学的兴趣. 一、教学过程 情境引入一.比例与倍数问题例1.一个扶贫小组共有成员45人,根据需要分成甲.乙,丙三组,这三组人数之比为2:3:4,求这三个小组的人数.分析:相等关系,三个小组的人数和=45解:没其中一份为x,则甲.乙.丙三组人数分别为2x.3x.4x根据题意:2x+3x+4x=45 解这个方程得:x=5 ∴2x=10 3x=15 4x=20答:甲乙丙三组人数分别为10人,15人,20人.例 2.一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3,现做一批这样的桌子,恰好用去木材3.8m3,共做多少张桌子?分析:相等关系做桌面的木材+做桌腿的木材=3.8m 3解:设共做了x 张桌子根据题意:0.03x+0.008x=3.8解这个方程得: x=100答:共做了100张桌子.例3、已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,且甲数、乙数、丙数的三数和等于130,求这三个数。

分析:甲数+乙数+丙数=130解:设甲数是x ,则乙数为3x,丙数为 x 。

25根据题意:x+3x+ x=13025解之得:x=20甲数为20,乙数为60,丙数为50答:这三个数分别为甲数20,乙数60,丙数50。

例4.把内径为100mm的圆柱形长玻璃杯装满水,倒入一个长方体铁盒内,这个长方体的内底面是边长为130mm的正方形,内高为80mm,问当铁盒装满水时,玻璃杯中的水的高度约下降了多少?(π取3.14,精确到1mm)分析:相等关系玻璃杯中空闲部分的容积=铁盒的容积解:设玻璃杯中水的高度下降了xmm根据题意:3.14×502•x=1302×80解这个方程得:x≈172(mm)答:玻璃杯中水的高度约下降172mm请大家完成课本第128页练一练百分百第230页二.课堂作业作业纸三.课堂反馈第7课时 日历中的学问 课程目标:1、认识万年历,会查阅万年历,了解中华民族特有计时法—天干地支计年法。

2、引导学生阅读、了解日历。

发现日历中每个月的日期排列的基本规律,为进入中学系统研究方程奠定基础;3、能用相关的规律解决一些实际问题;4、培养学生求异思维能力,发现问题、解决问题的能力;5、在引导学生读日历的过程中,拓展视野,亲近中华文化,感受人文亲情。

课程理念:日历是生活中必不可少的一种生活工具,具有一定的阅读日历的能力也是非常重要的。

日历中数的排列蕴涵了丰富的数学知识,它是一块很好的数学研究基地,同时它也是一块很有价值的人文文化研究基地,因此对它的研究太有必要了。

一、创设情境,导入课题1、学生出题老师猜。

相关文档
最新文档