电磁场与电磁波(第四版)课后答案-第三章习题知识讲解

合集下载

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

谢处方《电磁场与电磁波》(第4版)课后习题-第3章 静态电磁场及其边值问题的解【圣才出品】

第3章 静态电磁场及其边值问题的解(一)思考题3.1 电位是如何定义的?中的负号的意义是什么?答:由静电场基本方程▽×E=0和矢量恒等式可知,电场强度E 可表示为标量函数φ的梯度,即式中的标量函数φ称为静电场的电位函数,简称电位;式中负号表示场强方向与该点电位梯度的方向相反。

3.2“如果空间某一点的电位为零,则该点的电场强度也为零”,这种说法正确吗?为什么?答:不正确。

因为电场强度大小是该点电位的变化率。

3.3“如果空间某一点的电场强度为零,则该点的电位为零”,这种说法正确吗?为什么?答:不正确。

此时该点电位可能是任一个不为零的常数。

3.4 求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义?答:边界条件起到给方程定解的作用。

3.5 电容是如何定义的?写出计算电容的基本步骤。

答:两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即其基本计算步骤:①根据导体的几何形状,选取合适坐标系;②假定两导体上分别带电荷+q和-q;③根据假定电荷求出E;④由求得电位差;⑤求出比值3.6 多导体系统的部分电容是如何定义的?试以考虑地面影响时的平行双导线为例,说明部分电容与等效电容的含义。

答:多导体系统的部分电容是指多导体系统中一个导体在其余导体的影响下,与另一个导体构成的电容。

计及大地影响的平行双线传输线,如图3-1-1所示,它有三个部分电容C11、C12和C22,导线1、2间的等效电容为;导线1和大地间的等效电容为;导线2和大地间的等效电容为图3-1-13.7 计算静电场能量的公式和之间有何联系?在什么条件下二者是一致的?答:表示连续分布电荷系统的静电能量计算公式,虽然只有ρ≠0的区域才对积分有贡献,但不能认为静电场能量只存在于有电荷区域,它只适用静电场。

表示静电场能量存在于整个电场区域,所有E≠0区域对积分都有贡献,既适用于静电场,也用于时变电磁场,当电荷分布在有限区域内,闭合面S无限扩大时,有限区内的电荷可近似为点电荷时,二者是一致的。

《电磁场与电磁波》(第四版)课后习题解答(全)

《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。

和向量错误!未找到引用源。

垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

电磁场与电磁波课后习题答案第3章(杨儒贵编着)

第三章 静电场3-1 已知在直角坐标系中四个点电荷分布如习题图3-1所示,试求电位为零的平面。

解 已知点电荷q 的电位为rq 4πεϕ=,令)0,1,0(1q q -=,)0,1,3(2q q +=,)0,0,1(3q q -=,)0,0,0(4q q +=,那么,图中4个点电荷共同产生的电位应为∑=414ii r q πεϕ令0=ϕ,得 0 4 4 4 44321=+-+-r qr q r q r q πεπεπεπε 由4个点电荷的分布位置可见,对于x =1.5cm 的平面上任一点,4321 ,r r r r ==,因此合成电位为零。

同理,对于x =0.5cm 的平面上任一点,3241 ,r r r r ==,因此合成电位也为零。

所以,x =1.5cm 及x =0.5cm 两个平面的电位为零。

3-2 试证当点电荷q 位于无限大的导体平面附近时,导体表面上总感应电荷等于)(q -。

证明 建立圆柱坐标,令导体表面位于xy 平面,点电荷距离导体表面的高度为h ,如图3-2所示。

那么,根据镜像法,上半空间的电场强度为32023101 4 4r q r q πεπεr r E -=X 习题图3-1(r , z )习题图3-2电通密度为)(43223110r r q r r E D -==πε 式中 232231])([h z r r -+=; 232232])([h z r r ++=那么,⎥⎥⎥⎦⎤⎪⎪⎪⎭⎫ ⎝⎛+++-++-+⎢⎢⎢⎣⎡⎪⎪⎪⎭⎫ ⎝⎛++--+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++--+-+=z z zh z r hz h z r h z h z r r h z r r q h z r h z r h z r h z r q e e e e e e D r r r 232223222322232223222322])([])([ ])([])([4 ])([)(])([)(4ππ 已知导体表面上电荷的面密度n s D =ρ,所以导体表面的感应电荷为2322232223220)(2][][4h r qh h r h h r h q D z zs +-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++-+-===ππρ 则总的感应电荷为q h r r r qh r r S q s ss -=+-===⎰⎰⎰∞∞2322)(d d 2d 'πρρ3-3 根据镜像法,说明为什么只有当劈形导体的夹角为π的整数分之一时,镜像法才是有效的?当点电荷位于两块无限大平行导体板之间时,是否也可采用镜像法求解。

电磁场与电磁波(第四版)课后答案__谢处方

电磁场与电磁波(第四版)课后答案__谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答

三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。

解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a ar r r a r a ππ--=++⎰22121)0.293()aqaq q r a ==-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。

解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r r a r Ze r r r ρπππ==-D e e 故原子内总的电通量密度为 122314r a Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。

求空间各部分的电场。

解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。

但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答

《电磁场与电磁波》第4版(谢处方 编)课后习题答案 高等教育出版社三章习题解答

三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。

解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e223222320()[]2d 4()()aq a ar r r a r a ππ--=++⎰ 22121)0.293()aqaq q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。

解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r ra r Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。

求空间各部分的电场。

解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。

但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题 3.3图()b 所示。

电磁场与电磁波第四版课后答案

电磁场与电磁波第四版课后答案
2—7 证明通过任意封闭曲面的传导电流和位移电流之和等于零。
2—8 一长度 l = 1m ,内外导体半径分别为 a = 1m m , b = 3.5 m m 的同轴电容器中填 充相对介电常数 εr = 7 的介质,内外导体间的外加电压 u = 200 sin(377t)V。求位
5
移电流 id ,并同传导电流 ic 比较。 答案: id = 2.34 ×10−5 cos(377t) A 。 2—9 一平板电容器的极板面积 s = 15 cm2 ,间距 d = 0.2 cm 电容器内填充媒质的电参数
答案: E = 8.34(ax − 3ay + 6az ) V m 。 2—5 一点电荷 Q = 50 nC ,位于直角坐标系的原点,求点(2,4,− 5)处的电通量密度。
答案: D
=
5 54π
(2ax
+ 4ay
− 5az ) 。
2—6 两种理想电介质的相对介电常数分别为 εr1 = 2.5和εr2 = 5 ,其分界面为 z = 0 的平
a
答案:
=

2
5 5
⎫ ⎪⎪ ⎬

b=
5 5
⎪ ⎪⎭
a
=
25 5
⎫ ⎪⎪ ⎬
b=−
5⎪ 5 ⎪⎭
( ) 1-3
若矢量 A 和矢量 B 是任意常矢量,证明:
2
A× B
=
A2B2 −
A•B 2。
1-4 求圆柱坐标系中从 z 轴上的 z = z0 指向点处 p(r,ϕ,0)的单位矢量。
答案: aR
=
rar − z0az r 2 + z02
⎡ 2 sinhξ cosη
⎢ ⎢

电磁场与电磁波答案第四版谢处方修订版

电磁场与电磁波答案第四版谢处方修订版
同理
因此,矢量场 穿出该六面体的表面的通量为
故得到圆柱坐标下的散度表达式
1.22方程 给出一椭球族。求椭球表面上任意点的单位法向矢量。
解由于
故椭球表面上任意点的单位法向矢量为
1.23现有三个矢量 、 、 为
(1)哪些矢量可以由一个标量函数的梯度表示?哪些矢量可以由一个矢量函数的旋度表示?
(2)求出这些矢量的源分布。
所以

故有
1.13求(1)矢量 的散度;(2)求 对中心在原点的一个单位立方体的积分;(3)求 对此立方体表面的积分,验证散度定理。
解(1)
(2) 对中心在原点的一个单位立方体的积分为
(3) 对此立方体表面的积分
故有
1.14计算矢量 对一个球心在原点、半径为 的球表面的积分,并求 对球体积的积分。

解 与 之间的夹角为
在 上的分量为
1.5给定两矢量 和 ,求 在 上的分量。

所以 在 上的分量为
1.6证明:如果 和 ,则 ;
解由 ,则有 ,即
由于 ,于是得到

1.7如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设 为一已知矢量, 而 , 和 已知,试求 。
解由 ,有
而半径为 的圆内的电荷产生在 轴上 处的电场强度为
2.10一个半径为 的导体球带电荷量为 ,当球体以均匀角速度 绕一个直径旋转,如题2.10图所示。求球心处的磁感应强度 。
解球面上的电荷面密度为
当球体以均匀角速度 绕一个直径旋转时,球面上位置矢量 点处的电流面密度为
将球面划分为无数个宽度为 的细圆环,则球面上任一个宽度为 细圆环的电流为
球内的电荷体密度为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)
2 2 2 2( e y c h x ) 2( e y c h x ) 2(e y c h x )
x 2 y 2 z 2 x 2
y 2
z 2
2eychx0
函数 e ychx 不是 y 0 空间中电位的解。
第三章 பைடு நூலகம்题
3.3 有一半径为a 的圆柱体,已知柱内外的电位函数分别为
0
ra
A(ra2)cos r a
r
(1)求圆柱内、外的电场强度;
(2)这个圆柱是什么材料制成的?表面有电荷分布吗?试求之。
解:
(1)电场
u u r
u E r (e u rr re r e u rz z)
3. 4 已知 y 0 的空间中没有电荷,下列几个函数中哪个可能
是电位函数解?
(1) expycoshx (2) exp(y)cosx
(3) exp(2y)sinxcosx (4) sinxsinysinz
解:在 y 0 的空间中无电荷分布,电位函数因满足拉普拉斯方程,
题中几个函数中凡满足拉普拉斯方程的函数,便为 y 0 空间电位的解

Ad
A U 0 0d d 60
因此 600xd3 Ud0 60d0 x
E r e rx xe rx 2 00 xd 2 U d0 60d 0
a 3.9 有一半径 ,带电量 q 的导体球,其球心位于两种介质的
(2)磁化电流分布
解:由安培环路定律,有
z
H

H

I
2
利用边界条件
H1t H2t
I 1 0
O
2

H1t H2t H
及本构关系
uv uuv
(2) x 2 2(e yc o sx) y 2 2(e yc o sx) z 2 2(e yc o sx) e yc o sx e yc o sx 0
函数 ey cos x 是 y 0 空间中电位的解。
(3)
x 2 2 ( e 2 y s in x c o s x ) y 2 2 ( e 2 y s in x c o s x ) z 2 2 ( e 2 y s in x c o s x )
d
d
电容器的储能为 W1 2CU2U 22bd h0b(d lh)
12bU d2h(lh)0
液体所受的沿高度方向的电场力为
F W h h b U d2(h l0 h 0) b 2 U d 2( 0)
这个力应与水平面以上的液体重量相平衡,即
Fmgg
( 为体积 )所以有
液面升高为
bU2 2d
(0)
hbdg
hU2 2(d2g 0)21g(0)(U d)2
3.15 无限长直线电流 I 垂直于磁导率分别为 1 和 2 的两种
磁介质的交界面,试求(1)两种媒质中的磁感应
u uv B1

u uv B2
e 2 y ( c o s 2 x s in 2 x ) 2 e 2 ys in x c o s x 0
函数 e 2ysinxcosx不是 y 0 空间中电位的解。
(4)
2
2
2 2
( s i n x s i n y s i n z ) ( s i n x s i n y s i n z ) ( s i n x s i n y s i n z )
电荷密度为
和电场强度。
0x d
,极板电位分别为0和U0,求两极板间的电位
解:两导体间的电位满足泊松方程 2
0
因此有
d 2
dx2

1
0
0x
d
解得 0x3 AxB 60d
在x=0处 0 ,B=0
在x=d处 U 0 ,故
U
0


0d 3 6 0d
1E42r2 2E42r2 q
所以
E
q
2r2(1 2)
孤立导体球的电位为 a a u E rg d r a 2r 2 ( q 1 2 ) d r 2a (q 1 2 )
故球的电容为
C q
a
2a(1 2)
(2)总的静电能量为 W12aq4a(q122)
分界面上,此两种介质的介电常数分别为 1 和 2 ,分界面可视
为无限大平面,求(1)球的电容;(2)总静电能。
解: (1)由于电场分布仍沿径向方向,所以在两种介质的 分界面上,根据边界条件有
E1t E2t E
En 0
所以此题仍可用高斯定理
ur ur
Ñ SDgdSq
求解,即 D1S1D2S2q
x 2
y 2
x 2 z 2
s i n x s i n y s i n z s i n x s i n y s i n z s i n x s i n y s i n z 0
函数 sinxsinysinz 不是 y 0 空间中电位的解。
3.7无限大导体平板分别置于x=0 和 x=d处,板间充满电荷,其体
3.10 两平行的金属板,板间距离为 d ,竖直地插在介电常数为
的液体中,板间电压为 U 。证明液体面升高为
其中
h 1 ( 2g
0)(Ud)2
为液体的质量密度
证:设电容极板面积为 S bl b 为宽,
( l 为极板高),液面升高为。h 电容器的电容为两个电容并联,
即 Cbh0b(lh)
在 ra 处

u E r e u rrA co s(1a r2 2)e u u rA (1a r2 2sin)
u E r e u r r( A a r 2 2 A )c o s e u u r(A a r 2 2 A s in) (r a )
相关文档
最新文档