化工原理 第八章2

合集下载

化工原理-8章总结

化工原理-8章总结

b 级式接触
图9-2 填料塔和板式塔
规整填料 散装填料 塑料丝网波纹填料 塑料鲍尔环填料
本章所做基本假定:
(1)气体混合物中只有一个组分溶于溶剂,其余组分可
视为一个惰性组分。
(2)溶剂的蒸气压很低,挥发损失可忽略不计。
——气相中仅包括一个惰性组分和一个可溶组分 液相中包含可溶组分和溶质
第二节 气液相平衡
8.4 相际传质
8.4.1 相际传质速率(总传质速率)
气膜控制:
当1/ky>>m/kx时,Ky≈ky,传质阻力主要集中于气相, 称为“气膜控制”,若要提高吸收速率,即增大气相湍动程度。
液膜控制:
当1/kx>>1/mky时,Kx≈kx,传质阻力主要集中于液相,
称为“液膜控制”,若要提高吸收速率,即增大液相湍动程度。
反,通过截面净物质量为零,则称此扩散为等分子反向扩散。
2、主体流动
A可溶于液相 B完全不溶于液相 液相不挥发
主体移动:在压力差的作用下,单相主体向界面移动称为 总体流动,总体流动造成A,B向同一方向移动。 ——只要不满足等分子反向扩散条件,都必然出现主体流动
三、分子扩散的速率方程
漂流因子恒大与1,因此单向扩散传质速率大于等摩尔反向扩散。
物理吸收:吸收过程溶质与溶剂不发生显著的化学反应。
如用水吸收二氧化碳、用水吸收乙醇或丙醇蒸
汽、用洗油吸收芳烃等。 化学吸收:溶质与溶剂有显著的化学反应发生。 如用NaOH溶液吸收CO2、用稀硫酸吸收氨等过 程。化学反应能大大提高单位体积液体所能吸
收的气体量并加快吸收速率。但溶液解吸再生
较难。 ——被利用的条件:可逆性;较高的反 应速率
吸收速率方程式小结
1、以传质分系数表示的吸收速率方程式:

化工原理--第八章 气体吸收

化工原理--第八章  气体吸收

第八章气体吸收1.在温度为40℃、压力为101.3kPa 的条件下,测得溶液上方氨的平衡分压为15.0kPa 时,氨在水中的溶解度为76.6g (NH 3)/1000g(H 2O)。

试求在此温度和压力下的亨利系数E 、相平衡常数m 及溶解度系数H 。

解:水溶液中氨的摩尔分数为76.6170.07576.610001718x ==+由*p Ex=亨利系数为*15.0kPa 200.00.075p E x ===kPa 相平衡常数为t 200.0 1.974101.3E m p ===由于氨水的浓度较低,溶液的密度可按纯水的密度计算。

40℃时水的密度为992.2ρ=kg/m 3溶解度系数为kPa)kmol/(m 276.0kPa)kmol/(m 180.2002.99233S ⋅=⋅⨯==EM H ρ2.在温度为25℃及总压为101.3kPa 的条件下,使含二氧化碳为3.0%(体积分数)的混合空气与含二氧化碳为350g/m 3的水溶液接触。

试判断二氧化碳的传递方向,并计算以二氧化碳的分压表示的总传质推动力。

已知操作条件下,亨利系数51066.1⨯=E kPa ,水溶液的密度为997.8kg/m 3。

解:水溶液中CO 2的浓度为33350/1000kmol/m 0.008kmol/m 44c ==对于稀水溶液,总浓度为3t 997.8kmol/m 55.4318c ==kmol/m 3水溶液中CO 2的摩尔分数为4t 0.008 1.4431055.43c x c -===⨯由54* 1.6610 1.44310kPa 23.954p Ex -==⨯⨯⨯=kPa气相中CO 2的分压为t 101.30.03kPa 3.039p p y ==⨯=kPa <*p故CO 2必由液相传递到气相,进行解吸。

以CO 2的分压表示的总传质推动力为*(23.954 3.039)kPa 20.915p p p ∆=-=-=kPa3.在总压为110.5kPa 的条件下,采用填料塔用清水逆流吸收混于空气中的氨气。

化工原理,第8-9章

化工原理,第8-9章

第八章 传质过程导论第一节 概述8-1 化工生产中的传质过程均相物系的分离(提纯,回收)1.吸收2.气体的减湿3.液-液萃取4.固-液萃取(浸沥,浸取)5.结晶6.吸附(脱附)7.干燥 8精馏 目的:湿分离或混合8-2 相组成的表示法1. 质量分率和摩尔分率m m a A A =m ma B B = mm a C C = ………. ......+++=C B A m m m mA,B 两组分 a a -1 n n x A A =n nx B B = nn x C C = ……. ......+++=C B A n n n n .......1+++=C B A x x x互换 A A A A A m m a m m x ==BB B m ma x = ……. ∑=++=i i i B B A A m a m m m a m m a n ...... ()....,,C B A i = 故 ∑==i iiAAA A m a m a n n x iiiA A A m x m a a ∑=2.质量比和摩尔比质量比 B A m m a /=摩尔比 B A n n X =()a a a -=1 ()x x X -=1()X X x -=13.浓度质量浓度 V m C A A = 3/m kg摩尔浓度 V n C A A = 3/m k m o l均相混合物的密度ρ即为各组分质量浓度的总和(体积与混合物相等)∑=++=i B A C C C ........ρρA V ma V m C A A A ===C x V n x V n C A A A A ===混合气体 RTp V n C A A A ==RTp M V n M V m C AA A A A A ===气体总摩尔浓度 RTpV n C ==摩尔分率与分压分率相等 pp n n y AA A ==气体混合物摩尔比可用分压比表示 BB AA B B A A B A M p M p M n M n n n Y ===第二节 扩散原理8-3 基本概念和费克定律分子扩散: 扩散速率与浓度梯度成正比 费克定律: 对双组分物系下表达为: dzdl D J AABA -= A J —分子A 的扩散通量 s m kmol ⋅2/ 方向与浓度样应相反 AB D —比例系数 组分A 在介质B 中的扩散系数 s m /2A c —组分A 浓度,3/m kmoldz dc A —组分A 的浓度梯度 4/m kmol RT p c A A =得 dzdp RT D J AAB A -= 定义A J 通过得截面是“分子对称”得,即有一个A 分子通过某一截面,就有一个B 分子反方向通过这一截面,填补原A 分子得空部位,这种分子对称面为固定时,较为简便。

化工原理 第八章 固体干燥.

化工原理 第八章 固体干燥.

第八章固体干燥第一节概述§8.1.1、固体去湿方法和干燥过程在化学工业,制药工业,轻工,食品工业等有关工业中,常常需要从湿固体物料中除去湿分(水或其他液体),这种操作称为”去湿”.例如:药物,食品中去湿,以防失效变质,中药冲剂,片剂,糖,咖啡等去湿(干燥) 塑料颗粒若含水超过规定,则在以后的注塑加工中会产生气泡,影响产品的品质. 其他如木材的干燥,纸的干燥.一、物料的去湿方法1、机械去湿:压榨,过滤或离心分离的方法去除湿分,能耗底,但湿分的除去不完全。

2、吸附去湿:用某种平衡水汽分压很低的干燥剂(如CaCl2,硅胶,沸石吸附剂等)与湿物料并存,使物料中水分相续经气相转入到干燥剂内。

如实验室中干燥剂中保有干物料;能耗几乎为零,且能达到较为完全的去湿程度,但干燥剂的成本高,干燥速率慢。

3、供热干燥:向物料供热以汽化其中的水分,并将产生的蒸汽排走。

干燥过程的实质是被除去的湿分从固相转移到气相中,固相为被干燥的物料,气相为干燥介质。

工业干燥操作多半是用热空气或其他高温气体作干燥介质(如过热蒸汽,烟道气)能量消耗大,所以工业生产中湿物料若含水较多则可先采用机械去湿,然后在进行供热干燥来制得合格的干品。

二、干燥操作的分类1、按操作压强来分:1)、常压干燥:多数物料的干燥采用常压干燥2)、真空干燥:适用于处理热敏性,易氯化或要求产品含湿量很低的物料2、按操作方式来分:1)、连续式:湿物料从干燥设备中连续投入,干品连续排出特点:生产能力大,产品质量均匀,热效率高和劳动条件好。

2)、间歇式:湿物料分批加入干燥设备中,干燥完毕后卸下干品再加料如烘房,适用于小批量,多品种或要求干燥时间较长的物料的干燥。

3、按供热方式来分:1)、对流干燥:使干燥介质直接与湿物料接触,介质在掠过物料表面时向物料供热,传热方式属于对流,产生的蒸汽由干燥介质带走。

如气流干燥器,流化床,喷雾干燥器。

2)、传导干燥:热能通过传热壁面以传导方式加热物料,产生的蒸汽被干燥介质带走,或是用真空泵排走(真空干燥),如烘房,滚筒干燥器。

化工原理-第8章 气体吸收

化工原理-第8章 气体吸收

8.3 扩散和单相传质
① 溶质由气相主体传递到两相界面,即气相内的物质传递;
② 溶质在相界面上的溶解,由气相转入液相,即界面上发生 的溶解过程
③ 溶质自界面被传递至液相主体,即液相内的物质传递。 通常,第②步即界面上发生的溶解过程很容易进行,其阻力很小
( 传质速率 小,
=
传质推动力 传质阻力
)故认为相界面上的溶解推动力亦很
8.1概述
①溶剂应对被分离组分(溶质)有较大的溶解度,或者说在 一定的温度与浓度下,溶质的平衡分压要低。这样,从平衡角度 来说,处理一定量混合气体所需溶剂量较少,气体中溶质的极限 残余浓度亦可降低;就过程数率而言,溶质平衡分压↓,过程推 动力大,传质数率快,所需设备尺寸小。
②溶剂对混合气体中其他组分的溶解度要小,即溶剂应具备 较高的选择性。若溶剂的选择性不高,将同时吸收混合物中的其 他组分,只能实现组分间某种程度的增浓而不能实现较为完全的 分离。
⑷工业吸收流程(见旧讲稿) 由流程图可见,采用吸收操作实现气体混合物的分离必须解决下 列问题: ①选择合适的溶剂,使能选择性比溶解某个(或某些)被分离组 分; ②提供适当的传质设备(多位填料塔,也有板式塔)以实现气液 两相的接触,使被分离组分得以从气相转移到液相(吸收)或气相 (解吸);
8.1概述
注意:此时并非没有溶质分子继续进入液相,只是任何瞬间 进入液相的溶质分子数与从液相逸出的溶质分子数恰好相等,在 宏观上过程就象是停止了。这种状态称为相际动平衡,简称相平 衡。
8.2.1平衡溶解度
⑴溶解度曲线
对 单 组 分 物 理 吸 收 的 物 系 , 根 据相律 ,自 由度数F 为F=CΦ+2=3-2+2=3(C=3,溶质A,惰性组分B,溶剂S,Φ=2,气、液两 相),即在温度 t ,总压 p ,气、液相组成共4个变量中,由3个自 变量(独立变量),另1个是它们的函数,故可将平衡时溶质在气

化工原理 第八章

化工原理 第八章
Y A = mX A
(8-11)
第二节 吸收过程的相平衡关系
(3)吸收平衡线 表明吸收过程中气、液相平衡关系 的图线称吸收平衡线。在吸收操作中,通常用图来表示。
图8-2吸收平衡线
第二节 吸收过程的相平衡关系
式(8-10)是用比摩尔分数表示的气液相平衡关系。 它在坐标系中是一条经原点的曲线,称为吸收平衡线,如 图8-2(a)所示;式(8-11)在图坐标系中表示为一条经 原点、斜率为m的直线。如图8-2(b)所示。 (4)相平衡在吸收过程中的应用 ①判断吸收能否进行。由于溶解平衡是吸收进行的极 限,所以,在一定温度下,吸收若能进行,则气相中溶质 的实际组成 YA 必须大于与液相中溶质含量成平衡时的组 成 Y ,即YA > Y 。若出现 YA < Y 时,则过程反向进行,为 解吸操作。图8-2中的A点,为操作(实际状态)点,若A Y 点位于平衡线的上方, A > Y 为吸收过程;点在平衡线上,
本文由屮氼孖贡献
ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。
化工原理
第八章
吸收
第一节 概述
一、吸收剂的选择
实践证明,吸收的好坏与吸收剂用量关系很大,而吸 收剂用量又随吸收剂的种类而变。可见,选择吸收剂是吸 收操作的重要环节。选择吸收剂时,通常从以下几个方面 考虑: 1.溶解度 吸收剂对于溶质组分应具有较大的溶解度,这样可以 加快吸收过程并减少吸收剂本身的消耗量。 2.选择性 吸收剂要在对溶质组分有良好吸收能力的同时,对混 合气体中的其他组分却能基本上不吸收或吸收甚微,否则 不能实现有效的分离。
第二节 吸收过程的相平衡关系
表8-1某些气体水溶液的亨利系数值(E×10-6/kPa)

陈敏恒_化工原理课件_第八章(2)

陈敏恒_化工原理课件_第八章(2)

新操作线与原操作线平行,
y2 , x1 , , N
讨论: x2 ,K y a 不变,而 N ,显然 ym x2 的调节限度:主要受解吸过程的限制
(3)吸收剂入塔温度的调节 原工况如图蓝线所示, 现仅 t , 操作结果如何变化? 新操作线与原操作线平行,
m ,y2 ,x1 ,η ,N
二、计算方法
H N OG H OG
由 H OG NOG L( y2 ) x1 第二类命题需要试差
mG y1 mx2 mG 1 ln 1 mG L y 2 mx2 L 1 L
三、吸收塔的操作和调节 调节方法:改变吸收剂的入口条件 L, x2 , t
返混:少量流体自身由下游返回至上游 任何形式的返混,都将降低传质推动力,对 传质不利。
例题1 课本P45,8-12 例题2 用纯溶剂吸收某混合气中有害组分,已知 ye mx ,H OG 与 m G L 为常数, 当 y1 0.09, 1 0.9 时,塔高为 H 1 当 y1 0.09, 2 0.99 时,塔高为 H 2 当 y1 0.009, 3 0.9 时,塔高为 H 3 试比较 H1 , H 2 , H 3 的大小
K y a,K x a :容积传质系数 kmol s m
3
六、传质单元数与传质单元高度
y1 dy G 令:H OG ,N OG y2 y y K ya e H H OG NOG x1 dy L 令:H OL , N OL x2 x x K xa e H H OL NOL
8.5.4 吸收塔的操作型计算 一、操作型计算的命题 (1)第一类命题 给定条件:H , L, G, x2 , y1 , y f ( x) 流动方式,K y a 或 K x a x1 计算目的: y2 ( ) , (2)第二类命题 给定条件:H , G, y1 , y2 , x2 , y f ( x) 流动方式,K y a 或 K x a 计算目的: L ,x1

化工原理 第八章 传质过程导论.doc

化工原理 第八章 传质过程导论.doc

第八章传质过程导论第一节概述8-1 物质传递过程(传质过程)传质过程• 相内传质过程• 相际传质过程相内传质过程:物质在一个物相内部从浓度(化学位)高的地方向浓度(化学位)高的地方转移的过程。

实例:煤气、氨气在空气中的扩散,食盐在水中的溶解等等。

相际传质过程:物质由一个相向另一个相转移的过程。

相际传质过程是分离均相混合物必须经历的过程,其作为化工单元操作在工业生产中广泛应用,如蒸馏、吸收、萃取等等。

几种典型的相际传质过程●吸收:物质由气相向液相转移,如图8-1所示A图8-1 吸收传质过程●蒸馏:不同物质在汽液两相间的相互转移,如图8-2所示。

相界面AB图8-2 蒸馏传质过程●萃取,包括液-液萃取和液-固萃取液-液萃取:物质从一个相向另一个相转移。

例如用四氯化碳从水溶液中萃取碘。

液-固萃取:物质从固相向液相转移。

●干燥:液体(通常为水)由固相向气相转移其它相际传质过程:如结晶、吸附、气体的增湿、减湿等等。

传质过程与动量传递、热量传递过程比较有相似之处,但比后二者复杂。

例如与传热过程比较,主要差别为: (1)平衡差别传热过程的推动力为两物体(或流体)的温度差,平衡时两物体的温度相等;传质过程的推动力为两相的浓度差,平衡时两相的浓度不相等。

例如1atm,20ºC 下用水吸收空气中的氨,平衡时液相的浓度为0.582 kmol/m3 ,气相的浓度为3.28×10 - 4kmol/m3 ,两者相差5个数量级。

(2)推动力差别传热推动力为温度差,单位为ºC ,推动力的数值和单位单一;而传质过程推动力浓度有多种表示方法无(例如可用气相分压、摩尔浓度、摩尔分数等等表示),不同的表示方法推动力的数值和单位均不相同。

8-2浓度及相组成的表示方法1. 质量分数和摩尔分数● 质量分数:用w 表示。

以A 、B 二组分混合物为例,有w A = (8-1)● 质量分数:用x 或y 表示。

以A 、B 二组分混合物为例,有x A = (8-2)2. 质量比与摩尔比 ● 质量比:混合物中一个组分的质量对另一个组分的质量之比,用w 表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当A 1时,yN 1
AN 1 1 A 1
ya
AN 1 A
1
1
mx
a
mxa
即yN 1 m浙xa江大A学AN化1 1学1工y程a 研 m究x所a
第四节 吸收塔计算
27/29
当A 1时:yb mxa AN1 1 ya mxa A 1
(5)按上述方式一直进行下去, y1
P1 A
E1
E2
E3
直至超过B点为止。
O x0 x1 x2
x
浙江大学化学工程研究所
第四节 吸收塔计算
25/29
2. 理论板数求解的理论计算法 原则:操作线和平衡线均可作为直线处理。
根据理论板数的定义:y1 mx1
y2 mx2
yN mxN
由物料衡算式:y2
1
N
yN
,xN-1
yb xb
气相总传质单元
浙江大学化学工程研究所
(y-y*)m,k x
第四节 吸收塔计算
N OG
yb dy ya y y*
y1 dy y2 dy yk1 dy yb dy
ya y y * y1 y y *
yk y y*
yN y y*
111
ya
xa
包括塔径、填料层高度或塔板数
D
H
Gb yb
Lb xb
逆流吸收塔的物料衡算
浙江大学化学工程研究所
第四节 吸收塔计算
一、物料衡算与操作线方程
全塔物料衡算:
对溶质 A,有
气相的减少速率 液相的增加速率
GBYa Ga ya
GB Yb Ya LS X b X a
3/29
LS Xa La xa
Yb
越小或分离要求 (ybya)越高, 则 NOG 越大。
0
ya
yb y
传质单元数
浙江大学化学工程研究所
第四节 吸收塔计算
15/29
3. 传质单元数的计算 (1)平衡线为直线时
y* mx b
H HOG N OG
NOG
yb dy ya y y*
G HOG K ya
y
L G
x
xa
ya
dy yb ya
ya
L G
x1
xa
又由于:x1
y1 m
ya m
y2
ya
L G
ya m
xa
ya
L mG
ya
L G
xa
ya
L mG
ya
L mG
mxa
ya A 1 Amxa
浙江大学化学工程研究所
第四节 吸收塔计算
26/29
由物料衡算式:
y3
ya
L G
x2
xa
y3
ya
L G
吸收因数法
y
L G
x
xa
ya
x
G L
y
ya
xa
y*
mx b m G y
L
ya m xa
b
Sy
ya
y
* a
S m G 脱吸因数,无因次 L
A L 吸收因数,无因次 mG
浙江大学化学工程研究所
第四节 吸收塔计算
18/29
NOG
yb dy ya y y*
yb
dy
ya
1 S
NTU T1 T2 或 t2 t1
tm
tm
每一段气相组成的变化量 ya
xa
该段气相总平均传质推动力 1
一个(气相总)传质单元 y
2
yk1 yk y y * m,k
yb
NOG,k
dy yk1 yk y y*
yk xk-1
yk+1
k
HOG
yk
yk+1 xk
ya
yk1 yk y y* m,k
而在相同的
yb ya
ya*
y
* a
下,S 越大,NOG 越大。
回收率为: Yb Ya 1 Ya 1 ya(低浓)
Yb
Yb
yb
思考:当 S=1 时,NOG=? N OG
yb ya
ya* ya*
1
N OG
1 1 S
ln1
S
yb ya
ya* ya*
S
浙江大学化学工程研究所
第四节 吸收塔计算
N (个)
1
y
2
yb
12/29
yk xk-1
yk+1
k
HOG
yk
yk+1 xk
ya
yN ,xN-1
N
yb xb
气相总传质单元
浙江大学化学工程研究所
(y-y*)m,k x
第四节 吸收塔计算
13/29
传质单元高度的物理意义?
H H OG N OG
ya
xa
1
-----每个传质单元对应的填料层高度 2
浙江大学化学工程研究所
第四节 吸收塔计算
10/29
气相总传质单元高度,m HOG (HTU---Height of Transfer
G KUy anit)
H G yb dy K ya ya y y*
HOG NOG
气相总传质单元数,无因次
H L
K xa
xb xa
dx x*
x
H OL
La xa LS Xa
吸收剂用量改变对吸收过程的影响:
LS
LS GB
LS GB
min
最小液气比
LS GB
(1.2
~
2.0)
LS GB
min
Y
Yb
B
B B
Yb
YE
Gy
Lx
GBY
LSX
B B E
Gb yb
Lb xb
GBYb
LS Xb
逆流吸收塔的物料衡算
Ya A 0 Xa
Ya A
Xb*
0
Xa
XE Xb
yb
L G
xb
xa
ya
Gy
Lx
y
L G
x
xa
ya
GBY
LSX
Gb yb
Lb xb
Yb
LS GB
X b X a Ya
Y LS GB
X X a Ya
GBYb
LS Xb
逆流吸收塔的物料衡算
浙江大学化学工程研究所
第四节 吸收塔计算 二、吸收剂的用量与最小液气比
Ga ya GBYa
6/29
Xb Xa
Ya
气相的减少速率 液相的增加速率
Ga ya
La xa
GB Y Ya LS X X a
GBYa
LS Xa
Y LS
GB
X Xa
Ya-------操作线方程
Gy
Lx
Yb
B
GBY
LSX
直线,斜率为 LS (称为液气比),
Y
P
GB
Ya
A
并通过点 A(Xa,Ya),B(Xb,Yb) Gb yb
总是位于平衡线的上方;
GBYb
Lb xb LS Xb
O Xa
X
Xb
逆流吸收塔的物料衡算
逆流吸收塔操作线
浙江大学化学工程研究所
第四节 吸收塔计算
5/29
对于低浓气体(通常yb<10%),
G Ga Gb GB,L La Lb LS, Y y,X x,于是,
Ga ya GBYa
La xa LS Xa
(3)平衡线不为直线时
图解(或数值)积分法、近似梯级法
y 1 y-y*
NOG
yb dy ya y y*
yb
BE
A
y-y*
B
ya
A
O xa
xb x
O ya
图解法求 NOG
浙江大学化学工程研究所
yb y
第四节 吸收塔计算
22/29
四、吸收塔操作计算
设计型问题与操作型问题
设计型问题:
已知气相流量V、气相进塔组成yb、液相进 塔组成xa,回收率以及温度T和压力P,计 算液相流量L、填料层高度H和塔径D。
ya
xa
yx h
G-dG dh
G y+dy x+dx
A
H
底 dGy
顶 K ya y y*
底 dLx
顶 Kxa x* x
低浓气体吸收时
※ G、L为常数
Gb yb
xb
1 1m
K ya kya kxa
※ Ky、Kx可视为常数-------气相、液相总体积传质系数
※ a也可视为常数: a与填料形状、尺寸及填充状况有关
LS GB
Xb Xa
Ya
回收率为:
Yb Ya 1 Ya
Yb
Yb
Gb yb Ga ya GBYb GBYa
Gb yb
GBYb
Gb yb GBYb
Lb xb LS Xb
逆流吸收塔的物料衡算
浙江大学化学工程研究所
第四节 吸收塔计算
4/29
对塔上部任一段A组分质量衡算:
Yb
LS GB
y
Sya
y
* a
1
1
S
1
ln
1
Syb Sya
Sya Sya
ya*
y
* a
N OG
1 1 S
ln1
S
yb ya
ya* ya*
相关文档
最新文档