新初一数学下册第一单元测试题
初一数学一二单元测试题

初一数学一二单元测试题一、选择题1. 下列哪个小数是负数?A. 0.25B. -1.5C. 3.8D. 2.62. 如果a = -5,b = 3,c = 2,那么a + b - c的值是多少?A. -6B. -4C. 0D. 43. 在数轴上,数-2与2中间有多少个整数?A. 0B. 1C. 2D. 34. 已知奇数n与偶数m相加的结果是奇数,那么n乘以m的结果是奇数还是偶数?A. 奇数B. 偶数5. 一根绳子长7/8米,要截取其中的1/4,截取下来的绳子长度是多少米?A. 1/32B. 1/8C. 7/32D. 7/64二、填空题1. -12÷4=____2. |-8|+5=____3. 7/9 + 1/9 =____4. 化简:3/4 + 1 1/2 =____5. 化简:5/6 × 2/3 =____三、解答题1. 小明家庭一共用了75度电。
如果他们用了3天,每天用电相同,那么每天用了多少度电?答:75 ÷ 3 = 25度电2. 某汽车从A地到B地需要3小时,从B地到A地需要4小时。
求两地的距离,已知汽车的速度不变。
答:假设汽车的速度为x公里/小时,则从A到B的距离为3x公里,从B到A的距离为4x公里。
根据题意,3x = 4x,解得x = 0,因此无解。
3. 在一张长方形桌子的角上放了一个特殊的方块,角上的三个数相加等于30,而且相邻两个数的和等于15。
求长方形桌子的边长。
答:设长方形桌子的边长为x,对角上的三个数分别为a、b、c。
根据题意,a + b + c = 30,a + b = 15,b + c = 15。
将第二个式子代入第一个式子得:a + (a + 15) = 30,化简得2a = 15,解得a = 7.5。
将a的值代入第三个式子得:(7.5 + 15) + c = 30,化简得c = 7.5。
因此,长方形桌子的边长为15米。
4. 某商场举办五一特惠活动,原价为120元的商品打7折,原价为80元的商品打9折,原价为200元的商品打5折,小明购买了1件120元的商品、2件80元的商品和3件200元的商品,请计算他一共花了多少钱?答:打折后,120元的商品价格为120 × 0.7 = 84元,80元的商品价格为80 × 0.9 = 72元,200元的商品价格为200 × 0.5 = 100元。
初一数学第一单元测试题[1]
![初一数学第一单元测试题[1]](https://img.taocdn.com/s3/m/f728e64c814d2b160b4e767f5acfa1c7aa008245.png)
初一数学第一单元测试题(一)姓名:______________ 分数:__________一、填空题(每小题3分,共30分)1.数3,1/2,-0.6,41,127%,0.3,-10,11/7,负数有_________,分数有___________。
2.大于-6的负整数是_____________________。
3.有理数a,b在数轴上的位置如图所示,则比较-a 与-b的大小为____________。
4.若a+b=0,|a|=3,则|a-b|=___________.5.世界上最高峰是珠穆朗玛峰,它的海拔高度是8848.13m,陆地上最低处位于亚洲西部的死海,它的海拔高度是-392m,则两地海拔高度相差__________.6.若数轴上的点M和点N表示的两个数互为相反数,并且这两点间的距离为7.2,则这两个点表示的数分别为________________.7.若|a-1|与(b+2)(b+2)互为相反数,则(a+b)=__________.8.计算:-2 +(1-0.2×3/5)÷(-2)=_____________.9.1m长的铁丝,第一次截去一半,第二次截去剩下的一半,如此下去,第8次后剩下的铁丝长度为____________.10.近似数9.105×10 精确到___________位,有____________个有效数字。
二、选择题(每小题3分,共30分)11.下列说法中,不正确的是()A. 0既不是正数,也不是负数B.0不是自然数C.0的相反数是0D.0的绝对值是012.下列判断正确的是()A.有理数就是正数和负数 B.有理数结合中没有最小的数C. 任何两个有理数,一定可以进行加减乘除运算D.在|-2|,-|+5|,- (-3),|-4|,-|0|,-(-2) 中负数共有3个13.如果两个有理数的和为负数,那么这两个数()A.同为负数B.同为正数C.一个正数一个负数D.不能确定14.下列等式中正确的是()A. 2 =2×3B.2 =3C.-2 =(-2)D.(-2) =-(2)15.下列各式中不正确的是()A.|-4|=4B.|-3|=-(-3)C.|-7|>|-3|D.|-5|<016.在有理数-(-1/4),-1,0,-4 ,(-3) ,-(-3/2) ,-|2 -8|中,负数的个数是()个。
最新华东师大版七年级数学下册单元测试题及答案

最新华东师大版七年级数学下册单元测试题及答案1.下列四组等式变形中,正确的是()。
A。
由=2,得x=2B。
由5x=7,得x=7/5C。
由5x+7=0,得5x=-7D。
由2x-3=0,得2x=32.下列各题的“移项”正确的是()。
A。
由2x=3y-1得-1=3y-2xB。
由6x+4=3-x得6x+x=3-4C。
由8-x+4x=7得-x=7-4xD。
由x+9=3x-7得2x=163.在下列方程中,解是2的方程是()。
A。
3x=x+3B。
-x+3=0C。
2x=6D。
5x-2=84.汽车队运送一批货物,若每辆车装4吨,还剩下8吨未装;若每辆车装4.5吨,恰好装完,求这个车队有多少辆车?设这个车队有x辆车,可列方程为()。
A。
4x-8=4.5xB。
4x+8=4.5xC。
4(x-8)=4.5xD。
4(x+8)=4.5x5.已知关于x的方程2x-3m-12=0的解是x=3,则m的值为()。
A。
-2B。
2C。
-6D。
66.若方程4x-1=3x+1和2m+x=1的解相同,则m的值为()。
A。
-3B。
1C。
0D。
27.XXX存入银行2500元,定期一年到期后扣除20%的利息税后得到本息和为2650元,若这种储蓄的年利率为x,那么可得方程()。
A。
2500(1+x)-2500(1+x)×0.2=2650B。
2500(1+x/100)-2500(1+x/100)×0.2=2650C。
2500(1+0.8x)-2500=2650D。
2500(1+0.2x)-2500=26508.如图是某月的月历表,从表的竖列任取三个数相加,不可能得到的是()。
A。
33B。
42C。
55D。
549.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还少3个,如果每人2个又多2个,请问共有多少个小朋友?()。
A。
4个B。
5个C。
10个D。
12个10.XXX在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是(- =1+x),这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
湘教版 七年级数学(下册) 第1章二元一次方程组 测试题及答案(2019年春)

第1章《二元一次方程组》单元测试卷一、填空题(每题2分,共20分)1.(2分)(2010春•安阳县校级期末)把方程2x﹣y﹣5=0化成含y的代数式表示x的形式:x=.2.(2分)(2014春•高安市期末)在方程3x﹣ay=8中,如果是它的一个解,那么a的值为.3.(2分)已知二元一次方程2x﹣y=1,若x=2,则y=3,若y=0,则x=.4.(2分)(2015春•武安市校级月考)方程x+y=2的正整数解是.5.(2分)(2012春•雁江区期中)某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了14枚,80分的邮票买了6枚.6.(2分)若m的2倍与n的倍的和等于6,列为方程是2m+n=6.7.(2分)如果方程组的解是,则a=3,b=1.8.(2分)(2012春•如皋市校级期中)已知:a+b=10,a﹣b=20,则a﹣b2的值是﹣10.9.(2分)若x2a+by3与x6ya﹣b是同类项,则a+b=3.10.(2分)(2012春•鄂州月考)甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟x米,每分钟y米,则可列方程组.二、选择题:(每题3分,共18分)11.(3分)(2011春•海安县校级期末)下列各方程组中,属于二元一次方程组的是()A.B.C.D.12.(3分)(2009春•平谷区校级期末)方程组的解是()A .B .C .D .13.(3分)(2013春•冠县校级期末)已知的解是,则( )A .B .C .D .14.(3分)(2013春•邹平县期末)用加减消元法解方程组,下列变形正确的是( )A .B .C .D .15.(3分)既是方程2x﹣y=3,又是3x+4y﹣10=0的解是()A.B.C.D.16.(3分)(2011春•上饶县校级期末)初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A.14 B.13 C.12 D.15三、解方程组(每题6分,共24分)17.(24分)(1)用代入法解(2)用代入法解(3)加减法解.(4)用加减法解:.21.(6分)(2010秋•长春校级期中)二元一次方程组解的和为非正数,求m的取值范围.四、用方程组解应用题(每题10分,共30分)22.(10分)有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?23.(10分)有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?24.(12分)(2014秋•长汀县期末)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?第1章《二元一次方程组》单元测试卷一、填空题(每题2分,共20分)1.(2分)(2010春•安阳县校级期末)把方程2x﹣y﹣5=0化成含y的代数式表示x的形式:x=.考点:解二元一次方程.专题:计算题.分析:本题是将二元一次方程变形,用一个未知数表示另一个未知数.先移项,再系数化为1即可.解答:解:用含y的代数式表示x:移项得2x=5+y,系数化为1得x=.点评:解题时可以参照一元一次方程的解法,利用等式的性质解题,可以把一个未知数当做已知数来处理.2.(2分)(2014春•高安市期末)在方程3x﹣ay=8中,如果是它的一个解,那么a的值为1.考点:二元一次方程的解.专题:方程思想.分析:知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a的一元一次方程,从而可以求出a的值.解答:解:把代入方程3x﹣ay=8,得9﹣a=8,解得a=1.点评:解题关键是把方程的解代入原方程,使原方程转化为以系数a为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.3.(2分)已知二元一次方程2x﹣y=1,若x=2,则y=3,若y=0,则x=.考点:解二元一次方程.专题:方程思想.分析:利用解的定义,把x=2代入方程可得y=3;把y=0代入方程可得x=.解答:解:把x=2代入方程得2×1﹣y=1,解得y=3;把y=0代入方程得2x=1,解得x=.点评:解题关键是把方程的解代入原方程,使原方程转化为一元一次方程.4.(2分)(2015春•武安市校级月考)方程x+y=2的正整数解是.考点:解二元一次方程.分析:由题意求方程的解且要使x,y都是正整数,将方程移项将x和y互相表示出来,在由题意要求x>0,y>0根据以上两个条件可夹出合适的x值从而代入方程得到相应的y 值.解答:解:由已知方程x+y=2,移项得y=2﹣x∵x,y都是正整数,∴y=2﹣x>0,求得x≤1又∵x>0,根据以上两个条件可知,合适的x值只能是x=1,相应的y值为y=1.∴方程x+y=2的正整数解是:.点评:本题是求不定方程的整数解,先将方程做适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有整数值,再求出另一个未知数的值.5.(2分)(2012春•雁江区期中)某人买了60分的邮票和80分的邮票共20张,用去了13元2角,则60分的邮票买了14枚,80分的邮票买了6枚.考点:二元一次方程组的应用.分析:本题中含有两个定量:邮票总张数,钱的总数.根据这两个定量可找到两个等量关系:60分邮票的张数+80分邮票的张数=20,0.6×60分邮票的张数+0.8×80分邮票的张数=13.2.解答:解:设买了60分的邮票x张,80分的邮票y枚.则,解得.故填14;6.点评:用二元一次方程组解决问题的关键是找到2个合适的等量关系.在本题中需找到两个定量:邮票总张数,钱的总数.在做题过程中还要注意钱的单位要统一.6.(2分)若m的2倍与n的倍的和等于6,列为方程是2m+n=6.考点:由实际问题抽象出二元一次方程.分析:根据m的2倍与n的倍的和等于6,可列出方程.解答:解:根据题意得:2m+n=6.故答案为:2m+n=6.点评:本题考查由实际问题抽象出二元一次方程,关键是求和,根据此可列方程.7.(2分)如果方程组的解是,则a=3,b=1.考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组即可求出a与b的值.解答:解:将x=1,y=﹣1代入方程组得:,解得:a=3,b=1.故答案为:3;1.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组两方程成立的未知数的值.8.(2分)(2012春•如皋市校级期中)已知:a+b=10,a﹣b=20,则a﹣b2的值是﹣10.考点:解二元一次方程组;代数式求值.专题:计算题.分析:首先由已知解由a+b=10,a﹣b=20组成的关于a、b的二元一次方程组,再将所求得的a、b的值代入要求的代数式求解.解答:解:由已知得:,解得:,再代入得:a﹣b2=15﹣(﹣5)2=﹣10.故答案为:﹣10.点评:此题考查的知识点是解二元一次方程组,关键是正确解二元一次方程组.9.(2分)若x2a+by3与x6ya﹣b是同类项,则a+b=3.考点:解二元一次方程组;同类项.分析:先根据同类项的定义得出关于a、b的方程组,求出a、b的值即可.解答:解:∵x2a+by3与x6ya﹣b是同类项,∴,①+②得,3a=9,解得a=3;把a=3代入②得,3﹣b=3,解得b=0,∴a+b=3+=3.故答案为:3.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法与代入消元法是解答此题的关键.10.(2分)(2012春•鄂州月考)甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,设甲、乙的速度分别为每分钟x米,每分钟y米,则可列方程组.考点:由实际问题抽象出二元一次方程组.分析:设甲、乙的速度分别为每分钟x米,每分钟y米,根据甲、乙两人在200米的环形跑道上练习径走,当他们从某处同时出发背向行走时,每30秒相遇一次;同向行走时,每隔4分钟相遇一次,可列出方程组.解答:解:设甲、乙的速度分别为每分钟x米,每分钟y米,则.故答案为:.点评:本题是个行程问题,一次相遇,一次追及,根据路程可列方程组求解.二、选择题:(每题3分,共18分)11.(3分)(2011春•海安县校级期末)下列各方程组中,属于二元一次方程组的是()A.B.C.D.考点:二元一次方程组的定义.分析:二元一次方程组的定义的三要点:(1)只有两个未知数;(2)未知数的项最高次数都应是一次;(3)都是整式方程.据此可来逐项分析解题.解答:解:A、此方程组里含有xy,是二次,不符合二元一次方程组的定义,故A选项不符合题意;B、此方程组里含有x,y,z是三元,不符合二元一次方程组的定义,故B选项不符合题意;C、此方程组符合二元一次方程组的定义,故C选项符合题意;D、此方程组里有分式方程,不符合二元一次方程组的定义,故D选项不符合题意.故选:C.点评:本题考查二元一次方程组的定义.解题过程中关键是要注意其三要点:1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程.12.(3分)(2009春•平谷区校级期末)方程组的解是()A.B.C. D.考点:二元一次方程组的解.分析:把四个选项分别代入原方程组,能是方程组中两个方程都成立的未知数的值,即是方程组的解.解答:解:A、方程组的解指两个未知数的值,所以A不是方程组的解;B、把代入x﹣y=1得,0≠1,所以B不是方程组的解;C、把代入x﹣y=1得,﹣1≠1,所以C不是方程组的解;D、把代入原方程组,同时满足两个方程,是原方程组的解.故选D.点评:所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值.13.(3分)(2013春•冠县校级期末)已知的解是,则()A.B.C.D.考点:二元一次方程组的解.分析:先把x、y的值代入原方程组,得到关于a、b的方程组,再根据解二元一次方程组的方法,求出a、b的值即可.解答:解:把代入方程组,得,(1)×3﹣(2)×4,得9b﹣16b=7,解,得b=﹣1.把b=﹣1代入(1),得4a﹣3=5,解得a=2.则原方程组的解是.故选B.点评:此题比较简单,考查的是解二元一次方程组的代入消元法和加减消元法.14.(3分)(2013春•邹平县期末)用加减消元法解方程组,下列变形正确的是()A. B.C. D.考点:解二元一次方程组.分析:运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y的系数变成互为相反数.解答:解:①×2得,4x+6y=6③,②×3得,9x﹣6y=33④,组成方程组得:.故选C.点评:二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.15.(3分)既是方程2x﹣y=3,又是3x+4y﹣10=0的解是()A.B.C.D.考点:二元一次方程的解.分析:根据题意即可得到方程组:,解方程组即可求解.解答:解:根据题意得:,①×4+②得:x=2,把x=2代入①得:y=1.则方程组的解是:.故选A.点评:本题主要考查了一元一次方程组的解法,正确根据方程组的解的定义,转化为解方程组的问题是解题关键.16.(3分)(2011春•上饶县校级期末)初一年级学生在会议室开会,每排座位坐12人,则有11人无处坐;每排座位坐14人,则余1人独坐一排.这间会议室共有座位多少排()A.14 B.13 C.12 D.15考点:二元一次方程组的应用.分析:用二元一次方程组解决问题的关键是找到2个合适的等量关系,本题有两个定量:座位排数和学生人数.分析后可得出两个等量关系:12×排数+11=学生人数;14×(排数﹣1)+1=学生人数.解答:解:设这间会议室共有座位x排,有学生y人,则,解得.故选C.点评:解题关键是弄清题意,合适的等量关系,列出方程组.本题需注意:每排座位坐14人,则余1人独坐一排的含义是有(x﹣1)排坐了14人,那么学生数为14(x﹣1)+1.三、解方程组(每题6分,共24分)17.(24分)(1)用代入法解(2)用代入法解(3)加减法解.(4)用加减法解:.考点:解二元一次方程组.专题:计算题.分析:(1)由第二个方程得到y=2x﹣2,然后代入第一个方程求出x的值,再求出y的值即可;(2)由第一个方程得到x=2y,然后代入第二个方程求出y的值,再求出x的值即可;(3)相加求出x的值,相减求出y的值即可得解;(4)先把方程组整理成一般形式,然后再利用加减消元法求解即可.解答:解:(1),由②得,y=2x﹣2③,③代入①得,4x﹣3(2x﹣2)=5,解得x=,把x=代入③得,y=2×﹣2=﹣1,所以,方程组的解是;(2),由①得,x=2y③,③代入②得,2y+5y=,解得y=,把y=代入③得,x=,所以,方程组的解是;(3),①+②得,4x=12,解得x=3,①﹣②得,4y=4,解得y=1,所以,方程组的解是;(4)方程组可化为,②﹣①得,y=19,解得y=6,把y=6代入②得,x+×6=0,解得x=﹣7,所以,方程组的解是.点评:本题考查了解二元一次方程组,注意要按照题目要求的消元方法求解.21.(6分)(2010秋•长春校级期中)二元一次方程组解的和为非正数,求m的取值范围.考点:解二元一次方程组;解一元一次不等式.专题:计算题.分析:先把m当做已知,解关于x、y的二元一次方程组,求出x、y的值,再根据x+y为非正数得到关于x的一元一次方程,求出m的取值范围即可.解答:解:,②×2+①得,7x=5m+1,x=,代入②得,y=∵x+y为非正数,∴x+y=+≤0,解得m≤﹣10.故m的取值范围:m≤﹣10.点评:本题考查的是解二元一次方程及解一元一次不等式组,解答此题的关键是把m当作已知表示出x、y的值,再根据已知条件得到关于m的一元一次不等式,解此不等式即可求出m的取值范围.四、用方程组解应用题(每题10分,共30分)22.(10分)有一只驳船,载重量是800吨,容积是795立方米,现在装运生铁和棉花两种物资,生铁每吨的体积为0.3立方米,棉花每吨的体积为4立方米,生铁和棉花各装多少吨,才能充分利用船的载重量和容积?考点:二元一次方程组的应用;一元一次方程的应用专题:应用题.分析:设生铁运x吨,则棉花运(800﹣x)吨,利用容积是795m3,得出等式求出即可.解答:解:设生铁运x吨,则棉花运(800﹣x)吨,由题意得出:0.3x+4(800﹣x)=795,解得:x=650,800﹣650=150(吨),答:生铁运650吨,棉花运150吨.点评:此题主要考查了一元一次方程的应用,根据两者的体积与重量之间的关系得出等式是解题关键.23.(10分)有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?考点:二元一次方程组的应用.专题:应用题.分析:设甲债券x元,乙债券y元,则根据“共有400元债券”及“一年后获利45元”可分别列出方程,联立求解可得出答案.解答:解:设甲债券x元,乙债券y元,由题意得:,解得:,即甲债券150元,乙债券250元.答:甲债券150元,乙债券250元.点评:本题考查了二元一次方程组的应用,解答此类题目,一定要仔细审题,设出未知数,得出等量关系,然后联立方程求解.24.(12分)(2014秋•长汀县期末)(应用题)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?考点:二元一次方程组的应用.专题:优选方案问题.分析:(1)因为要购进两种不同型号电视机,可供选择的有3种,那么将有三种情况:甲乙组合,甲丙组合,乙丙组合.等量关系为:台数相加=50,钱数相加=90000;(2)算出各方案的利润加以比较.解答:解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多.点评:本题主要考查学生的分类讨论思想和对于实际问题中方程组解的取舍情况.弄清题意,合适的等量关系,列出方程组仍是解决问题的关键.本题还需注意可供选择的将有三种情况:甲乙组合,甲丙组合,乙丙组合.。
初一数学下册第一章单元测试题答卷及参考答案

七年级下册第一章复习题一、 选择题1.下面说法中,正确的是() (A )x 的系数为0(B )x 的次数为0(C )3x 的系数为1(D )3x 的次数为1 2.下列合并同类项正确的个数是()①224a a a +=;②22321xy xy -=;③123+=;④33ab ab ab -=;⑤2312424m m -=. (A )①③(B )②③(C )③(D )③④3.下列计算正确的是()(A )xy y x 32=+(B )3422=-y y (C )55=-k k (D )-a 2-4a 2=-5a 2 4.在下列多项式乘法中,不能用平方差公式计算的是().(A )()()m n m n +-+(B )()()m n m n -+(C )()()m n m n ---(D )()()m n m n --+5.计算21()2a b -的结果是(). (A )22124a ab b -+(B )2214a ab b -+ (C )2212a ab b -+(D )2214a b - 6.如图,有长方形面积的四种表示法:①))((b a n m ++②)()(b a n b a m +++③)()(n m b n m a +++④nb na mb ma +++其中()(A )只有①正确(B )只有④正确(C )有①④正确(D )四个都正确7.计算32010·(31)2008的结果是() (A )2(B )31(C )9(D )918.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:)53()32(2222b ab a b ab a ++---+=25a 26b -,空格的地方被墨水弄脏了,请问空格中的一项是()(A )+2ab (B )+3ab (C )+4ab (D )-ab9.如下图,用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案,那么,第n 个图案中有白色纸片()张。
初一数学下册单元测试题

初一数学下册单元测试题一.选择题(共30小题)1.根据语句“直线l1与直线l2相交,点M在直线l1上,直线l2不经过点M.”画出的图形是()A.B.C.D.2.在墙上要钉牢一根木条,至少要钉两颗钉子.能解释这一实际应用的数学知识是()A.两点之间线段最短B.两点确定一条直线C.直线比线段长D.两条直线相交,只有一个交点3.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n(n≥2,且n是整数)条直线相交最多能有()A.(2n﹣3)个交点B.(3n﹣6)个交点C.(4n﹣10)个交点D.n(n﹣1)个交点4.如图所示,直线AB与CD相交于点O,则下列说法正确的是()A.∠1和∠3互为余角B.∠2和∠3是对顶角C.∠1+∠2=90°D.∠1+∠3=180°5.如图,已知直线AB与CD相交于点O,OC平分∠AOE,∠AOD=140°.则∠BOE的度数为()A.120°B.110°C.100°D.80°6.如图,直线a、b被直线c所截,下列说法不正确的是()A.∠1与∠5是同位角B.∠3与∠6是同旁内角C.∠2与∠4是对顶角D.∠5与∠2是内错角7.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.8.如图,已知直线AB与CD相交于点O,OE平分∠AOD,∠EOF=90°.对于下列结论:①∠BOC=2∠AOE;②OF平分∠BOD;③∠AOE是∠BOF的余角;④∠AOE是∠COE的补角.其中正确结论的个数是()A.1B.2C.3D.49.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=78°,则∠BOM=()A.39°B.102°C.141°D.143°10.如图,直线AB与CD相交于点O,OE平分∠AOC,且∠BOE=140°,则∠BOC为()A.140°B.100°C.80°D.40°11.如图,在灯塔O处观测到轮船A位于北偏西66°的方向,轮船B在OA的反向延长线的方向上,同时轮船C在东南方向,则∠BOC的大小为()A.45°B.31°C.24°D.21°12.如图,∠1=20°,则∠2的度数是()A.40°B.60°C.70°D.80°13.如图,AB⊥CD于点O,OE平分∠AOC,若∠BOF=18°,则∠EOF的度数为()A.116°B.117°C.118°D.127°14.如图,直线AB,CD相交于点O,EO⊥AB于点O,若∠2=40°,则∠1﹣∠3的度数为()A.30°B.25°C.20°D.10°15.如图,OA⊥OB,且∠BOC=25°,则∠AOC的度数是()A.45°B.55°C.65°D.75°16.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥OE,且∠AOC:∠COF=2:3,则∠DOF的度数为()A.105°B.112.5°C.120°D.135°17.如图,直线AB、CD相交于点E,EF⊥AB于E,若∠CEF=56°,则∠BED的度数为()A.24°B.26°C.34°D.44°18.如图,AC⊥BC,直线EF经过点C,若∠1=34°,则∠2的大小为()A.56°B.66°C.54°D.46°19.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.垂线段最短B.线段有两个端点C.两点之间线段最短D.两点确定一条直线20.把弯曲的公路改直,就能够缩短路程,这样设计的依据是()A.两点确定一条直线B.两点之间线段最短C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.连结直线外一点与直线上各点的所有连线中,垂线段最短21.如图,河道l的同侧有M、N两地,现要铺设一条引水管道,从P地把河水引向M、N 两地.下列四种方案中,最节省材料的是()A.B.C.D.22.如图,某同学在体育课上跳远后留下的脚印,在图中画出了他的跳远距离,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.垂线段最短C.两点确定一条直线D.经过一点有且只有一条直线与已知直线垂直23.如图,点A,B,C在直线m上,点P在直线m外,PB⊥m,能表示点P到直线m的距离的是()的长度.A.线段P A B.线段PB C.线段PC D.线段AC24.如图,∠ACB=90°,CD⊥AB,垂足为点D,则点C到直线AB的距离是()A.线段AC的长度B.线段CB的长度C.线段CD的长度D.线段AD的长度25.如图,∠ACB=90°,CD⊥AB,垂足为D,则点B到直线CD的距离是指()A.线段BC的长度B.线段CD的长度C.线段BE的长度D.线段BD的长度26.如图,表示点A到BC距离的是()A.AD的长度B.AE的长度C.BE的长度D.CE的长度27.如图,AC⊥BC,CD⊥AB,垂足分别为C、D,线段CD的长度是()A.点A到BC的距离B.点B到AC的距离C.点C到AB的距离D.点D到AC的距离28.如图,点P是直线m外一点,A、B、C三点在直线m上,PB⊥AC于点B,那么点P 到直线m的距离是线段()的长度.A.P A B.PB C.PC D.AB29.如图,点P在直线l外,点A、B在直线l上,若P A=4,PB=7,则点P到直线l的距离可能是()A.3B.4C.5D.730.如图,点C到直线AB的距离是()A.线段CA的长度B.线段CB的长度C.线段AD的长度D.线段CD的长度二.填空题(共10小题)31.平面上三条直线两两相交,最多有个交点.32.如图,平面内两条直线相交有一个交点,三条直线相交最多有三个交点,四条直线相交最多有六个交点,那么,平面内有10条直线相交最多有个交点.33.在同一平面内的三条直线,它们的交点个数是.34.如图,在四边形ABCD中,∠C与∠D互补,∠A比∠B大60°,则∠B=.35.从六边形的一个顶点出发,可以引条对角线.36.四边形的外角度数之比为1:2:3:4,则它最大的内角度数为.37.如图所示,O为直线BC上一点,∠AOC=30°,则∠1=.38.如图,O是直线AB上一点,∠COD是直角,OE平分∠BOC,∠AOC=40°,则∠DOE的度数为.39.如图,直线CD经过点O,若OC平分∠AOB,则∠AOD=∠BOD,依据是.40.如图,将三个边长相同的正方形的一个顶点重合放置,已知∠1=34°,∠2=32°,则∠3=°.三.解答题(共10小题)41.如图,∠EAD=130°,∠B=50°,试说明EF∥BC.42.如图,已知∠1=∠2,试说明a∥b的理由.43.已知:如图,CB平分∠ACD,交AE于点B,且AB=AC.求证:AE∥CD.44.如图,填推理过程的理由:已知:∠1+∠2=180°,求证:a∥b证明:∵∠1=∠3 ()∠1+∠2=180°()∴∠3+∠2=180°()∴a∥b().45.将下列证明过程补充完整:已知:如图,点E在AB上,且CE平分∠ACD,∠1=∠2.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠2=∠().∵∠1=∠2(已知),∴∠1=∠().∴AB∥CD().46.补全下面的证明过程,并在括号内填上适当的理由.如图,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证:AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD(已知),又∠COA=∠BOD(),∴∠C=().∴AC∥BD().47.按要求补全证明条件如图,∠1=70°,∠2=70°.直线AB与CD平行吗?为什么?解:理由如下:∵∠2与∠3是对顶角,∴∠2=∠3().∵∠2=70°(已知),∴∠3=70°(等量代换).又∠1=70°(已知),∴∠1=∠3(等量代换).∴∥().48.已知:∠A=∠C=120°,∠AEF=∠CEF=60°,求证:AB∥CD.49.如图,已知CD⊥AD于点D,DA⊥AB于点A,∠1=∠2,试说明DF∥AE.解:因为CD⊥AD(已知),所以∠CDA=90°().同理∠DAB=90°.所以∠CDA=∠DAB=90°().即∠1+∠3=∠2+∠4=90°.因为∠1=∠2(已知),所以∠3=∠4().所以DF∥AE().50.填写下列空格:已知:如图,CE平分∠ACD,∠AEC=∠ACE.求证:AB∥CD.证明:∵CE平分∠ACD(已知),∴∠=∠().∵∠AEC=∠ACE(已知),∴∠AEC=∠().∴AB∥CD().。
[初一数学第一单元试卷]初一数学第一单元
![[初一数学第一单元试卷]初一数学第一单元](https://img.taocdn.com/s3/m/d90dfc140a4e767f5acfa1c7aa00b52acfc79c12.png)
[初一数学第一单元试卷]初一数学第一单元初一数学第一单元篇(1):初一数学单元测试题及答案一、选择题(30分)1. 0是()A.正有理数 B.负有理数C.整数 D.负整数2. 中国的第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于()A.计数B.测量 C.标号或排序 D.以上都不是3. 下列说法不正确的是( )A.0既不是正数,也不是负数B.0的绝对值是0C.一个有理数不是整数就是分数D.1是绝对值最小的数4. 在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有( )个A.2 B.3 C.4 D.5 5. 一个数的相反数是3,那么这个数是()A.3 B.-3 C.D.6. 下列式子正确的是()A.2>0>-4>-1 B.-4>-1>2>0 C.-4<-1<0<2 D.0-1<-4 7. 一个数的相反数是最大的负整数,则这个数是()A.1 B.±1 C.0 D.-1 8. 把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或-19. 大于-2.2的最小整数是()A.-2 B.-3 C.-1 D.0 10. 学校、家、书店依次座落在一条东西走向的大街上,学校距离家的西边20米,书店在家东边100米,张明同学从家里出发,先向东走了50米,接着又向西走了70米,此时张明的位置在 ( )A. 在家B. 在学校C. 在书店D. 不在上述地方二、填空题(本题共计30分)11.若上升15米记作+15米,则-8米表示。
12.举出一个既是负数又是整数的数。
13.计算: __________。
14.计算5.24÷6.55,结果用分数表示是______;用小数表示是________。
15.绝对值大于1而不大于3的整数是。
16.最小的正整数是_____;最大的负整数是_____。
17.比较下面两个数的大小(用“<”,“>”,“= ”)(1) 1 -2; (2) -0.3;18.如果点A表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是。
数学初一单元测试题及答案

数学初一单元测试题及答案一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -3B. 2.5C. 0D. 52. 绝对值最小的数是:A. |-5|B. |0|C. |3|D. |-2|3. 若a < 0,b > 0,且|a| > |b|,则a + b的值:A. 正数B. 负数C. 0D. 不确定4. 以下哪个表达式的结果为正数?A. -(-3)B. -2 * 3C. 3 - 5D. -1 - 25. 已知x + y = 10,x - y = 2,求2x的值:A. 12B. 8D. 10二、填空题(每题2分,共20分)6. 若一个数的相反数是-8,则这个数是________。
7. 一个数的绝对值是其本身,这个数是________或________。
8. 若a + b = 5,a - b = 3,则2a的值是________。
9. 一个数的平方根是2,这个数是________。
10. 若3x + 5 = 14,解得x的值是________。
三、计算题(每题5分,共30分)11. 计算 |-8| + |-3| - 2。
12. 计算 (-2) × (-3) + 4。
13. 解方程 2x - 3 = 7。
14. 解方程组:\[\begin{cases}x + y = 6 \\2x - y = 4\end{cases}\]四、解答题(每题10分,共30分)15. 某班有男生30人,女生20人,求全班的人数。
16. 某商店销售一种商品,进价为每件40元,标价为每件60元,如果打8折销售,商店的利润是多少?17. 某工厂生产一批零件,原计划每天生产100个,实际每天生产了120个,原计划生产10天,实际生产了8天,求实际比计划多生产了多少个零件。
1. D2. B3. B4. A5. A6. 87. 正数,08. 69. 410. 311. 912. 1013. x = 514. x = 4, y = 215. 全班人数为50人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册第一单元测试题
姓名得分
一、填空题
1.两条直线相交,有_____对对顶角,三条直线两两相交,有_____对对顶角.
2.如图1,直线AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,则∠AOC的度数是_____.
3.已知∠AOB=40°,OC平分∠AOB,则∠AOC的补角等于_____.
4.如图2,若l1∥l2,∠1=45°,则∠2=_____.
图1 图2 图3
5.如图3,已知直线a∥b,c∥d,∠1=115°,则∠2=_____,∠3=_____.
6.一个角的余角比这个角的补角小_____.
7.如图4,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=_____.
图4 图5
8.如图5,∠1=82°,∠2=98°,∠3=80°,则∠4的度数为_____.
9.如图6,AD∥BC,AC与BD相交于O,则图中相等的角有_____对.
图6 图7 图8
10.如图7,已知AB∥CD,∠1=100°,∠2=120°,则∠α=_____.
11.如图8,DAE是一条直线,DE∥BC,则∠BAC=_____.
12.如图9,AB∥CD,AD∥BC,则图中与∠A相等的角有_____个.
图9 图10 图11
13.如图10,标有角号的7个角中共有_____对内错角,_____对同位角,_____对同旁内角. 14.如图11,(1)∵∠A=_____(已知),
∴AC∥ED( )
(2)∵∠2=_____(已知),
∴AC∥ED( )
(3)∵∠A+_____=180°(已知),
∴AB∥FD( )
(4)∵AB∥_____(已知),
∴∠2+∠AED=180°( )
(5)∵AC∥_____(已知),
∴∠C=∠1( )
二、选择题
15.下列语句错误的是( )
A.锐角的补角一定是钝角
B.一个锐角和一个钝角一定互补
C.互补的两角不能都是钝角
D.互余且相等的两角都是45°
16.下列命题正确的是( )
A.内错角相等
B.相等的角是对顶角
C.三条直线相交,必产生同位角、内错角、同旁内角
D.同位角相等,两直线平行
17.两平行直线被第三条直线所截,同位角的平分线( )
A.互相重合
B.互相平行
C.互相垂直
D.相交
18.如图12,已知∠1=∠B ,∠2=∠C ,则下列结论不成立的是( )
A.AD ∥BC
B.∠B =∠C
C.∠2+∠B =180°
D.AB ∥CD
19.如图13,直线AB 、CD 相交于点O ,EF ⊥AB 于O ,且∠COE =50°,则∠BOD 等于( )
A.40°
B.45°
C.55°
D.65°
20.如图14,若AB ∥CD ,则∠A 、∠E 、∠D 之间的关系是( )
图12 图13 图14
A.∠A +∠E +∠D =180°
B.∠A -∠E +∠D =180°
C.∠A +∠E -∠D =180°
D.∠A +∠E +∠D =270°
三、解答题
21.如图15,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.
图15
22.如图16,已知AB ∥CD ,∠B =65°,CM 平分∠BCE ,∠MCN =90°,求∠DCN 的度数.
图16
23.如图17,∠1=
2
1
∠2,∠1+∠2=162°,求∠3与∠4的度数. 图17
24.如图18,CD ∥AB ,∠DCB =70°,∠CBF =20°,∠EFB =130°,问直线EF 与AB 有怎样的位置关系,为什么?
图18
25.如图19,AB ∥CD ,HP 平分∠DHF ,若∠AGH =80°,求∠DHP 的度数.
图19
26.根据下列证明过程填空:
如图20,BD ⊥AC ,EF ⊥AC ,D 、F 分别为垂足,且∠1=∠4,求证:∠ADG =∠C
图20 图21 图22
证明:∵BD ⊥AC ,EF ⊥AC ( )
∴∠2=∠3=90°
∴BD ∥EF ( )
∴∠4=_____( )
∵∠1=∠4( )
∴∠1=_____( )
∴DG ∥BC ( )
∴∠ADG =∠C ( )
27.阅读下面的证明过程,指出其错误.
如图21,已知△ABC , 求证:∠A +∠B +∠C =180°
证明:过A 作DE ∥BC ,且使∠1=∠C
∵DE ∥BC (画图)
∴∠2=∠B (两直线平行,内错角相等)
∵∠1=∠C(画图)
∴∠B+∠C+∠3=∠2+∠1+∠3=180°
即∠BAC+∠B+∠C=180°
28.已知:如图22,CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°,
求证:DA⊥AB.。