统计方法 SPSS实例: 四格表卡方检验
实训4教学演示:卡方检验的SPSS软件实现方法

【实训提示】
1. 若是连续性变量可先转换为分类变量,再进行分析。 2. 选择统计量要看卡方检验表及其下方a这行的信息:当n
>40,且所有T≥5时,选皮尔逊卡方检验;当n>40,且 任意1≤T<5时,选择连续性校正卡方检验;当n≤40或任 意T<1时,选Fisher精确检验法。
实训4 卡方检验的SPSS软件实现方法
【实训步骤示范】 操作过程现场示范
【实训结果示例】
现场讲解
示例一:四格表卡方检验
图1 个案处理摘要
示例一:四格表卡方检验
图2-1 交叉表
图2-2 交叉表(含行、列占比)
示例一:四格表卡方检验
图3 卡方检验结果
【X3脑卒中变量结果解释】
检验结果显示:(样本量n>40,但最小理论 频数T=1.56<5。因此,选连续性校正卡方检验,) χ²=2.569,P=0.109>0.05,差异无统计学意义,按 照α=0.05的水准,不拒绝H0。尚不能认为糖尿病患 病率在脑卒中患者中存在差异。
实训4
χ²检验的SPSS软件 实现方法
【教学目标】
通过实训项目的操作,详细讲解χ²检验在医 学研究中的应用,做到理论指导与实践操 作相结合,从而避免统计学理论与实际运 算脱节的困扰。
【实践教学具体实施过程】
1. 教师对理论知识进行梳理、讲授并演示操 作过程。
2. 学生实训:学生根据实训要求基于SPSS软 件进行实训操作——对不同分组设计的资 料进行χ²检验。
实训项目:单因素χ²检验
【实训目的】
运用SPSS“分析”菜单中“描述统计”选 项,进行单因素χ²检验,检验两个或多个 样本率及构成比之间的差别有无统计学意 义,并能正确解释SPSS输出的结果。
SPSS进行卡方检验具体操作(三)

论频数的吻合程度。
若检验假设H0:π1=π2成立,实际频数A 与理论 频数T 相差不应该很大,即统计量卡方值不应该很大。
如果 2值很大,当前检验统计量 2 >χ2α,ν,即出现小
概率事件(P<α),于是拒绝H0。反之,则不拒绝H0
一、四格表卡方检验
表1 两种疗法的心血管病病死率的比较
20.0%
5.9%
O 295
388.8 27.3%
194 186.1 37.5%
444 358.2 44.6%
933 933.0 36.0%
Total 1080
1080.0 100.0%
517 517.0 100.0%
995 995.0 100.0% 2592 2592.0 100.0%
Chi-Squar e Tests
3、行x列 2
AnalyzeDescriptive Statistics -Crosstabs
结果解读
AREA * BLOOD Crosstabulation
A REA Total
亚洲 欧洲 北美 洲
C o un t Expected Count % within AREA C o un t Expected Count % within AREA C o un t Expected Count % within AREA C o un t Expected Count % within AREA
上机实现
实验1 两种药物治疗白色葡萄球菌败血症疗效的试 验结果见表10-2,问两种药物的疗效有无差别?
(数据 :例10-2.sav)
表1 两种药物治疗白色葡萄球菌败血症结果
Q:如何在SPSS中实现四格表的卡方检验

Q:如何在SPSS中实现四格表的卡方检验?A:在多数统计软件中,四格表(和行*列表)的数据格式均为行变量、列变量和频数变量。
如下面这个四格表的数据及相应格式如下:分析时首先选择菜单Data->Weight Cases,将频数变量选入Frequency格中,按OK确认。
此时系统就会以频数表的形式来读取所输入的数据,既记录数应为34+12+23+26=95例,而不是4例。
然后选择菜单Analyze->Descriptive Statistics->Cross Tables,将行、列变量分别选入相应的Row、Column格中,再按下方的Statistics钮,选中左上角的Chi-square复选框,按Continue钮,最后按OK即可。
Spss电脑实验-第三节(1) 您要打印的文件是:Spss电脑实验-第三节(1) 打印本文Spss电脑实验-第三节(1)作者:佚名转贴自:本站原创点击数:74第三节不同对象有关指标发生率(百分比)间的比较Ⅰ.两种对象率(百分比)间的比较—四格表χ2 检验χ2 检验(chi-square test),χ为希腊文字母,读作 [kai](卡);chi-square读作“卡方”;χ2检验即“卡方检验”。
它是一种用途较广的假设检验方法,是分析计率或百分比及某些等级资料常用的方法,可分析两个或两个以上率(或百分比)差别的显著性。
1. 两个样本率(百分比)比较—一般四格表的χ2检验四格表的χ2检验用于分析两组或两组以上率(或百分比)差别的显著性。
χ2 = ∑[(∣A - T∣)2 / T ].....................................(3-1)式中 A 为四格表各格子中的实际数,T 为理论数。
χ2 =(ad-bc)2 n / [(a+b)(c+d)(a+c)(b+d)].........................(3-2)例如: 某医院用两种疗法(drug)治疗慢性肾炎病人,结果(effect)西药组有效率为 79.7%(63/79);中药组有效率为87.0(47/54),见表 3-1-a。
四格表(1):Pearson卡方检验

此,计划从四格表开始,为大家逐日介绍一系列的扫盲文章。 师姐的名言是“对于统计我已经放弃治疗了。”衷心希望她看完这篇文章后要积极“治疗”。 以下源自H师姐论文的实例。 基本概念
定性资料定性资料是指分析的资料中,结果变量的性质是定性的。定性资料又可细分为名
况如下表,试比较两组胎儿分娩方式中剖宫产率有无差别。 1建立数据文件 2数据加权 3交叉表分析 结果解释1 观察组的剖宫产率为50%,对照组的剖宫产率为33.9%。 结果解释2 由于总例数n=173>40,四个格内没有<5的理论频数(期望计数),因此我们应读取第一 行的皮尔逊卡方值(6.002),P=0.01<0.05。按α=0.05水准,可认为两组的剖宫产率的差别有 统计学意义,即观察组的剖宫产率高于对照组。 注:有 观 点 认 为 在 四 格 表 中 采 用 Fisher精 确 检 验 的 结 果 比 较 可 靠 , 对 于 统 计 软 件 计 算 的 结 果 , 四 格 表 均 可 采 用 Fisher精 确 检 验 的 结 果 , 本例P=0.022<0.05,和上述结果是一致 的。
义资料和有序资料,对于每一个具体的观察单位或个体来说,若观测的指标是定性的,其表现 形式通常不是真实的数据,而只是一个“名称或符号”。名义资料从每个受试对象身上观察的结果 不是一个具体数值,而是一种状态或名称,如某病患者治疗的结果为“治愈”或“未治愈”;检测结 果为“阴性”或“阳性”、职业为“工人”、“农民”或“医生”等。例题某医院对门诊产前检查并住院分娩 的孕36~41周无其他高危因素的孕妇为研究对象中,出现规则变化脐动脉血流频谱曲线的孕晚期 胎儿为观察组,出现正常脐动脉血流频谱的孕晚期胎儿为对照组。两组胎儿的分娩方式情况情
SPSS进行卡方检验具体操作(三)

6.7%
93.3% 100.0%
ቤተ መጻሕፍቲ ባይዱ
小
医 药 Count
4
12
16
于
Expected Count
2.1
13.9
16.0
% within trial
25.0%
75.0% 100.0%
5
T o ta l
Count
6
40
46
Expected Count
6.0
40.0
46.0
% within trial
13.0%
3、行x列 2
AnalyzeDescriptive Statistics -Crosstabs
结果解读
AREA * BLOOD Crosstabulation
A REA Total
亚洲 欧洲 北美 洲
C o un t Expected Count % within AREA C o un t Expected Count % within AREA C o un t Expected Count % within AREA C o un t Expected Count % within AREA
A 321
411.3 29.7%
258 196.9 49.9%
408 378.9 41.0%
987 987.0 38.1%
BLOO D
B
AB
369
95
215.8
64.2
34.2%
8.8%
43
22
103.3
30.7
8.3%
4.3%
106
37
198.8
59.1
10.7%
SPSS卡方检验步骤

effect
阴转人数 阳性数
30
14
9
36
39
50
T o tal 44 45 89
Chi-Square Tests
Pearson Chi-Square Continuity Correctiona
Value 20.979b
19.068
df 1 1
Asymp. Sig. (2 -si d e d) .000
A 47 52 99
血型 B
66 54 120
AB 20 19 39
O 106 62 168
T o ta l 239 187 426
Chi-Square Tests
Pearson Chi-Square
Value 6.755a
df 3
Asymp. Sig. (2 -si d e d) .080
X2=20.687,p=0.000,按a=0.05水 准,拒绝H0,接受H1,差异有统计 学意义,可认为试验组有效率高于对 照组。
P440 第5题 配对设计卡方检验 步骤: 1、定义变量
11
步骤: 2、输入数据
12
步骤: 3、变量加权
13
步骤: 3、变量加权:按频数加权
14
步骤: 4、分析:选 Analyze
35
X2=20.979,p=0.000,按a=0.0167水 准,拒绝H0,接受H1,差异有统计 学意义,可认为甲、乙两种疗法对尿 路感染治疗效果有差别,甲疗法优于 乙疗法。
36
甲、丙检 验结果
group * effect Crosstabulation
Count
group 甲 丙
T o tal
卡方检验四格表计算举例

卡方检验四格表计算举例卡方检验是一种统计学方法,用于确定观察到的频数与期望频数之间的差异是否显著。
它常常应用于四格表(4×2)、二项分布(2×2)和多格表(大于4×2)等情况中。
下面以一个四格表的例子来进行卡方检验的计算。
假设我们进行了一项实验,想要研究两种不同的投放广告方式对销售额的影响。
为了测试这个假设,我们随机选择了两组参与者,每组30人。
一组参与者暴露在广告A下,另一组参与者暴露在广告B下。
我们记录了两组参与者中购买产品的人数如下:广告A广告B购买1020未购买2010根据这个表格,我们可以计算期望频数,然后计算卡方值和p值。
首先,我们需要计算每个格子的期望频数。
期望频数是根据总样本数和每个组的比例计算得到的。
总样本数为60(30+30),购买产品人数比例为(10+20)/60,未购买产品人数比例为(20+10)/60。
广告A(期望)广告B(期望)购买10(15)20(15)未购买20(15)10(15)接下来,我们计算卡方值。
卡方值的计算公式为:卡方值=∑((观察频数-期望频数)^2/期望频数)。
卡方值=((10-15)^2/15)+((20-15)^2/15)+((20-15)^2/15)+((10-15)^2/15)=5/3+5/3+5/3+5/3=20/3≈6.67最后,我们需要计算p值,用于判断卡方值的显著性。
p值表示在假设成立的情况下,观察到大于或等于当前卡方值的频数出现的概率。
p值可以通过查表或计算软件进行计算。
在这里,我们使用计算软件得到p值≈0.009,这是根据自由度为1的卡方分布得到的。
最后我们需要比较p值和显著性水平(通常为0.05)来判断原假设(两种广告方式对销售额无影响)是否成立。
由于p值(0.009)小于显著性水平(0.05),我们可以拒绝原假设,并得出结论:两种广告方式对销售额有显著影响。
以上是一个卡方检验四格表的计算举例。
根据具体的数据和研究问题,我们可以通过类似的步骤进行卡方检验的计算和解释。
SPSS知识6:卡方检验(无序变量)

SPSS知识6:卡方检验(无序变量)卡方检验定义:卡方检验用作分类计数的假设检验方法:检验两个或多个样本率或构成比之间的差别是否有统计学意义→从而推断两个或多个总体率或构成比之间的差别是否有统计学意义。
一、行*列卡方检验(只需要判断最小理论频数即可)SPSS操作:第一步:建立数据文件(group:横标目,type:纵标目-无序变量,f→共3列数据);第二步:对频数f加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→横标目group调入rows,纵标目types调入columns→点击statistics…→激活Chi-square→continue→点击cells…→激活row行百分数→continue→OK);第四步:判断结果(结果有2个图表,根据最小理论频数与5的比较和总例数与40的比较,判断是选用pearson Chi-square还是其他指标,读取对应P值,若P<0.05,则有差异,需要利用行*列分割进行22比较,检验水准也需要变化,因为扩大了第一类错误)。
第五步:两两比较(对group横标目设不同的missing value值后进行行*列分割计算。
)Missing value→重复analyze操作。
二、四格表卡方检验(要根据N和T判断选用四格表卡方专用公式、校正公式、确切概率法?)SPSS操作:第一步:建立数据文件(group:横标目,effect:纵标目-无序变量,f,频数→共计3列数据);第二步:对频数加权(weight cases);第三步:卡方分析(analyze→descriptive statistics →crosstabs→group调入rows,effect调入columns →点击statistics…→激活chi-square→continue→点击cells…→激活rows 百分数→continue→OK);第四步:判断结果(根据N和T判断选用公式→判断P值)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情况2:没有原始数据
假如没有原始数据,只有一个四个表,如下图: 我们只需要将数据进行加权就可以了。下面是具体的步骤:
1.先整理数据,数据结构见下图
2.接着进行加权
情况1:有原始数据
1.原始数据的数据结构,见下图。在这里没有频数,只有年龄组和是否正确这两个变量
2.在菜单栏上执行:析--描述统计--交叉表
3.将年龄组设置为行变量,是否正确设置为列变量;然后设置统计量,点击statistic
4.勾选卡方值,这样才能输出卡方值
5.首先看到的表格是基本的频数统计,没什么好说的,大家都懂
3.用频数进行加权,点击ok
4.接下来的步骤都是一样的,见上面。
5.
SPSS实例:四格表卡方检验
我们先来讲一个案例,我们想要知道两个年龄组的儿童在同一个问题上回答的正确性是否不同,统计出来的四格表是这样的:
年龄组分为0和1两个水平,是否正确分为0和1两个水平,怎样检验不同年龄组回答正确性是否相同?这就用到了四格表卡方检验。从上表中知道,表中任何一个单元格的数字都大于5,说明可以使用正常的卡方检验,如果有一个或者多个单元格数字少于5,需要进行精确卡方检验,以后会有教程。下面先看一下具体这个案例的操作过程: