2019-2020年高考数学一轮复习第十一章复数算法推理与证明第三节合情推理与演绎推理夯基提能作业本文(I)
近年高考数学一轮复习第11章复数、算法、推理与证明第3讲合情推理与演绎推理演练文(2021年整理)

2019高考数学一轮复习第11章复数、算法、推理与证明第3讲合情推理与演绎推理分层演练文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019高考数学一轮复习第11章复数、算法、推理与证明第3讲合情推理与演绎推理分层演练文)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019高考数学一轮复习第11章复数、算法、推理与证明第3讲合情推理与演绎推理分层演练文的全部内容。
第3讲合情推理与演绎推理一、选择题1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.121 B.123C.231 D.211解析:选B.法一:令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,…,得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123.法二:由a+b=1,a2+b2=3,得ab=-1,代入后三个等式中符合,则a10+b10=(a5+b5)2-2a5b5=123.2.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为()A.21 B.34C.52 D.55解析:选D.因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.3.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A.(7,5) B.(5,7)C.(2,10)D.(10,2)解析:选B.依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n+1,且第n组共有n个“整数对”,这样的前n组一共有错误!个“整数对”,注意到错误!<60<错误!,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).4.如图,在梯形ABCD中,AB∥CD,AB=a,CD=b(a>b).若EF∥AB,EF 到CD与AB的距离之比为m∶n,则可推算出:EF=错误!,用类比的方法,推想出下面问题的结果.在上面的梯形ABCD中,分别延长梯形的两腰AD和BC 交于O点,设△OAB,△ODC的面积分别为S1,S2,则△OEF的面积S0与S1,S的关系是( )2A.S0=错误!B.S0=错误!C.错误!=错误!D.错误!=错误!解析:选C.在平面几何中类比几何性质时,一般是由平面几何点的性质类比推理线的性质;由平面几何中线段的性质类比推理面积的性质.故由EF=错误!类比到关于△OEF的面积S与S1,S2的关系是错误!=错误!,故选C.5.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格"“不合格".若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好".如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A.2人B.3人C.4人D.5人解析:选B.假设满足条件的学生有4位及4位以上,设其中4位同学分别为甲、乙、丙、丁,则4位同学中必有两个人语文成绩一样,且这两个人数学成绩不一样,那么这两个人中一个人的成绩比另一个人好,故满足条件的学生不能超过3人.当有3位学生时,用A,B,C表示“优秀"“合格”“不合格",则满足题意的有AC,CA,BB,所以最多有3人.6.已知数列{a n}:错误!,错误!,错误!,错误!,错误!,错误!,错误!,错误!,错误!,错误!,…,依它的前10项的规律,则a99+a100的值为() A.错误!B.错误!C.错误!D.错误!解析:选A.通过将数列的前10项分组得到第一组有一个数:错误!,分子、分母之和为2;第二组有两个数:错误!,错误!,分子、分母之和为3;第三组有三个数:错误!,错误!,错误!,分子、分母之和为4;第四组有四个数,以此类推,a99,a100分别是第十四组的第8个数和第9个数,分子、分母之和为15,所以a99=错误!,a100=错误!.故a99+a100=错误!.二、填空题7.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.解析:由题意可推断:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”,说明乙去过城市A,由此可知,乙去过的城市为A.答案:A8.(2018·沧州联考)在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任";丙说:“甲说的对”;丁说:“反正我没有责任".四个人中只有一个人说的是真话,则该事故中需要负主要责任的人是________.解析:若负主要责任的人是甲,则甲、乙、丙说的都是假话,只有丁说的是真话,符合题意;若负主要责任的人是乙,则甲、丙、丁说的都是真话,不符合题意;若负主要责任的人是丙,则乙、丁说的都是真话,不合题意;若负主要责任的人是丁,则甲、乙、丙、丁说的都是假话,不合题意.故该事故中需要负主要责任的人是甲.答案:甲9.设A 和B 是抛物线上的两个动点,且在A 和B 处的抛物线的切线相互垂直,已知由A 、B 及抛物线的顶点所组成的三角形重心的轨迹也是一抛物线,记为L 1,对L 1重复以上过程,又得一抛物线L 2,依此类推.设如此得到抛物线的序列为L 1,L 2,L 3,L 4,…,L n ,若抛物线的方程为y 2=6x ,经专家计算得,L 1:y 2=2(x -1),L 2:y 2=错误!(x -1-错误!)=错误!(x -错误!),L 3:y 2=错误!(x-1-13-错误!)=错误!(x -错误!),L 4:y 2=错误!(x -1-错误!-错误!-错误!)=227(x -错误!),…,L n :y 2=错误!(x -错误!),则2T n -3S n =________. 解析:由题意知T 1=1,T 2=4,T 3=13,T 4=40,…,分析得1,4,13,40,…组成一个数列,数列的前后两项之差是一个等比数列,即T n -T n -1=3n -1,… T 3-T 2=32,T 2-T 1=3,把上述式子相加得到T n -1=3+32+…+3n -1, 所以T n =错误!,由题意知S 1=1,S 2=3,S 3=9,S 4=27,…,分析得1,3,9,27,…组成的数列{S n }的通项是S n =3n -1,所以2T n -3S n =2×错误!-3×3n -1=-1.答案:-1 10.如图所示,将正整数从小到大沿三角形的边成螺旋状排列起来,2在第一个拐弯处,4在第二个拐弯处,7在第三个拐弯处,……,则在第二十个拐弯处的正整数是________.解析:观察题图可知,第一个拐弯处2=1+1,第二个拐弯处4=1+1+2,第三个拐弯处7=1+1+2+3,第四个拐弯处11=1+1+2+3+4,第五个拐弯处16=1+1+2+3+4+5,发现规律:拐弯处的数是从1开始的一串连续正整数相加之和再加1,在第几个拐弯处,就加到第几个正整数,所以第二十个拐弯处的正整数就是1+1+2+3+…+20=211.答案:211三、解答题11.已知函数f(x)=-错误!(a>0,且a≠1).(1)证明:函数y=f(x)的图象关于点错误!对称;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.解:(1)证明:函数f(x)的定义域为全体实数,任取一点(x,y),它关于点错误!对称的点的坐标为(1-x,-1-y).由已知y=-错误!,则-1-y=-1+错误!=-错误!,f(1-x)=-错误!=-错误!=-错误!=-错误!,所以-1-y=f(1-x),即函数y=f(x)的图象关于点错误!对称.(2)由(1)知-1-f(x)=f(1-x),即f(x)+f(1-x)=-1.所以f(-2)+f(3)=-1,f(-1)+f(2)=-1,f(0)+f(1)=-1.故f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.12.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin213°+cos217°-sin 13°cos 17°;②sin215°+cos215°-sin 15°cos 15°;③sin218°+cos212°-sin 18°cos 12°;④sin2(-18°)+cos248°-sin(-18°)cos 48°;⑤sin2(-25°)+cos255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.解:(1)选择②式,计算如下:sin215°+cos215°-sin 15°cos 15°=1-错误!sin 30°=1-错误!=错误!.(2)三角恒等式为sin2α+cos2(30°-α)-sin α·cos(30°-α)=错误!.证明如下:sin2α+cos2(30°-α)-sin α·cos(30°-α)=sin2α+(cos 30°cos α+sin 30°sin α)2-sin α·(cos 30°cos α+sin 30°sin α)=sin2α+错误!cos2α+错误!sin αcos α+错误!sin2α-错误!sin αcos α-错误!sin2α=错误!sin2α+错误!cos2α=错误!.。
届高考数学一轮复习第十一篇复数算法推理与证明第3节合情推理与演绎推理课件理新人教版08102292

考点专项突破
考点一 归纳推理★★★
考查角度 1:与数式有关的归纳推理 【例 1】 (1)导学号 38486220 已知 f(x+1)= 的表达式为( (A)f(x)= (C)f(x)=
4 2x 2
在讲练中理解知识
2 f ( x) * ,f(1)=1(x∈N ),猜想 f(x) f ( x) 2
误的前提则可能导致错误的结论.
知识梳理
1.合情推理 归纳推理 类比推理
定义
由某类事物的部分对象具有某些特 由两类对象具有某些类似特 征,推出该类事物的 全部对象都 . 征和其中一类对象的 某些 . 已知特征 ,推出另一类对 具有这些特征 的推理,或者由个 别事实概括出 一般结论 的推理 象也具有这些特征的推理
2.下面几种推理是合情推理的是( C ①由圆的性质类比出球的有关性质; 三角形的内角和都是180°;
)
②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有
Байду номын сангаас
③李锋某次考试成绩是100分,由此推出全班同学的成绩都是100分;
④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由 此得凸n边形内角和是(n-2)·180°.
; (3)结论—— 根据一般原理,对特殊情况做出的判断
.
【重要结论】
1.在演绎推理中,若大前提、小前提、推理形式三者中有一个是错误的,所得的 结论就是错误的.
2.在演绎推理中,若大前提不明确,可找一个使结论成立的充分条件作为大前提.
双基自测
1.下列表述正确的是( B ) ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. (A)②③④ (B)①③⑤ (C)②④⑤ (D)①⑤ 解析:归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理, 类比推理是由特殊到特殊的推理.故①③⑤是正确的.故选B.
2020版高考数学一轮复习第十一篇复数、算法、推理与证明(必修3、选修1_2)第3节合情推理与演绎推理课件理

考点二 类比推理
【例 2】 (1)给出下面类比推理(其中 Q 为有理数集,R 为实数集,C 为复数集): ①“若 a,b∈R,则 a-b=0⇒ a=b”类比推出“a,c∈C,则 a-c=0⇒ a=c”; ②“若 a,b,c,d∈R,则复数 a+bi=c+di⇒ a=c,b=d”类比推出“a,b,c,d∈Q,则 a+b 2 =c+d 2 ⇒ a=c,b=d”; ③“a,b∈R,则 a-b>0⇒ a>b”类比推出“若 a,b∈C,则 a-b>0⇒ a>b”;
答案:(2)2+6n
反思归纳
归纳推理问题的常见类型及解题策略
常见类型
与数字有关的 等式的推理
与式子有 关的推理
与图形变化有 关的推理
解题策略 观察数字特点,找出等式左右两侧的规律及符号可解
观察每个式子的特点,找到规律后可解 合理利用特殊图形归纳推理得出结论,并用赋值检验法 验证其真伪性
【跟踪训练1】 (1)如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依
知识链条完善
1.合情推理
知识梳理
把散落的知识连起来
归纳推理
类比推理
定义
由某类事物的部分对象具有某 些特征,推出该类事物全的部对象 _都__具__有_这__些__特征 _____________ 一的般推结理论,或者
由个部别分事实整概体括出 个别 的
推一理般
由两类对象具有某某些些已类知似特特征征 和其中一类对象的 推出另一类对象也具有这些特 征的特推殊理 特殊
④“若 x∈R,则|x|<1⇒ -1<x<1”类比推出“若 z∈C,则|z|<1⇒ -1<z<1”. 其中类比结论正确的个数为( ) (A)1 (B)2 (C)3 (D)4
近年高考数学一轮复习第11章算法、复数、推理与证明11.3合情推理与演绎推理课后作业理(2021年

2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019版高考数学一轮复习第11章算法、复数、推理与证明11.3 合情推理与演绎推理课后作业理的全部内容。
11。
3 合情推理与演绎推理[基础送分提速狂刷练]一、选择题1.(2018·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A.甲 B.乙 C.丙 D.丁答案D解析若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D。
2.已知a1=3,a2=6,且a n+2=a n+1-a n,则a2016=( )A.3 B.-3 C.6 D.-6答案B解析∵a1=3,a2=6,∴a3=3,a4=-3,a5=-6,a6=-3,a7=3,…,∴{a n}是以6为周期的周期数列.又2016=6×335+6,∴a2016=a6=-3.故选B。
全国近年高考数学一轮复习第11章算法初步、复数、推理与证明第3讲合情推理与演绎推理增分练(2021

(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第3讲合情推理与演绎推理增分练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第3讲合情推理与演绎推理增分练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第11章算法初步、复数、推理与证明第3讲合情推理与演绎推理增分练的全部内容。
第3讲合情推理与演绎推理板块四模拟演练·提能增分[A级基础达标]1.(1)已知a是三角形一边的长,h是该边上的高,则三角形的面积是错误!ah,如果把扇形的弧长l,半径r分别看成三角形的底边长和高,可得到扇形的面积为错误!lr;(2)由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+(2n-1)=n2,则(1)(2)两个推理过程分别属于( )A.类比推理、归纳推理 B.类比推理、演绎推理C.归纳推理、类比推理 D.归纳推理、演绎推理答案A解析(1)由三角形的性质得到扇形的性质有相似之处,此种推理为类比推理;(2)由特殊到一般,此种推理为归纳推理.故选A.2.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如下图),试求第七个三角形数是( )A.27 B.28 C.29 D.30答案B解析观察归纳可知第n个三角形数为1+2+3+4+…+n=错误!,∴第七个三角形数为错误!=28.3.[2018·太原模拟]观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.121 B.123 C.231 D.211答案B解析令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,…,得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123。
2019届高考数学一轮复习第十一篇复数算法推理与证明第3节合情推理与演绎推理训练理新人教版

第3节合情推理与演绎推理基础巩固(时间:30分钟)1.命题“有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是( C )(A)使用了归纳推理(B)使用了类比推理(C)使用了“三段论”,但大前提错误(D)使用了“三段论”,但小前提错误解析:由题目可知满足“三段论”形式,但是大前提表述不正确而使结论错误.故选C.2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“a·b=b·a”;②“(m+n)t=mt+nt”类比得到“(a+b)·c=a·c+b·c”;③“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”;④“t≠0,mt=xt⇒m=x”类比得到“p≠0,a·p=x·p⇒a=x”;⑤“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”;⑥“=”类比得到“=”.以上的式子中,类比得到的结论正确的个数是( B )(A)1 (B)2 (C)3 (D)4解析:①②正确,③④⑤⑥错误.故选B.3.(2017·重庆模拟)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( D )(A)21 (B)34 (C)52 (D)55解析:因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.故选D.4.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间可以得到类似结论:已知正四面体P-ABC的内切球体积为V1,外接球体积为V2,则等于( D )(A) (B) (C)(D)解析:正四面体的内切球与外接球的半径之比为1∶3,故=.故选D.5.下列推理中属于归纳推理且结论正确的是( A )(A)设数列{a n}的前n项和为S n.由a n=2n-1,求出S1=12,S2=22,S3=32,…,推断:S n=n2(B)由f(x)=xcos x满足f(-x)=-f(x)对∀x∈R都成立,推断:f(x)=xcos x为奇函数(C)由圆x2+y2=r2的面积S=πr2,推断:椭圆+=1(a>b>0)的面积S=πab(D)由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推断:对一切n∈N*,(n+1)2>2n解析:选项A由一些特殊事例得出一般性结论,且注意到数列{a n}是等差数列,其前n项和等于S n==n2,选项D中的推理属于归纳推理,但结论不正确.故选A.,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.例如原信息为111,则传输信息为01111,信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )(A)11010 (B)01100(C)10111 (D)00011解析:对于选项C,传输信息是10111,对应的原信息是011,由题目中运算规则知h0=0⊕1=1,而h1=h0⊕a2=1⊕1=0,故传输信息应是10110.故选C.7.在圆中有结论:如图所示,“AB是圆O的直径,直线AC,BD是圆O过A,B的切线,P是圆O 上任意一点,CD是过P的切线,则有PO2=PC·PD”.类比到椭圆:“AB是椭圆的长轴,直线AC,BD 是椭圆过A,B的切线,P是椭圆上任意一点,CD是过P的切线,则有.”解析:椭圆中的焦半径类比圆中的半径.答案:PF1·PF2=PC·PD8.(2017·潍坊市一模)观察式子1+<,1++<,1+++<,…,则可归纳出1+++…+<.解析:根据题意,每个不等式的右边的分母是n+1.不等号右边的分子是2n+1,所以1+++…+<(n≥1).答案:(n≥1)能力提升(时间:15分钟)9.若数列{a n}是等差数列,则数列{b n}{b n=}也为等差数列.类比这一性质可知,若正项数列{c n}是等比数列,且{d n}也是等比数列,则d n的表达式应为( D )(A)d n= (B)d n=(C)d n= (D)d n=解析:若{a n}是等差数列,则a1+a2+…+a n=na1+d,所以b n=a1+d=n+a1-,即{b n}为等差数列;若{c n}是等比数列,则c1·c2·…·c n=·q1+2+…+(n-1)=·,所以d n==c1·,即{d n}为等比数列.故选D.10.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( B )(A)(7,5) (B)(5,7)(C)(2,10) (D)(10,1)解析:依题意,把“整数对”的和相同的分为一组,不难得知第n组中每个“整数对”的和均为n+1,且第n组共有n个“整数对”,这样的前n组一共有个“整数对”,注意到<60<,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).故选B.11.(2017·湖北八校二联)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( D )(A)甲(B)乙(C)丙(D)丁解析:根据题意,6名选手比赛结果甲、乙、丙、丁猜测如下表:由表知,只有丁猜对了比赛结果.故选D.12.(2017·日照市一模)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=[k(k+1)(k+2)- (k-1) k(k+1)]由此得1×2= (1×2×3-0×1×2),2×3= (2×3×4-1×2×3),…n(n+1)= [n(n+1)(n+2)-(n-1)n(n+1)],相加,得1×2+2×3+…+n(n+1)= n(n+1)(n+2).类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为.解析:因为n(n+1)(n+2)= [n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)],所以1×2×3= (1×2×3×4-0×1×2×3),2×3×4= (2×3×4×5-1×2×3×4),…n (n+1)(n+2)= [n(n+1)(n+2)(n+3)-(n-1)·n(n+1)( n+2)],所以1×2×3+2×3×4+…+n(n+1)(n+2)= [(1×2×3×4-0×1×2×3)+(2×3×4×5-1×2×3×4)+…+n·(n+1)(n+2)(n+3)- (n-1)n(n+1)(n+2)]= n(n+1)(n+2)(n+3).答案: n(n+1)(n+2)(n+3)13.已知△ABC的三边长分别为a,b,c,其面积为S,则△ABC的内切圆的半径r=.这是一道平面几何题,其证明方法是“等面积法”.请用类比推理的方法猜测对空间四面体ABCD 存在的类似结论为.解析:已知四面体ABCD的四个表面的面积分别为S1,S2,S3,S4,其体积为V,则四面体ABCD的内切球的半径r=.由题意可得,题目要求写出类似的结论,则在保证该结论正确的前提下,尽量在语言表达上与前面的结论一致.本题体现了平面几何与立体几何在如下词语上的对应:“△ABC”与“四面体ABCD”,“边长”与“表面面积”,“面积”与“体积”,“内切圆”与“内切球”,这是结构上的类比.再者,本题也体现了方法上的类比,即等面积法推理到等体积法,同样是将整体分割成几个小的部分,然后利用体积不变得出结论,即V=S1r+S2r+S3r+S4r,从而r=.答案:已知空间四面体ABCD的四个面的面积分别为S1,S2,S3,S4,其体积为V,则四面体的内切球的半径r=(1261年)一书中,用如图1所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的著作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle),17世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图2.在杨辉三角中相邻两行满足关系式:+=,其中n是行数,r∈N.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是.解析:类比观察得,将莱布尼茨三角形的每一行都能提出倍数,而相邻两项之和是上一行的两者相拱之数,所以类比式子+=,有=+.答案:=+。
2019版高考数学一轮复习第十一章复数、算法、推理与证明第三节合情推理
类比推理
典例1 (1)给出下列类比推理命题(其中Q为有理数集,R为实数集,C为
Байду номын сангаас
(2)如图所示,面积为S的平面凸四边形的第i条边的边长记为ai(i=1,2,3,
3 1 2 4 4),此四边形内任一点P到第i条边的距离为hi(i=1,2,3,4),若 = = =
a 1
a 2
a 3
a 4
S =k,则1×h1+2×h2+3×h3+4×2 h 4= .类比以上性质,体积为V的三棱锥的第i k
4.在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4, 类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为
1∶ 8
.
答案 1∶8
解析 ∵两个正三角形是相似三角形,∴它们的面积比是相似比的平 方.类似地,两个正四面体是两个“相似”几何体,体积比为相似比的立 方,∴所求体积比为1∶8.
A.类比推理、归纳推理 C.归纳推理、类比推理 B.类比推理、演绎推理 D.归纳推理、演绎推理
答案 A (1)三角形的性质与扇形的性质有相似之处,此种推理为类比 推理;(2)由特殊到一般,此种推理为归纳推理.故选A.
2.(2017北京海淀二模)一位手机用户前四次输入四位数字手机密码均
不正确,第五次输入密码正确,手机解锁.事后发现前四次输入的密码中, 每次都有两个数字正确,但它们各自的位置均不正确.已知前四次输入 的密码分别为3406,1630,7364,6173,则正确的密码中一定含有数字 ( D ) A.4,6 B.3,6 C.3,7 D.1,7
;此题正确的选项是
.
答案 5;A
解析 ∵甲与乙在1,2,4三道题选项相同,又甲选对4道,乙选对3道,∴1,2, 4题正确选项分别为C,C,B;甲选错的是题3或题5,由丙的成绩知其只做 对了题2和题4,∴题3不选C,题5不选B,由乙的答题和得分情况知,题5不
高考数学一轮复习第11章复数、算法、推理与证明第3讲合情推理与演绎推理课件文
【对点通关】 1.观察三角数阵,记第 n 行的第 m 个数为 a(n,m),则下列关 系正确的是( )
1 11 121 1331 14641
… 1 10 45 … 45 10 1
A.a(n+1,m+1)=a(n,m)+a(n,m+1) B.a(n+1,m+1)=a(n-1,m-1)+a(n,m) C.a(n+1,m+1)=a(n,m)+a(n+1,m) D.a(n+1,m+1)=a(n+1,m)+a(n,m+1) 解析:选 A.观察分析得出三角数阵中的每一个数等于其“肩 上”两个数之和. 所以 a(n+1,m+1)=a(n,m)+a(n,m+1).
③结论:根据一般原理,对__特__殊__情__况__做出的判断.
(选修 1-2 P23 例 1 改编)观察等式 1=12,1+3=4=22, 1+3+5=9=32,1+3+5+7=42…,则猜想出的一般结论是 () A.1+3+5+…+(2n+1)=n2 B.1+3+5+…+(2n-1)=n2 C.1+3+5+…+(2n+1)=(n+1)2 D.1+3+5+…+(2n-1)=(n+1)2 答案:B
论为________(n∈N*).
【解析】 (1)观察三角形数:1,3,6,10,…,记该数列为 {an}, 则 a1=1, a2=a1+2, a3=a2+3, … an=an-1+n.
所以 a1+a2+…+an=(a1+a2+…+an-1)+(1+2+3+…+ n)⇒an=1+2+3+…+n=n(n2+1), 观察正方形数:1,4,9,16,…,记该数列为{bn},则 bn= n2.把四个选项的数字,分别代入上述两个通项公式,可知 使得 n 都为正整数的只有 1 225.
部对象都具有这些特征的推 的某些已知特征,推出另 义
2019-2020年高考数学一轮复习第11章算法复数推理与证明11.3合情推理与演绎推理学案理
2019-2020年高考数学一轮复习第11章算法复数推理与证明11.3合情推理与演绎推理学案理[知识梳理]1.推理(1)定义:根据一个或几个已知的判断来确定一个新的判断的思维过程就是推理.(2)分类:推理一般分为合情推理与演绎推理.2.合情推理(1)定义:根据已有的事实,经过观察、分析、比较、联想,再进行归纳类比,然后提出猜想的推理叫做合情推理.(2)分类:数学中常用的合情推理有归纳推理和类比推理.(3)归纳和类比推理的定义、特征3.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.[诊断自测]1.概念思辨(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ) (4)演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.( ) 答案 (1)× (2)√ (3)× (4)√2.教材衍化(1)(选修A2-2P 75例题)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10为( )A .28B .76C .123D .199 答案 C解析 记a n+b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.故选C.(2)(选修A2-2P 84A 组T 5)设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列. 答案T 8T 4 T 12T 8解析 设等比数列{b n }的公比为q ,首项为b 1, 则T 4=b 41q 6,T 8=b 81q1+2+…+7=b 81q 28,T 12=b 121q1+2+…+11=b 121q 66, ∴T 8T 4=b 41q 22,T 12T 8=b 41q 38, 即⎝ ⎛⎭⎪⎫T 8T 42=T 12T 8·T 4,故T 4,T 8T 4,T 12T 8成等比数列.故答案为T 8T 4,T 12T 8. 3.小题热身(1)(xx·厦门模拟)已知圆:x 2+y 2=r 2上任意一点(x 0,y 0)处的切线方程为x 0x +y 0y =r 2.类比以上结论,有双曲线x 2a 2-y 2b2=1上任意一点(x 0,y 0)处的切线方程为________.答案x 0x a 2-y 0y b 2=1 解析 设圆上任一点为(x 0,y 0),把圆的方程中的x 2,y 2替换为x 0x ,y 0y ,则得到圆的切线方程;类比这种方式,设双曲线x 2a 2-y 2b 2=1上任一点为(x 0,y 0),则切线方程为x 0x a 2-y 0yb2=1(这个结论是正确的,证明略).(2)(xx·陕西高考)观察下列等式 1-12=121-12+13-14=13+141-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为________.答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n解析 观察已知等式可知,第n 个等式左边共有2n 项,其中奇数项为12n -1,偶数项为-12n ,等式右边共有n 项,为等式左边后n 项的绝对值之和,所以第n 个等式为1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12).题型1 类比推理典例 已知P (x 0,y 0)是抛物线y 2=2px (p >0)上的一点,过点P 的切线方程的斜率可通过如下方式求得:在y 2=2px 两边同时对x 求导,得2yy ′=2p ,则y ′=py,所以过点P的切线的斜率k =p y 0.类比上述方法求出双曲线x 2-y 22=1在P (2,2)处的切线方程为________.注意题意要求,类比上述方法求切线. 答案 2x -y -2=0解析 将双曲线方程化为y 2=2(x 2-1),类比上述方法两边同时对x 求导得2yy ′=4x ,则y ′=2x y ,即过点P 的切线的斜率k =2x 0y 0,由于P (2,2),故切线斜率k =222=2,因此切线方程为y -2=2(x -2),整理得2x -y -2=0.方法技巧1.类比推理的四个角度和四个原则 (1)四个角度类比推理是由特殊到特殊的推理,可以从以下几个方面考虑类比: ①类比定义:如等差、等比数列的定义;②类比性质:如椭圆、双曲线的性质;③类比方法:如基本不等式与柯西不等式;④类比结构:如三角形内切圆与三棱锥内切球.(2)四个原则①长度类比面积;②面积类比体积;③平面类比空间;④和类比积,差类比商.见典例.2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).3.常见类比推理题型的求解策略在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:(1)找两类对象的对应元素,如三角形对应三棱锥,圆对应球,面积对应体积等等;(2)找对应元素的对应关系,如两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.冲关针对训练(xx·山东日照一模)36的所有正约数之和可按如下方法得到:因为36=22×32,所以36的所有正约数之和为(1+3+32)+(2+2×3+2×32)+(22+22×3+22×32)=(1+2+22)(1+3+32)=91,参照上述方法,可求得200的所有正约数之和为________.答案465解析类比求36的所有正约数之和的方法,200的所有正约数之和可按如下方法求得,因为200=23×52,所以200的所有正约数之和为(1+2+22+23)(1+5+52)=465.题型2 归纳推理角度1 与数字有关的归纳推理典例(xx·石家庄模拟)如图所示的数阵中,用A(m,n)表示第m行的第n个数,则依此规律A(15,2)为( )131 61 61 10131101 15133013301151 2112131512121……A.2942 B.710 C.1724 D.73102答案 C解析 观察题中所给的数阵,可以看出从第三行开始,每行第二个数等于它肩上的两个数的和,所以A (15,2)=16+16+110+115+121+…+1120=16+2×( 112+120+130+142+…+1240) =16+2×⎣⎢⎡⎦⎥⎤13×4+14×5+15×6+16×7+…+115×16 =16+2×⎝ ⎛⎭⎪⎫13-14+14-15+15-16+…+115-116=16+2×⎝ ⎛⎭⎪⎫13-116=1724.故选C. 角度2 与式子有关的归纳推理典例 (xx·山东高考)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2 =43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2 =43×4×5; …… 照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=________. 分析等式右边的结构规律. 答案4n (n +1)3解析 观察前4个等式,由归纳推理可知⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2 =43×n ×(n +1)=4n (n +1)3.角度3 与图形有关的归纳推理典例 如图所示,是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18个火柴,……,则第xx 个图形用的火柴根数为( )A .xx×2019B .xx×xxC .xx×2019D .3027×2019答案 D解析 由题意,第1个图形需要火柴的根数为3×1; 第2个图形需要火柴的根数为3×(1+2); 第3个图形需要火柴的根数为3×(1+2+3); ……由此,可以推出,第n 个图形需要火柴的根数为3×(1+2+3+…+n ).所以第xx 个图形所需火柴的根数为3×(1+2+3+…+xx)=3×2018×(1+2018)2=3027×2019,故选D.方法技巧归纳推理问题的常见类型及解题策略1.与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解.见角度1典例.2.与式子有关的归纳推理(1)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (2)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.见角度2典例.3.与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.见角度3典例.冲关针对训练某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两夹角为120°;二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,…,依此规律得到n 级分形图,n 级分形图中共有________条线段.答案 3×2n-3解析 分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图有3=(3×2-3)条线段,二级分形图有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律n 级分形图中的线段条数a n =3×2n-3.题型3 演绎推理典例 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N *).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明⎩⎨⎧⎭⎬⎫S n n 是等比数列,将已知a n +1=n +2nS n 中的a n +1用S n +1-S n 表示. 证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)(第(2)问的大前提是第(1)问的结论以及题中的已知条件) 方法技巧三段论的应用1.三段论推理的依据是:如果集合M 的所有元素都具有性质P ,S 是M 的子集,那么S 中所有元素都具有性质P .2.应用三段论的注意点:解决问题时,首先应该明确什么是大前提,小前提,然后再找结论.提醒:合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.冲关针对训练(xx·厦门模拟)设f (x )=3ax 2+2bx +c ,若a +b +c =0,f (0)>0,f (1)>0,证明: (1)a >0且-2<b a<-1;(2)方程f (x )=0在(0,1)内有两个实根. 证明 (1)因为f (0)>0,f (1)>0, 所以c >0,3a +2b +c >0.由a +b +c =0,消去b 得a >c >0;再由条件a +b +c =0,消去c 得a +b <0且2a +b >0,所以-2<b a<-1.(2)因为抛物线f (x )=3ax 2+2bx +c 的顶点坐标为⎝ ⎛⎭⎪⎫-b 3a ,3ac -b 23a ,又因为-2<b a <-1,所以13<-b 3a <23.因为f (0)>0,f (1)>0,而f ⎝ ⎛⎭⎪⎫-b 3a =3ac -b 23a =-a 2+c 2-ac 3a=-⎝ ⎛⎭⎪⎫a -c 22+3c243a<0,所以方程f (x )=0在区间⎝⎛⎭⎪⎫0,-b 3a 与⎝ ⎛⎭⎪⎫-b3a ,1内分别有一个实根,故方程f (x )=0在(0,1)内有两个实根.1.(xx·全国卷Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩答案 D解析由甲说:“我还是不知道我的成绩”可推知甲看到乙、丙的成绩为“1个优秀,1个良好”.乙看丙的成绩,结合甲的说法,丙为“优秀”时,乙为“良好”;丙为“良好”时,乙为“优秀”,可得乙可以知道自己的成绩.丁看甲的成绩,结合甲的说法,甲为“优秀”时,丁为“良好”;甲为“良好”时,丁为“优秀”,可得丁可以知道自己的成绩.故选D.2.(xx·北京高考)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多答案 B解析解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C错误.故选B.解法二:设袋中共有2n个球,最终放入甲盒中k个红球,放入乙盒中s个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k个球,其中红球有s个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s个.所以乙盒中红球与丙盒中黑球一样多.故选B.3.(xx·石家庄模拟)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式d≈ 3163V,人们还用过一些类似的近似公式,根据π=3.14159…判断,下列近似公式中最精确的一个是( )A.d≈36031V B.d≈32VC.d≈3158V D.d≈32111V答案 D解析 由V =4π3⎝ ⎛⎭⎪⎫d 23,解得d =36V π,选项A 代入得π=31×660=3.1;选项B 代入得π=62=3;选项C 代入得π=6×815=3.2;选项D 代入得π=11×621=3.142857.由于D 的值最接近π的真实值.故选D. 4.(xx·湖北七市联考)观察下列等式 1+2+3+…+n =12n (n +1);1+3+6+…+12n (n +1)=16n (n +1)(n +2);1+4+10+…+16n (n +1)(n +2)=124n (n +1)(n +2)(n +3).可以推测,1+5+15+…+124n (n +1)(n +2)(n +3)=________________________. 答案1120n (n +1)(n +2)(n +3)(n +4) 解析 观察所给等式的左侧和右侧并归纳推理,等式右边的因式应为n (n +1)(n +2)(n +3)(n +4),系数为15×24=1120.可以得到答案.[基础送分 提速狂刷练]一、选择题1.(xx·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁 答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a xx =( )A .3B .-3C .6D .-6 答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又xx =6×335+6,∴a xx =a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式: x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3, x +27x 3=x 3+x 3+x 3+27x3≥4,…,类比有x +a xn ≥n +1(n ∈N *),则a =( ) A .n B .2n C .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n.故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367B.⎝ ⎛⎭⎪⎫1368C.⎝ ⎛⎭⎪⎫13111D.⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…, 那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D.5.(xx·阳山一模)下面使用类比推理恰当的是( )A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类推出“(a +b )n=a n+b n” 答案 C解析 对于A ,“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B ,“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C ,将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +b c =a c +b c ”是正确的;对于D ,“(ab )n =a n b n ”类推出“(a +b )n =a n+b n ”是错误的,如(1+1)2=12+12.故选C.6.(xx·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a xx =( ) A .502 B .503 C .504 D .505 答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a xx =x 1009=505.故选D.7.(xx·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在 2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12 B.5-12 C.1+52 D.1-52答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C. 8.(xx·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4答案 C解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC =13(S 1+S 2+S 3+S 4)R ,所以R =3VS 1+S 2+S 3+S 4.故选C.9.(x x·鹰潭模拟)[x ]表示不超过x 的最大整数,例如:[π]=3.S 1=[1]+[2]+[3]=3S 2=[4]+[5]+[6]+[7]+[8]=10S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21,…,依此规律,那么S 10等于( ) A .210 B .230 C .220 D .240 答案 A解析 ∵[x ]表示不超过x 的最大整数, ∴S 1=[1]+[2]+[3]=1×3=3,S 2=[4]+[5]+[6]+[7]+[8]=2×5=10,S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=3×7=21,……,S n =[n 2]+[n 2+1]+[n 2+2]+…+[n 2+2n -1]+[n 2+2n ]=n ×(2n +1),∴S 10=10×21=210.故选A.10.(xx·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x +y =2,求1x +4y的最小值”,给出如下一种解法:∵x +y =2,∴1x +4y =12(x +y )⎝ ⎛⎭⎪⎫1x +4y =12⎝ ⎛⎭⎪⎫5+y x +4x y , ∵x >0,y >0,∴y x+4x y≥2y x ·4xy=4, ∴1x +4y ≥12(5+4)=92, 当且仅当⎩⎪⎨⎪⎧y x =4x y,x +y =2,即⎩⎪⎨⎪⎧x =23,y =43时,1x +4y 取最小值92.参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则1A +9B +C 的最小值为( )A.16π B.8π C.4π D.2π答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,α+βπ=1,参考题干中解法,则1A +9B +C =1α+9β=⎝ ⎛⎭⎪⎫1α+9β·(α+β)1π=1π⎝ ⎛⎭⎪⎫10+βα+9αβ≥1π(10+6)=16π,当且仅当βα=9αβ,即3α=β时等号成立.故选A.二、填空题11.(xx·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________; (2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(xx·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr ,即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S =4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(xx·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案172解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x2×3;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x3×4;……第8关收税金:x 8×9=x72. 14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b xx 是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示). 答案 (1)5040 (2)5k (5k -1)2解析 观察知这些三角形数满足a n =n (n +1)2,n ∈N *,当n =5k -1或n =5k ,k ∈N *时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b xx 是第1008组的后面一项,即b xx 是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5k (5k -1)2.三、解答题15.(xx·未央区期中)阅读以下求1+2+3+…+n 的值的过程: 因为(n +1)2-n 2=2n +1,n 2-(n -1)2=2(n -1)+1…22-12=2×1+1以上各式相加得(n +1)2-1=2×(1+2+3+…+n )+n 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比上述过程,求12+22+32+…+n 2的值. 解 ∵23-13=3·22-3·2+1, 33-23=3·32-3·3+1,…,n 3-(n -1)3=3n 2-3n +1,把这n -1个等式相加得n 3-1=3·(22+32+…+n 2)-3·(2+3+…+n )+(n -1), 由此得n 3-1=3·(12+22+32+…+n 2)-3·(1+2+3+…+n )+(n -1), 即12+22+…+n 2=13⎣⎢⎡⎦⎥⎤n 3-1+32n (n +1)-(n -1).16.(xx·南阳模拟)我们知道,等差数列和等比数列有许多性质可以类比,现在给出一个命题:若数列{a n }、{b n }是两个等差数列,它们的前n 项的和分别是S n ,T n ,则a n b n =S 2n -1T 2n -1.(1)请你证明上述命题;(2)请你就数列{a n }、{b n }是两个各项均为正的等比数列,类比上述结论,提出正确的猜想,并加以证明.解 (1)证明:在等差数列{a n }中,a n =a 1+a 2n -12(n ∈N *),那么对于等差数列{a n }、{b n }有:a nb n =12(a 1+a 2n -1)12(b 1+b 2n -1)=12(a 1+a 2n -1)(2n -1)12(b 1+b 2n -1)(2n -1)=S 2n -1T 2n -1. (2)猜想:数列{a n }、{b n }是两个各项均为正的等比数列,它们的前n 项的积分别是X n ,Y n ,则⎝ ⎛⎭⎪⎫a n b n 2n -1=X 2n -1Y 2n -1. 证明:在等比数列{a n }中,a 2n =a 1a 2n -1=a 2a 2n -2=…(n ∈N *), (a n )2n -1=a 1a 2a 3…a 2n -1(n ∈N *),那么对于等比数列{a n }、{b n }有⎝ ⎛⎭⎪⎫a n b n 2n -1=a 1a 2a 3…a 2n -1b 1b 2b 3…b 2n -1=X 2n -1Y 2n -1.2019-2020年高考数学一轮复习第11章算法复数推理与证明11.3合情推理与演绎推理课后作业文一、选择题1.(xx·湖北华师一附中等八校联考)有6名选手参加演讲比赛,观众甲猜测:4号或5号选手得第一名;观众乙猜测:3号选手不可能得第一名;观众丙猜测:1,2,6号选手中的一位获得第一名;观众丁猜测:4,5,6号选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( )A .甲B .乙C .丙D .丁 答案 D解析 若甲猜测正确,则4号或5号得第一名,那么乙猜测也正确,与题意不符,故甲猜测错误,即4号和5号均不是第一名.若丙猜测正确,那么乙猜测也正确,与题意不符,故丙猜测错误,即1,2,6号均不是第1名,故3号是第1名,则乙猜测错误,丁猜测正确.故选D.2.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a xx =( ) A .3 B .-3 C .6 D .-6 答案 B解析 ∵a 1=3,a 2=6,∴a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,…,∴{a n }是以6为周期的周期数列.又xx =6×335+6,∴a xx =a 6=-3.故选B.3.已知x ∈(0,+∞),观察下列各式: x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3, x +27x 3=x 3+x 3+x 3+27x3≥4,…,类比有x +a xn ≥n +1(n ∈N *),则a =( ) A .n B .2n C .n 2D .n n答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n.故选D.4.已知a n =⎝ ⎛⎭⎪⎫13n,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( )A.⎝ ⎛⎭⎪⎫1367 B .⎝ ⎛⎭⎪⎫1368 C.⎝ ⎛⎭⎪⎫13111D.⎝ ⎛⎭⎪⎫13112 答案 D解析 该三角形所对应元素的个数为1,3,5,…, 那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=⎝ ⎛⎭⎪⎫13112.故选D.5.(xx·阳山县校级一模)下面使用类比推理恰当的是( ) A .“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ” B .“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ” C .“(a +b )c =ac +bc ”类推出“a +bc =a c +bc(c ≠0)” D .“(ab )n=a n b n”类推出“(a +b )n=a n+b n” 答案 C解析 对于A“若a ·3=b ·3,则a =b ”类推出“若a ·0=b ·0,则a =b ”是错误的,因为0乘任何数都等于0;对于B“若(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”,类推的结果不符合乘法的运算性质,故错误;对于C 将乘法类推除法,即由“(a +b )c =ac +bc ”类推出“a +bc =a c +b c”是正确的;对于D“(ab )n =a n b n ”类推出“(a +b )n =a n +b n”是错误的;如(1+1)2=12+12.故选C.6.(xx·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a xx =( ) A .502 B .503 C .504 D .505 答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a xx =x 1009=505.故选D.7.(xx·安徽江淮十校三联)我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,则1+11+11+…=( )A.-5-12 B.5-12 C.1+52 D.1-52答案 C解析 1+11+11+…=x ,即1+1x =x ,即x 2-x -1=0,解得x =1+52⎝ ⎛⎭⎪⎫x =1-52舍,故1+11+11+…=1+52,故选C. 8.(xx·陕西一模)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c ,类比这个结论可知,四面体S -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为R ,四面体S -ABC 的体积为V ,则R 等于( )A.VS 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S4答案 C解析设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,由平面图形中r 的求解过程类比空间图形中R 的求解过程可得四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和,则四面体的体积为V =V 四面体S -ABC=13(S 1+S 2+S 3+S 4)R ,所以R =3VS 1+S 2+S 3+S 4.故选C.9.(xx·鹰潭模拟)[x ]表示不超过x 的最大整数,例如:[π]=3.S 1=[1]+[2]+[3]=3S 2=[4]+[5]+[6]+[7]+[8]=10S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=21,…依此规律,那么S 10等于( ) A .210 B .230 C .220 D .240 答案 A解析 ∵[x ]表示不超过x 的最大整数, ∴S 1=[1]+[2]+[3]=1×3=3,S 2=[4]+[5]+[6]+[7]+[8]=2×5=10,S 3=[9]+[10]+[11]+[12]+[13]+[14]+[15]=3×7=21,…S n =[n 2]+[n 2+1]+[n 2+2]+…+[n 2+2n -1]+[n 2+2n ]=n ×(2n +1),∴S 10=10×21=210.故选A.10.(xx·龙泉驿区模拟)对于问题:“已知两个正数x ,y 满足x +y =2,求1x +4y的最小值”,给出如下一种解法:∵x +y =2,∴1x +4y =12(x +y )⎝ ⎛⎭⎪⎫1x +4y =12⎝ ⎛⎭⎪⎫5+y x +4x y , ∵x >0,y >0,∴y x+4x y≥2y x ·4xy=4, ∴1x +4y ≥12(5+4)=92, 当且仅当⎩⎪⎨⎪⎧y x =4x y,x +y =2,即⎩⎪⎨⎪⎧x =23,y =43时,1x +4y 取最小值92.参考上述解法,已知A ,B ,C 是△ABC 的三个内角,则1A +9B +C 的最小值为( )A.16πB.8πC.4πD.2π 答案 A解析 A +B +C =π,设A =α,B +C =β,则α+β=π,α+βπ=1,参考题干中解法,则1A +9B +C =1α+9β=⎝ ⎛⎭⎪⎫1α+9β·(α+β)1π=1π⎝ ⎛⎭⎪⎫10+βα+9αβ≥1π(10+6)=16π,当且仅当βα=9αβ,即3α=β时等号成立.故选A.二、填空题11.(xx·北京高考)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点B i 的横、纵坐标分别为第i 名工人下午的工作时间和加工的零件数,i =1,2,3.(1)记Q i 为第i 名工人在这一天中加工的零件总数,则Q 1,Q 2,Q 3中最大的是________. (2)记p i 为第i 名工人在这一天中平均每小时加工的零件数,则p 1,p 2,p 3中最大的是________.答案 (1)Q 1 (2)p 2解析 设A 1(xA 1,yA 1),B 1(xB 1,yB 1),线段A 1B 1的中点为E 1(x 1,y 1),则Q 1=yA 1+yB 1=2y 1.因此,要比较Q 1,Q 2,Q 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点纵坐标的大小,作图比较知Q 1最大.又p 1=yA 1+yB 1xA 1+xB 1=2y 12x 1=y 1x 1=y 1-0x 1-0,其几何意义为线段A 1B 1的中点E 1与坐标原点连线的斜率,因此,要比较p 1,p 2,p 3的大小,只需比较线段A 1B 1,A 2B 2,A 3B 3中点与坐标原点连线的斜率,作图比较知p 2最大.12.(xx·湖北八校联考)二维空间中,圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2;三维空间中,球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3.应用合情推理,若四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =________.答案 2πr 4解析 在二维空间中,圆的二维测度(面积)S =πr 2,则其导数S ′=2πr, 即为圆的一维测度(周长)l =2πr ;在三维空间中,球的三维测度(体积)V =43πr 3,则其导数V ′=4πr 2,即为球的二维测度(表面积)S =4πr 2;应用合情推理,在四维空间中,“超球”的三维测度V =8πr 3,则其四维测度W =2πr 4.13.(xx·江西赣州十四县联考)我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一.并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金12,第2关收税金为剩余的13,第3关收税金为剩余的14,第4关收税金为剩余的15,第5关收税金为剩余的16,5关所收税金之和,恰好重1斤,问原本持金多少?”若将“5关所收税金之和,恰好重1斤,问原本持金多少?”改成“假设这个人原本持金为x ,按此规律通过第8关”,则第8关所收税金为________x .答案172解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =x 6=x2×3;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =x 12=x3×4;……第8关收税金:x 8×9=x72. 14.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b xx 是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示). 答案 (1)5040 (2)5kk -2解析 观察知这些三角形数满足a n =n n +2,n ∈N *,当n =5k -1或n =5k ,k ∈N*时,对应的三角形数是5的倍数,为数列{b n }中的项,将5k -1和5k 列为一组,所以b xx 是第1008组的后面一项,即b xx 是数列{a n }中的第5×1008=5040项;b 2k -1是第k 组的前面一项,是数列{a n }中的第5k -1项,即b 2k -1=a 5k -1=5kk -2.三、解答题。
2020年高考数学(理科)一轮复习讲义第11章算法复数推理与证明第3讲含解析
第3讲合情推理与演绎推理1.推理(1)定义:根据一个或几个□01已知的判断来确定一个新的判断的□02思维过程就是推理.(2)□03合情推理和□04演绎推理.2.合情推理(1)□01归纳类比,然后提出□02猜想的推理叫做合情推理.(2)分类:数学中常用的合情推理有□03归纳推理和□04类比推理.(3)归纳和类比推理的定义、特征3.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,简言之,演绎推理是由一般到□01特殊的推理.(2)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.1.概念辨析(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( ) (3)a x +y =a x ·a y 与sin(α+β)类比,则有sin(α+β)=sin α·sin β.( )(4)演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.( )答案 (1)× (2)√ (3)× (4)√ 2.小题热身(1)①已知a 是三角形一边的长,h 是该边上的高,则三角形的面积是12ah ,如果把扇形的弧长l ,半径r 分别看成三角形的底边长和高,可得到扇形的面积为12lr ;②由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+(2n -1)=n 2,则①②两个推理过程分别属于( )A .类比推理、归纳推理B .类比推理、演绎推理C .归纳推理、类比推理D .归纳推理、演绎推理答案 A解析 ①由三角形的面积公式得到扇形的面积公式有相似之处,此种推理为类比推理;②由特殊到一般,此种推理为归纳推理.(2)正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确答案 C解析 f (x )=sin(x 2+1)不是正弦函数.(3)已知数列{a n }中,a 1=1,n ≥2时,a n =a n -1+2n -1,依次计算a 2,a 3,a 4后,猜想a n 的表达式是( )A .a n =3n -1B .a n =4n -3C .a n =n 2D .a n =3n -1答案 C解析 a 1=1,a 2=4,a 3=9,a 4=16,猜想a n =n 2.(4)对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“__________________________”,这个类比命题的真假性是________.答案 夹在两个平行平面间的平行线段相等 真命题 解析 由类比推理可知.题型 一 类比推理1.等差数列{a n }的公差为d ,前n 项的和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d2.类似地,若各项均为正数的等比数列{b n }的公比为q ,前n 项的积为T n ,则等比数列{nT n }的公比为( )A.q 2 B .q 2 C.q D.n q 答案 C解析 ∵在等差数列{a n }中前n 项的和为S n 的通项,且可写成S n n =a 1+(n -1)×d2.所以在等比数列{b n }中应研究前n 项的积为T n 的开n 次方的形式.类比可得nT n =b 1(q )n -1,其公比为q .2.在平面几何中,△ABC 的∠C 的平分线CE 分AB 所成线段的比为AC BC =AEBE .把这个结论类比到空间:在三棱锥A -BCD 中(如图),平面DEC 平分二面角A -CD -B 且与AB 相交于E ,则得到类比的结论是________.答案 AE EB =S △ACD S △BCD解析 由平面中线段的比转化为空间中面积的比可得AE EB =S △ACDS △BCD.1.类比推理的四个角度和四个原则 (1)四个角度类比推理是由特殊到特殊的推理,可以从以下几个方面考虑类比: ①类比的定义:如等差、等比数列的定义; ②类比的性质:如椭圆、双曲线的性质; ③类比的方法:如基本不等式与柯西不等式;④类比的结构:如三角形的内切圆与三棱锥的内切球.(2)四个原则①长度类比面积;②面积类比体积;③平面类比空间;④和类比积,差类比商.见举例说明.2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).3.常见的类比推理题型的求解策略在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:(1)找两类对象的对应元素,如三角形对应三棱锥,圆对应球,面积对应体积等等;(2)找对应元素的对应关系,如两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.(2018·厦门模拟)已知圆:x2+y2=r2上任意一点(x0,y0)处的切线方程为x0x+y0y=r2.类比以上结论,有双曲线x2a2-y2b2=1上任意一点(x0,y0)处的切线方程为________.答案x0xa2-y0yb2=1解析设圆上任一点为(x0,y0),把圆的方程中的x2,y2替换为x0x,y0y,则得到圆的切线方程;类比这种方式,设双曲线x2a2-y2b2=1上任一点为(x0,y0),则切线方程为x0xa2-y0yb2=1(这个结论是正确的,证明略).题型二归纳推理角度1 与数字有关的归纳推理1.从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A .2018B .2019C .2020D .2021 答案 D解析 根据题干图所示的规则排列,设最上层的一个数为a ,则第二层的三个数为a +7,a +8,a +9,第三层的五个数为a +14,a +15,a +16,a +17,a +18,这九个数之和为a +3a +24+5a +80=9a +104.由9a +104=2021,得a =213,是自然数,故选D.角度2 与式子有关的归纳推理 2.(2016·山东高考)观察下列等式: ⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2;⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3;⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2 =43×3×4;⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2 =43×4×5;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高考数学一轮复习第十一章复数算法推理与证明第三节合情推理与演绎推理夯基提能作业本文(I)1.观察下列各式:55=3 125,56=15 625,57=78 125,……,则52 017的末四位数字为( )A.3 125B.5 625C.0 625D.8 1252.观察(x2)'=2x,(x4)'=4x3,(cos x)'=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x)B.-f(x)C.g(x)D.-g(x)3.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,……,则a10+b10=( )A.28B.76C.123D.1994.给出以下数对序列:(1,1)(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1)……记第i行的第j个数对为a ij,如a43=(3,2),则a nm=( )A.(m,n-m+1)B.(m-1,n-m)C.(m-1,n-m+1)D.(m,n-m)5.(xx北京,8,5分)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛6.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,……,按此规律,以f(n)表示第n个图的蜂巢总数.则f(4)= , f(n)= .7.(xx北京朝阳一模)甲乙两人做游戏,游戏的规则如下:两人轮流从1(1必须报)开始连续报数,每人一次最少要报一个数,最多可以连续报7个数(如,一个人先报数“1,2”,则下一个人可以有“3”,“3,4”,…,“3,4,5,6,7,8,9”等七种报数方法),谁抢先报到“100”则谁获胜.如果从甲开始,则甲要想获胜,第一次报的数应该是.8.(xx北京东城一模)已知甲、乙、丙三人组成考察小组,每个组员最多可以携带供本人在沙漠中生存36天的水和食物,且计划每天向沙漠深处走30千米,每个人都可以在沙漠中将部分水和食物交给其他人,然后独自返回.若组员甲与其他两个人合作,且要求三个人都能够安全返回,则甲最远能深入沙漠千米.B组提升题组9.(xx北京朝阳期中)5个黑球和4个白球从左到右任意排成一排,下列说法正确的是( )A.总存在一个黑球,它右侧的白球和黑球一样多B.总存在一个白球,它右侧的白球和黑球一样多C.总存在一个黑球,它右侧的白球比黑球少一个D.总存在一个白球,它右侧的白球比黑球少一个10.(xx北京海淀一模)如图,在公路MN(图中粗线)两侧分别有A1,A2,…,A7七个工厂,各工厂与公路MN之间有小公路连接.现在需要在公路MN上设置一个车站,选择站址的标准是“使各工厂到车站的距离之和越小越好”,则下面结论中正确的是( )①车站的位置设在C点好于B点;②车站的位置设在B点与C点之间任意一点效果一样;③车站位置的设置与各段小公路的长短无关.A.①B.②C.①③D.②③11.(xx北京海淀一模)某生产基地有五台机器设备,现有五项工作待完成,每台机器完成每项工作获得的效益值如下表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列描述正确的是( )A.甲只能承担第四项工作B.乙不能承担第二项工作C.丙可以不承担第三项工作D.获得的效益值总和为7812.(xx北京丰台一模)某校举行了以“重温时代经典,唱响回声嘹亮”为主题的歌咏比赛.该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖.比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,乙同学说:“2班没有获奖,3班获奖了”,丙同学说:“1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”.已知这四人中有且只有两人的说法是正确的,则这两人是( )A.乙,丁B.甲,丙C.甲,丁D.乙,丙13.(xx北京朝阳二模)“现代五项”是由现代奥林匹克之父顾拜旦先生创立的运动项目,包含射击、击剑、游泳、马术和越野跑五项运动.已知甲、乙、丙共三人参加“现代五项”,规定每一项运动的前三名得分分别为a,b,c(a>b>c且a,b,c∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙获得了马术比赛的第一名,则游泳比赛的第三名是( )A.甲B.乙C.丙D.乙和丙都有可能14.(xx北京朝阳一模)如图,A,B,C三个开关控制着1,2,3,4号四盏灯.若开关A控制着2,3,4号灯(即按一下开关A,2,3,4号灯亮,再按一下开关A,2,3,4号灯熄灭),同样,开关B控制着1,3,4号灯,开关C控制着1,2,4号灯,开始时,四盏灯都亮着,那么下列说法正确的是( )A.只需要按开关A,C可以将四盏灯全部熄灭B.只需要按开关B,C可以将四盏灯全部熄灭C.按开关A,B,C可以将四盏灯全部熄灭D.按开关A,B,C无法将四盏灯全部熄灭15.(xx北京西城二模)在某中学的“校园微电影节”活动中,学校将从微电影的“点播量”和“专家评分”两个角度来进行评优.若A电影的“点播量”和“专家评分”中至少有一项高于B电影,则称A电影不亚于B电影.已知共有5部微电影参展,如果某部电影不亚于其他4部,那么就称此部电影为优秀影片.那么在这5部微电影中,最多可能有部优秀影片.答案精解精析A组基础题组1.A 55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,510=9 765 625,……,可得59与55,510与56的末四位数字相同,……,由此可归纳出5m+4k与5m(k∈N*,m=5,6,7,8)的末四位数字相同,又xx=4×503+5,所以52 017与55的末四位数字相同,故52 017的末四位数字为3 125,故选A.2.D 由已知归纳得,偶函数的导函数为奇函数,又由题意知f(x)是偶函数,所以其导函数应为奇函数,故g(-x)=-g(x).选D.3.C 解法一:由a+b=1,a2+b2=3得ab=-1,则a10+b10=(a5+b5)2-2a5b5=123,故选C.解法二:令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,a5=11,……,得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123,故选C.4.A 由前4行的特点,归纳可得:若a nm=(x,y),则x=m,y=n-m+1,∴a nm=(m,n-m+1).5.B 因为这10名学生中进入立定跳远决赛的有8人,故立定跳远成绩排名最后的9号和10号学生就被淘汰了.又因为同时进入立定跳远决赛和30秒跳绳决赛的有6人,则1~8号学生中必有2人被淘汰,因为a-1<a,其余数字最小的为60,故有以下几种情况:①若a-1≥63,此时淘汰的不止2人,故此种情况不可能;②若a-1<a<60,此时被淘汰的为2号和8号;③若60≤a-1<a≤63,此时被淘汰的为4号和8号.综上,8,9,10号学生一定会被淘汰,2号有可能会被淘汰,故选B.6.答案37;3n2-3n+1解析因为f(1)=1, f(2)=7=1+6, f(3)=19=1+6+12,所以f(4)=1+6+12+18=37,所以f(n)=1+6+12+18+…+6(n-1)=3n2-3n+1.7.答案1,2,3,4解析甲先报1,2,3,4,然后不管乙报几个数,甲只需要每次报数的个数与乙报数的个数和为8即可,因为100-4=96=8×12,故12轮过后,甲获胜.8.答案810解析设x天后,第一次有人返程,不妨设丙,则丙已经消耗了x天的水和食物,丙安全返程仍需x天的水和食物,所以丙剩余(36-2x)天的水和食物给甲和乙,甲乙二人各得(18-x)天的水和食物.若要甲能深入沙漠最远,则(18-x)+(36-x)=36,解得x=9.设又过了y天,乙也返程,乙安全返程需要(9+y)天的水和食物,所以乙能够留给甲[36-y-(9+y)]天的水和食物,要使甲能够深入沙漠最远,则[36-y-(9+y)]+(36-y)=36,解得y=9.设再过z天,甲返程,此时9+9+z=36-z,解得z=9.综上,甲最远能深入沙漠30×(9+9+9)=810千米.B组提升题组9.A 5为奇数,4为偶数,且5>4,故总存在一个黑球,它右侧的白球和黑球一样多,故选A.10.C 如图.∵A、D、E点各有一个工厂相连,B,C点各有两个工厂相连,把工厂看作“人”,可简化为“A、B、C、D、E处分别站着1,2,2,1,1个人,求一点,使所有人走到这一点的距离和最小”.把人尽量靠拢,显然把人聚到B,C最合适,靠拢完的结果变成B点有3人,C点有4人,显然移动3个人比移动4个人的路程少.所以车站设在C点好于B点,且与各段小公路的长度无关.故选C.11.B 甲与戊均可承担第二、四项工作,乙承担第一项工作,丙承担第三项工作,丁承担第五项工作,获得的效益值总和为79.12.B 由题意可知乙与丁的说法同时正确或者同时错误.若乙与丁的说法同时正确,根据乙的说法:“2班没有获奖,3班获奖了”知中奖情况有两种:1班和3班获奖或者4班和3班获奖,两种情况都说明丙同学的说法正确,这样就有丙,乙,丁三位同学的说法正确,所以不符合题意,故只能乙、丁两位同学的说法同时错误,从而知甲、丙两位同学的说法正确,故选B. 13.D 由题意可知,五项运动前三名得分总和为22+9×2=40分,故每项运动前三名得分总和为a+b+c=40÷5=8分(a>b>c且a,b,c∈N*).(1)当c≥2时,乙、丙的最低得分大于或等于2×5=10分,不符合题意,故c=1,b>1;(2)当b≥3时,a≤4,甲最高得分小于或等于4×5=20分,不符合题意,故b=2,于是可得a=5,b=2,c=1.由乙获得了马术比赛的第一名可知乙在该项运动得分为5分,又乙最终得分为9分,所以乙在其余四项运动中得分均为1分,即均为第三名.因为甲最终得22分,所以甲必须得四个第一名,一个第二名,此时,丙获得三个第二名,一个第三名.故游泳比赛的第三名可能是乙或丙.14.D 由题意易排除A,B.假设按a次A开关,b次B开关,c次C开关后四盏灯全部熄灭,则1号灯变化了(b+c)次,2号灯变化了(a+c)次,3号灯变化了(a+b)次,4号灯变化了(a+b+c)次.要想让4盏灯全部熄灭,每个灯都应变化奇数次,即b+c,a+c,a+b,a+b+c均为奇数,所以(a+b)+(b+c)+(a+c)+(a+b+c)=3(a+b+c)应为偶数,这与a+b+c为奇数矛盾,故选D.15.答案 5解析将这5部电影分别记为A、B、C、D、E.若点播量和专家评分(5分制)如下表,则优秀影片最多.对于A电影,专家评分高于B、C、D、E,则A为优秀影片.对于B电影,点播量高于A,则B不亚于A;专家评分高于C、D、E,则B不亚于C、D、E,故B为优秀影片. 同理,C、D、E均为优秀影片.2019-2020年高考数学一轮复习第十一章复数算法推理与证明第三节合情推理与演绎推理夯基提能作业本文1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.121B.123C.231D.2112.观察(x2)'=2x,(x4)'=4x3,(cos x)'=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x)B.-f(x)C.g(x)D.-g(x)3.某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A.21B.34C.52D.554.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=,类比这个结论可知:四面体S-ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体S-ABC的体积为V,则R=( )A. B. C. D.5.学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有( )A.2人B.3人C.4人D.5人6.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为.7.(xx河北沧州联考)在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说:“甲说的对”;丁说:“反正我不用负主要责任”.四个人中只有一个人说的是真话,则该事故中需要负主要责任的人是.8.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……,则第60个“整数对”是.9.已知函数f(x)=-(a>0,且a≠1).(1)证明:函数y=f(x)的图象关于点对称;(2)求f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)的值.10.给出下面的数表序列:表1 表2 表31 1 3 1 3 54 4 8 …12其中表n(n=1,2,3,…)有n行,第1行的n个数是1,3,5,…,2n-1,从第2行起,每行中的每个数都等于它肩上的两数之和.写出表4,验证表4各行中的数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明).B组提升题组1.袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多2.有一个游戏:将标有数字1、2、3、4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲:乙或丙拿到标有3的卡片;乙:甲或丙拿到标有2的卡片;丙:标有1的卡片在甲手中;丁:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到的卡片上的数字依次为.3.(xx山东德州调研)定义“等和数列”:在一个数列中,如果每一项与它后一项的和都是同一常数,那么这个数列叫“等和数列”,这个常数叫做这个数列的公和.已知数列{a n}是等和数列,且a1=2,公和为5,求:(1)a18的值;(2)该数列的前n项和S n.4.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f '(x)是函数f(x)的导函数, f ″(x)是函数f '(x)的导函数,若方程f ″(x)=0有实数解x0,则称点(x0, f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f(x)=x3-x2+3x-,请你根据这一发现,(1)求函数f(x)的对称中心;(2)计算f+f+f+f+…+f.答案精解精析A组基础题组1.B 解法一:由a+b=1,a2+b2=3得ab=-1,则a10+b10=(a5+b5)2-2a5b5=123,故选B.解法二:令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,a5=11,……,得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123,故选B.2.D 由已知归纳得,偶函数的导函数为奇函数,又由题意知f(x)是偶函数,所以其导函数应为奇函数,故g(-x)=-g(x).选D.3.D 因为2=1+1,3=2+1,5=3+2,即从第三项起每一项都等于前两项的和,所以第10年树的分枝数为21+34=55.4.C 设四面体的内切球的球心为O,那么V=V O-ABC+V O-SAB+V O-SAC+V O-SBC,∴V=S1R+S2R+S3R+S4R,可得R=.故选C.5.B 设学生人数为n,因为成绩评定只有“优秀”“合格”“不合格”三种情况,所以当n≥4时,语文成绩至少有两人相同,若此两人数学成绩也相同,与“任意两人成绩不全相同”矛盾;若此两人数学成绩不同,则此两人有一人比另一人成绩好,也不满足条件.因此:n<4,即n≤3.当n=3时,评定结果分别为“优秀,不合格”“合格,合格”“不合格,优秀”,符合题意,故n=3,选B.6.答案 A解析由三人去过同一城市,且甲没去过B城市、乙没去过C城市知,三人去过的同一城市为A,由甲去过的城市比乙多可判断乙去过的城市为A.7.答案甲解析若负主要责任的人是甲,则甲、乙、丙说的都是假话,只有丁说的是真话,符合题意;若负主要责任的人是乙,则甲、丙、丁说的都是真话,不符合题意;若负主要责任的人是丙,则乙、丁说的都是真话,不符合题意;若负主要责任的人是丁,则甲、乙、丙、丁说的都是假话,不符合题意.故该事故中需要负主要责任的人是甲.8.答案(5,7)解析把“整数对”中两个数字的和相同的分为一组,得知第n组中每个“整数对”中两个数字的和均为n+1,且第n组共有n个“整数对”,则前n组一共有个“整数对”,注意到<60<,因此第60个“整数对”处于第11组(每个“整数对”中两个数字的和为12的组)的第5个位置,结合题意可知每个“整数对”中两个数字的和为12的组中各对数依次为(1,11),(2,10),(3,9),(4,8),(5,7),……,因此第60个“整数对”是(5,7).9.解析(1)证明:函数f(x)的定义域为R,任取一点(x,y),它关于点对称的点的坐标为(1-x,-1-y).由已知y=-,则-1-y=-1+=-,f(1-x)=-=-=-=-,所以-1-y=f(1-x),即函数y=f(x)的图象关于点对称.(2)由(1)知-1-f(x)=f(1-x),即f(x)+f(1-x)=-1.所以f(-2)+f(3)=-1, f(-1)+f(2)=-1, f(0)+f(1)=-1.故f(-2)+f(-1)+f(0)+f(1)+f(2)+f(3)=-3.10.解析表4为1 3 5 74 8 1212 2032它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列.将这一结论推广到表n(n≥3),即表n(n≥3)各行中的数的平均数按从上到下的顺序构成首项为n,公比为2的等比数列.B组提升题组1.B 解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C错误.故选B.解法二:设袋中共有2n个球,最终放入甲盒中k个红球,放入乙盒中s个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k个球,其中红球有s个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s个.所以乙盒中红球与丙盒中黑球一样多.故选B.2.答案4、2、1、3解析由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4、2、1、3.3.解析(1)由等和数列的定义,及数列{a n}是等和数列,且a1=2,公和为5,易知a2n-1=2,a2n=3(n=1,2,…),故a18=3.(2)当n为偶数时,S n=a1+a2+…+a n=(a1+a3+…+a n-1)+(a2+a4+…+a n)=+=n;当n为奇数时,若n>1,则S n=S n-1+a n=(n-1)+2=n-,又S1=a1=2满足上式,∴当n为奇数时,S n=n-.综上所述,S n=4.解析(1)f '(x)=x2-x+3,f ″(x)=2x-1,由f ″(x)=0,即2x-1=0,解得x=.f=×-×+3×-=1.由题中给出的结论,可知函数f(x)=x3-x2+3x-的对称中心为.(2)由(1)知函数f(x)=x3-x2+3x-的对称中心为,所以f+f=2,即f(x)+f(1-x)=2.故f+f=2,f+f=2,f+f=2,……f+f=2.所以f+f+f+f+…+f=×2×2 016=2 016.。