九年级下册第二单元_二次函数_试题(二)[1]
(完整)九年级下数学第二章二次函数测试题及答案,推荐文档

y
1
A O
B
1
x
16 题图
三、解答题: 1. 已知函数 y x 2 bx 1 的图象经过点(3,2).
(1)求这个函数的解析式; (2)当 x 0 时,求使 y≥2 的 x 的取值范围.
3
2. 如右图,抛物线 y x 2 5x n 经过点 A(1, 0) ,与 y 轴交于点 B.
4. 5. 6.
4
7. 卢浦大桥拱形可以近似地看作抛物线的一部分. 在大桥截面 1:11000 的比例图上去,跨度 AB=5cm,拱高 OC=0.9cm,线段 DE 表示大桥拱 内桥长,DE∥AB,如图(1). 在比例图上,以直线 AB 为 x 轴,抛物 线的对称轴为 y 轴,以 1cm 作为数轴的单位长度,建立平面直角坐标 系,如图(2). (1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函 数定义域; (2)如果 DE 与 AB 的距离 OM=0.45cm,求卢浦大桥拱内实际桥长
(1)求抛物线的解析式; (2)P 是 y 轴正半轴上一点,且△PAB 是以 AB 为腰的等腰三角形,
试求点 P 的坐标.
y
OA
1
x
-1
B
3. 某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从 亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初 以来累积利润 s(万元)与销售时间 t(月)之间的关系(即前 t 个月 的利润总和 s 与 t 之间的关系). (1)由已知图象上的三点坐标,求累积利润 s(万元)与销售时间 t(月)之间的函数关系式; (2)求截止到几月累积利润可达到 30 万元; (3)求第 8 个月公司所获利润是多 少万元?
九年级下册 二次函数 测试题及详细解析 XXX版

九年级下册二次函数测试题及详细解析XXX版九年级下册第二章《二次函数》单元测试考试时间:90分钟姓名:___________班级:___________座号:___________一、选择题(每题3分,共30分)1.下列函数中,是二次函数的是()A、y=x-1B、y=2x^2+3xC、y=-x^2+y^2D、y=x+1/x2.抛物线y=-(x-2)^2-3的顶点坐标是()A.(-2,-3)B.(2,3)C.(-2,3)D.(2,-3)3.抛物线y=-x^2向右平移1个单位,再向上平移2个单位,得到新的图象的二次函数表达式是()A。
y=-(x-1)^2+2B。
y=-(x+1)^2+2C。
y=-(x-1)^2-2D。
y=-(x+1)^2-24.把二次函数y=-1/2x^2+x+3用配方法化成y=a(x-h)^2+k的形式()A、y=-1/2(x-2)^2+3B、y=(x-2)^2+4C、y=-2(x-1)^2+2D、y=(x+2)(x-2)+35.已知A(2,y1),B(2,y2),C(-2,y3)是二次函数y=3(x-1)+k图象上三点,则y1、y2、y3的大小关系为()A。
y1>y2>y3B。
y2>y1>y3C。
y3>y2>y1D。
y2>y3>y16.二次函数y=x^2-4x-5的图象的对称轴是()A。
直线x=-2B。
直线x=2C。
直线x=-1D。
直线x=17.二次函数y=kx^2-6x+3的图象与x轴有交点,则k的取值范围是()A。
k<3B。
k<3且k≠0C。
k≤3D。
k≤3且k≠08.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm),则y与x(≤x≤8)之间的函数关系可用图象表示为()9.二次函数y=ax^2+bx+c的图象如下图所示,则反比例函数y=a/x与一次函数y=bx+c在同一坐标系中的大致图象是()二、填空题(每题4分,共20分)1.抛物线y=2x^2-4x+3的对称轴方程是x=______。
(典型题)初中数学九年级数学下册第二单元《二次函数》测试(有答案解析)

一、选择题1.已知关于x 的一元二次方程()()250x m n x mn m n -++-=<有两个不相等的实数根(),,a b a b <则实数,,,m n a b 的大小关系可能是( )A .m a b n <<<B .m a n b <<<C .a m n b <<<D .a m b n <<<2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) A . B .C .D .3.已知二次函数()()12y a x x x x =--与x 轴的交点是(1,0)和(3,0),关于x 的方程()()12a x x x x m --=(其中0m >)的两个解分别是1-和5,关于x 的方程()()12a x x x x n --=(其中0n m <<)也有两个整数解,这两个整数解分别是( ) A .1和4 B .2和5 C .0和4 D .0和5 4.二次函数2y ax bx c =++的图象如图所示,其对称轴是1x =-,且过点(0,2),下列结论中正确的是( )A .0abc <B .20a b +=C .2am bm a b +<-D .方程220ax bx c ++-=的解为12x =-,20x =5.如图是二次函数()20y ax bx c a =++≠图象的一部分,对称轴是直线12x =,且经过点()20,,下列说法∶①0abc >;②240b ac -<;③1x =-是关于x 的方程20ax bx c ++=的一个根;④0a b +=.其中正确的个数为( )A .1B .2C .3D .46.小凯在画一个开口向上的二次函数图象时,列出如下表格: x… -1 0 1 2 … y … 1 2 1 1 …A .(-1,1)B .(0,2)C .(1,1)D .(2,1) 7.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2156s t t =-.汽车刹车后到停下来前进了多远?( )A .10.35mB .8.375mC .8.725mD .9.375m 8.已知二次函数y =x 2﹣4x +m 2+1(m 是常数),若当x =a 时,对应的函数值y <0,则下列结论中正确的是( )A .a ﹣4<0B .a ﹣4=0C .a ﹣4>0D .a 与4的大小关系不能确定9.已知抛物线2y x bx c =-++的顶点在直线y=3x+1上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为( )A .134B .154C .238D .258 10.二次函数()210y ax bx c a =++>的图象与x 轴的一个交点为()3,0-,对称轴为直线1x =-,一次函数()20y kx n k =+<的图象过点()3,0-和二次函数()210y ax bx c a =++>图象的顶点.下列结论:( )①0abc <;②若31x -<<-,则12y y <;③若二次函数1y 的值大于0,则1x >;④过动点(),0P m 且垂直于x 轴的直线与函数12,y y 的图象的交点分别为,C D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-.错误的是( )A .①B .②C .③D .④11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴是直线1x =,下列结论:①0ab <;②24b ac >;③20a b c ++<;④30a c +<.其中正确的是( )A .①②④B .②④C .①②③D .①②③④ 12.已知二次函数2y ax bx c =++的图象如图所示,则下列结论正确的个数有( ) ①0c >;②240b ac -<;③0a b c -+>;④当1x >时,y 随x 的增大而减小A .4个B .3个C .2个D .1个二、填空题13.已知()11y ,,()23y ,是函数226y x x c =-++图像上的点,则1y ,2y 的大小关系是______.14.如图,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ;……如此进行下去,直至得13C .若()1,P m 在1C 上,则m =______.若()37,P n 在第13段抛物线13C 上,则n =______.15.如图,在平面直角坐标系中,点A 从点(0,5)M 出发向原点O 匀速运动,与此同时点B 从点(3,0)N 出发,在x 轴正半轴上以相同的速度向右运动,当点A 到达终点O 时,两点同时停止运动.连接AB ,以线段AB 为边在第一象限内作正方形ABCD ,则正方形ABCD 面积的最小值为____________.16.二次函数y =x 2+2x ﹣4的图象的对称轴是_____,顶点坐标是_____.17.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.18.已知抛物线22y x x c =-+与直线y m =相交于,A B 两点,若点A 的横坐标1A x =-,则点B 的横坐标B x 的值为_______.19.如图,已知点()6,0A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数1y 和过P 、A 两点的二次函数2y 的图像开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当5OD AD ==时,这两个二次函数的最大值之和等于________.20.将抛物线243y x x =-+沿x 轴向左平移2个单位,则平移后抛物线的解析式是__.三、解答题21.扶贫工作小组对果农精准扶贫,帮助果农将一种有机生态水果推广进市场.某水果店从果农处直接批发这种水果,批发价格为每千克24元,当每千克的销售价格定为32元时,每天可售出80千克,根据市场行情,若每千克的销售价格降低0.5元,则每天可多售出10千克(销售单价不低于批发价)现决定降价销售,设这种水果每千克的销售价格为x 元,每天的销售量为y 千克.(1)求每天的销售量y 千克与销售单价x 元之间的函数关系式以及x 的取值范围; (2)当销售单价为多少元时,这种水果每天的销售利润最大,最大利润为多少元? 22.如图,抛物线()220y ax bx a =++≠与x 轴交于()()1,0,3,0A B -两点,与y 轴交于点C .(1)求该抛物线的表达式;(2)若点D 是抛物线上第一象限内的一动点,设点D 的横坐标为m ,连接,,,CD BD BC AC ,当BCD ∆的面积等于AOC ∆面积的2倍时,求m 的值.23.如图,在直角坐标系中,已知直线142y x =-+与y 轴交于A 点,与x 轴交于B 点,C 点的坐标为()2,0-.(1)求经过A ,B ,C 三点的抛物线的表达式;(2)如果M 为抛物线的顶点,连接AM ,BM ,求ABM ∆的面积.(3)抛物线上是否存在一点P ,使12OBP ACO S S ∆∆=?若存在,请求出点P 的坐标;若不存在,请说明理由.24.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ;(2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 .25.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?26.新年前夕,信业超市在销售中发现:某服装平均每天可售出20套,每件盈利40元.为了迎接新年,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.(1)要想平均每天在销售服装上盈利1200元,那么每套应降价多少元?(2)商场要想每天获取最大利润,每套应降价多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设抛物线解析式为y =x 2-(m +n )x +mn -5,根据题意可得当x =a 或x =b 时,y =0,分别求出当x =n ,x =m 时y 的符号,根据二次函数的性质即可得答案.【详解】设抛物线解析式为y=x 2-(m+n)x+mn-5,∵一元二次方程()()250x m n x mn m n -++-=<有两个不相等的实数根(),a b a b <, ∴当x =a 或x =b 时,y =0,∵1>0,∴抛物线y =x 2-(m +n )x +mn -5图象的开口向上,与x 的交点坐标为(a ,0),(b ,0), ∵a <b ,∴当a <x <b 时,y <0,当x =m 时,y =m 2-(m +n )m +mn -5=-5<0,当x =n 时,y=n 2-(m +n )n +mn -5=-5<0,∵m <n ,∴a <m <n <b ,故选:C .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数与一元二次方程之间的关系是解题关键.2.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键. 3.C解析:C【分析】先根据二次函数y=a(x-x 1)(x-x 2)与x 轴的交点是(1,0)和(3,0)判断二次函数的对称轴方程,再根据关于x 的方程a(x-x 1)(x-x 2)=m(其中m>0)的两个解分别是-1和5判断开口方向,最后根据二次函数图象的性质即可得到答案;【详解】∵二次函数y=a(x-x 1)(x-x 2)与x 轴的交点是(1,0)和(3,0),∴得到二次函数的对称轴方程为:x=2,又∵关于x 的方程a(x-x 1)(x-x 2)=m(其中m>0)的两个解分别是-1和5,∴二次函数y=a(x-x 1)(x-x 2)开口向上(远离对称轴的点纵坐标变大),又∵x 的方程a(x-x 1)(x-x 2)=n 也有两个整数解,根据0<n<m 得到解在-1和5之间,∵解为正数且关于x=2对称,故选:C .【点睛】本题主要考查了二次函数图象的性质,根据图象的性质求解二次函数的整数解,熟练掌握二次函数的图象的性质是解题的关键4.D解析:D【分析】根据抛物线的开口方向,对称轴的定义,抛物线的最值,结合图像逐一计算判断即可.【详解】∵抛物线开口向下,∴a <0,∵对称轴在原点的左侧, ∴2b a-<0, ∴b <0, ∵抛物线的对称轴是1x =-,且过点(0,2),∴c=2>0,2b a-= -1即b=2a , ∴abc >0,∴选项A ,B 错误;根据图像知,当x= -1时,函数取得最大值,且最大值为y=a-b+c ,当x=m 时,函数值y=2am bm c ++,∴2am bm c ++≤a -b+c ,∴2am bm a b +≤-,∴选项C 错误;∵c=2,b=2a ,∴方程220ax bx c ++-=变形为220ax ax +=,∵a <0,∴220x x +=,解得12x =-,20x =,∴方程220ax bx c ++-=的解为12x =-,20x =,∴选项D 正确;故选D .【点睛】本题考查了二次函数的开口方向,对称轴,最值问题,熟练掌握最值的意义,对称轴的意义是解题的关键.5.B解析:B【分析】①根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号即可判断;②根据抛物线与x 轴的交点即可判断;③根据二次函数的对称性即可判断;④由对称轴求出=-b a 即可判断.【详解】解:①∵二次函数的图象开口向下,∴0a <,∵二次函数的图象交y 轴的正半轴于一点,∴0c >,∵对称轴是直线12x =, ∴122b a -=, ∴0b a =->,∴0abc <. 故①错误;②∵抛物线与x 轴有两个交点,∴240b ac ->,故②错误;③∵对称轴为直线12x =,且经过点()2,0, ∴抛物线与x 轴的另一个交点为()1,0-,∴1x =-是关于x 的方程20ax bx c ++=的一个根,故③正确;④∵由①中知=-b a ,∴0a b +=,故④正确;综上所述,正确的结论是③④共2个.故选:B .【点睛】本题考查了二次函数的图象和系数的关系的应用,注意:当0a >时,二次函数的图象开口向上,当0a <时,二次函数的图象开口向下.6.A解析:A【分析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论.【详解】解:观察y 值发现y =1时x 有三个不同的值,因此这三个值中必有一对计算错误.由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线032x =,根据二次函数的增减性,当开口向上时,在对称轴的左边,y 随x 的增大而减小,所以1x =-时,y 一定是大于1的,故选A .【点睛】本题考查了二次函数的图象,找出图表数据特点,根据函数的对称性解答即可,熟练掌握二次函数的图象和性质,是解答的关键.7.D解析:D【分析】求出函数的最大值即可得求解.【详解】 ∵22575156648s t t t ⎛⎫--- ⎪⎝⎭==+, ∴当54t =时,s 取得最大值759.3758=,即汽车刹车后到停下来前进的距离是9.375m 故选D .【点睛】 本题主要考查二次函数的应用,根据题意理解其最大值的实际意义是解题的关键. 8.A解析:A【分析】画出函数图象,利用图象法解决问题即可;【详解】解:∵抛物线的对称轴为422x -=-=, 抛物线与x 轴交于点A 、B .如图,设点A 、B 的横坐标分别为12x x 、,124x x +=,2121x x m =+,∴()()()22212121241641x x x x x x m -=+-=-+, ∵210m +>,∴()212x x -的最小值为16, ∴AB <4,∵当自变量x 取a 时,其相应的函数值y <0,∴可知a 表示的点在A 、B 之间,∴40a -<,故选:A .【点睛】本题考查了二次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键. 9.A解析:A【分析】将抛物线顶点坐标代入一次函数解析式,求出b 与c 的关系,再根据抛物线与y 轴交点的纵坐标为c ,即n c =,再利用二次函数的性质即可解答.【详解】抛物线2y x bx c =-++的顶点在3+1y x =上,抛物线2y x bx c =-++的顶点标为(2b 、24b c +)∴23142b bc +=+ 23124b bc ∴=+- 抛物线与y 轴交点的纵坐标为cn c ∴=23124b b n ∴=+- ()21136944n b b ∴=--++ ()2113344n b ∴=--+ n ∴的最大值为134 故选:A .【点睛】本题考查了二次函数的性质,函数图像上点坐标的特征,熟练掌握二次函数性质是解题关键.10.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性,以及一次函数的性质逐个进行判断,即可得出答案.【详解】解:根据题意,∵对称轴12b x a=-=-,0a >, ∴20b a =>, ∵抛物线与x 轴的一个交点为()3,0-,∴另一个交点为()1,0,∴抛物线与y 的负半轴有交点,则0c <,∴0abc <;故①正确;∵一次函数()20y kx n k =+<的图象过点()3,0-和顶点()1,a b c --+,∴若31x -<<-,则12y y <;故②正确;∵抛物线与x 轴的一个交点为()3,0-和()1,0,若二次函数1y 的值大于0,则1x >或3x <-;故③错误;由题意,当12y y >时,有3m <-或1m >-;故④正确;故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.11.C解析:C【分析】根据函数的图像分别确定各项系数的正负,再由对称轴和与x 轴的交点即可解题.【详解】∵抛物线开口向上,∴a>0,∵抛物线与y 轴的交点在x 轴下方,∴c<0,抛物线的对称轴为直线x=-b 2a =10>,即02<b a0a >0b ∴<∴ab<0,所以①正确;∵抛物线与x 轴有2个交点,∴△=b 2-4ac>0,所以②正确;∵x=1时,y<0,∴a+b+c<0,而c<0,∴a+b+2c<0,所以③正确;∵抛物线的对称轴为直线x=-b 2a =1, ∴b=-2a ,而x=-1时,y>0,即a-b+c>0,∴a+2a+c>0,即30a c +>所以④错误.故选C .【点睛】本题考查了二次函数的图像与性质,属于简单题,熟悉二次函数的图像性质是解题关键. 12.B解析:B【分析】根据二次函数的图象与y 轴的交点判断c 的正负;根据二次函数的图象与x 轴交点个数,判断②的正确性;根据1x =-时,y 取值的正负,判断③的正确性;根据图象中函数的增减性判断④的正确性.【详解】解:∵二次函数的图象与y 轴的交点在正半轴,∴0c >,故①正确;∵二次函数的图象与x 轴有两个交点,∴方程20ax bx c ++=有两个不相同的实数根,∴240b ac ->,故②错误;当1x =-时,0y >,即0a b c -+>,故③正确;根据图象,当1x >时,y 随x 的增大而减小,故④正确.故选:B .【点睛】本题考查二次函数,解题的关键是根据二次函数的图象分析解析式中系数的关系.二、填空题13.【分析】经过配方后确定抛物线的对称轴进而确定抛物线的增减性根据自变量的大小关系可确定函数值的大小关系【详解】解:∵∴抛物线的对称轴为∵a=-2<0∴抛物线开口向下∵1比3更接近对称轴∴故答案为:【点解析:12y y >【分析】经过配方后确定抛物线的对称轴,进而确定抛物线的增减性,根据自变量的大小关系可确定函数值的大小关系.【详解】解:∵()2223926=23222y x x c x x c x c ⎛⎫=-++--+=--++ ⎪⎝⎭ ∴抛物线的对称轴为32x =∵a=-2<0∴抛物线开口向下 ∵1比3更接近对称轴,∴12y y >故答案为:12y y >.【点睛】本题考查了二次函数值的大小比较,根据二次函数的解析式确定对称轴的位置是解题的关键.14.2【分析】把点P (1m )坐标代入y =﹣x (x ﹣3)即可求出m 的值再求出抛物线C1与x 轴的交点坐标观察图形可知第奇数号抛物线都在x 轴上方然后求出到抛物线C13平移的距离再根据向右平移横坐标加表示出抛物解析:2【分析】把点P(1,m)坐标代入y=﹣x(x﹣3)即可求出m的值,再求出抛物线C1与x轴的交点坐标,观察图形可知第奇数号抛物线都在x轴上方,然后求出到抛物线C13平移的距离,再根据向右平移横坐标加表示出抛物线C13的解析式,然后把点P的坐标代入计算即可得解.【详解】解:∵点P(1,m)在C1上,∴m=﹣1×(1﹣3)=2,令y=0,则﹣x(x﹣3)=0,解得x1=0,x2=3,∴A1(3,0),由图可知,抛物线C13在x轴上方,相当于抛物线C1向右平移6×6=36个单位得到,∴抛物线C13的解析式为y=﹣(x﹣36)(x﹣36﹣3)=﹣(x﹣36)(x﹣39),∵P(37,m)在第13段抛物线C13上,∴m=﹣(37﹣36)(37﹣39)=2.故答案为:2,2.【点睛】本题考查了二次函数图象与几何变换,利用点的变化确定函数图象的变化更简便,平移的规律:左加右减,上加下减.15.32【分析】根据题意可以得到OA+OB的关系再根据勾股定理和二次函数的性质即可得到正方形ABCD面积的最小值【详解】解:由题意可得NB=MA则AO+OB=8设AO=x则OB=8-x∵S正方形ABCD解析:32【分析】根据题意,可以得到OA+OB的关系,再根据勾股定理和二次函数的性质,即可得到正方形ABCD面积的最小值.【详解】解:由题意可得,NB=MA,则AO+OB=8,设AO=x,则OB=8-x,∵S正方形ABCD=AB2=AO2+OB2=x2+(8-x)2=2(x-4)2+32,∴当x=4时,正方形ABCD的面积取得最小值32,故答案为:32.【点睛】本题考查了正方形的性质、坐标与图形的性质、二次函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.直线x=﹣1(﹣1﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x2+2x ﹣4=(x+1)2﹣5∴该函数图象的对称轴是直线x =﹣1顶点坐标为(﹣1﹣5)故答案为:直线x =﹣1(﹣1﹣5)【解析:直线x =﹣1 (﹣1,﹣5)【分析】把一般式化为顶点式计算即可;【详解】∵y =x 2+2x ﹣4=(x +1)2﹣5,∴该函数图象的对称轴是直线x =﹣1,顶点坐标为(﹣1,﹣5),故答案为:直线x =﹣1,(﹣1,﹣5).【点睛】本题主要考查了二次函数对称轴和顶点坐标的求解,准确计算是解题的关键. 17.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴ 解析:2564b -<<- 【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --; ∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.18.3【分析】根据题意AB 的纵坐标相同先根据A 的横坐标求得纵坐标把纵坐标代入解析式解关于x 的方程即可求得【详解】解:把xA=-1代入y=x2-2x+c 得y=1+2+c=3+c ∴A (-13+c )∵抛物线y解析:3【分析】根据题意A 、B 的纵坐标相同,先根据A 的横坐标求得纵坐标,把纵坐标代入解析式,解关于x 的方程即可求得.【详解】解:把x A =-1代入y=x 2-2x+c 得,y=1+2+c=3+c ,∴A (-1,3+c ),∵抛物线y=x 2-2x+c 与直线y=m 相交于A ,B 两点,∴B 的纵坐标为3+c ,把y=3+c 代入y=x 2-2x+c 得,3+c=x 2-2x+c ,解得x=-1或x=3,∴点B 的横坐标x B 的值为3,故答案为3.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,明确A 、B 的纵坐标相同是解题的关键.19.4【分析】过B 作BF ⊥OA 于F 过D 作DE ⊥OA 于E 过C 作CM ⊥OA 于M 则BF+CM 是这两个二次函数的最大值之和BF ∥DE ∥CM 求出AE=OE=3DE=4设P (2x0)根据二次函数的对称性得出OF=P解析:4【分析】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=3,DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BF OF DE OE =,CM AM DE AE=,代入求出BF 和CM ,相加即可求出答案. 【详解】解:过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM ,∵OD=AD=5,DE ⊥OA ,∴OE=EA=12OA=3, 由勾股定理得:DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE ,∴BF OF DE OE =,CM AM DE AE=, ∵AM=PM=12(OA-OP )=12(6-2x )=3-x , 即43BF x =,343CM x -=, 解得:BF=43x ,CM=4-43x ,∴BF+CM=4.故答案为4.【点睛】此题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.20.y=x2-1【分析】先把抛物线写成顶点式再写出平移后的顶点根据顶点式可求平移后抛物线的解析式【详解】解:∴原抛物线顶点坐标为(2-1)向左平移2个单位平移后抛物线顶点坐标为(0-1)∴平移后抛物线解解析:y=x 2-1【分析】先把抛物线写成顶点式,再写出平移后的顶点,根据顶点式可求平移后抛物线的解析式.【详解】解:()22-4+3-2-1y x x x ==,∴原抛物线顶点坐标为(2,-1),向左平移2个单位,平移后抛物线顶点坐标为(0,-1), ∴平移后抛物线解析式为:21y x =-,故答案为:21y x =-.【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式. 三、解答题21.(1)()207202432y x x -+≤≤= ;(2)当销售单价为30元时,这种水果每天的销售利润最大,最大利润为720元.【分析】(1)根据题意,可以写出每天的销售量y 千克与销售单价x 元之间的函数关系式以及x 的取值范围;(2)根据题意和(1)中的函数解析式,可以得到利润与x 的函数关系,然后根据二次函数的性质,即可得到当销售单价为多少元时,这种水果每天的销售利润最大,最大利润为多少元.【详解】解:(1)由题意可得:328010207200.5x y x -=+⨯=-+ ∵销售单价不低于批发价,∴2432x ≤≤,即每天的销售量y 千克与销售单价x 元之间的函数关系式是()207202432y x x =-+≤≤;(2)设销售利润为w 元,由题意可得,()()()224207202030720w x x x =--+=--+ ,∴当x =30时,w 取得最大值,此时w =720,即当销售单价为30元时,这种水果每天的销售利润最大,最大利润为720元.【点睛】本题考查一次函数、二次函数的应用;关键在于明确题意,列出相应的关系式,利用二次函数的性质解决.22.(1)224233y x x =-++;(2)1或2. 【分析】(1)利用待定系数法,转化为二元一次方程组求解即可;(2)利用抛物线的解析式,用含有m 的代数式表示BCD ∆的面积,建立数量关系等式求解即可.【详解】.解:(1)把()()1,0,3,0A B -代入22y ax bx =++中,得209320a b a b -+=⎧⎨++=⎩, 解得2343a b ⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的表达式为224233y x x =-++; (2)过点D 作y 轴平行线交BC 于点E , 把0x =代入224233y x x =-++中, 得2y =,∴()0,2C ,又∵()3,0B ,∴直线BC 的表达式为223y x =-+. ∵224,233⎛⎫-++ ⎪⎝⎭D m m m , ∴2,23⎛⎫-+ ⎪⎝⎭E m m , ∴2224222223333DE m m m m m ⎛⎫⎛⎫=-++--+=-+ ⎪ ⎪⎝⎭⎝⎭.由2BCD AOC S S ∆∆=得: 11222DE OB OA OC =, ∴212123212232m m ⎛⎫⨯-+⨯=⨯⨯⨯ ⎪⎝⎭, 整理得2320m m -+=,解得121,2m m ==,∵03m <<,∴m 的值为1或2.【点睛】本题考查了二次函数解析式的确定,用二次函数的解析式表示三角形的面积,熟练利用二次函数的解析式表示指定三角形的面积是解题的关键.23.(1)213442y x x =-++;(2)5;(3)存在,点P 的坐标为:()3+21,1或()3-21,1或()3+29,1或()3-29,1 【分析】(1)先利用一次函数解析式确定A (0,4),B (8,0),再设交点式y=a (x+2)(x-8),然后把A 点坐标代入求出a 即可得到抛物线解析式; (2)作MD ⊥x 轴于D ,交AB 于E ,再根据ABM ∆的面积=AEM ∆的面积+BEM ∆的面积得出结论;(3)根据12OBP ACO S S ∆∆=得出2∆=OBP S ,再根据点P 在抛物线上,得出y 1=±P ,从而得出点P 的坐标;【详解】解:(1)当x=0时,142y x =-+=4,则A (0,4), 当y=0时,142x -+=0,解得x=8,则B (8,0), 设抛物线解析式为y=a (x+2)(x-8),把A (0,4)代入得a•2•(-8)=4,解得14a =-,∴抛物线解析式为1(2)(8)4=-+-y x x ∴213442y x x =-++ (2)∵213442y x x =-++ ∴2125(3)44y x =--+ ∴25(3,)4M 作MD ⊥x 轴于D ,交AB 于E ,如图,把x=3代入142y x =-+得出52y =; ∴25515424EM =-=, ∴ABM ∆的面积=AEM ∆的面积+BEM ∆的面积=1115815224EM OB ⨯⨯=⨯⨯=; (3)存在理由如下:∵1142422∆=⨯⨯=⨯⨯=ACO S OA OC , ∵12OBP ACO S S ∆∆=, ∴11y 8y 422P P OB ⨯⨯=⨯⨯=, ∴y 1=P ;∴y 1=±P ;∵点P 在抛物线上,∴2134=142-++x x 或2134=-142-++x x 解得:121x ,2=3-21x 3=3+29x 4=3+29x ∴点P 的坐标为:()3+21,1或()3-21,1或()3+29,1或()3-29,1【点睛】本题考查了二次函数综合题,涉及待定系数法求二次函数的解析式,三角形的面积公式等知识,根据题意作出图形,利用数形结合求解是解答此题的关键.24.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y =x +3分别交x 轴和y 轴于点A 和B ,∴点A (﹣3,0),点B (0,3),∵抛物线的对称轴为直线x =﹣2.抛物线与x 轴的另一个交点为C ,∴点C (﹣1,0),故答案为(﹣1,0);(2)∵抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (0,3),点C (﹣1,0),∴30930c a b c a b c =⎧⎪=-+⎨⎪=-+⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y =x 2+4x +3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.25.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x > 【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可.【详解】解:(1)∵抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,抛物线()214y a x =++过点(0,3), 4=3a +,1a =-,抛物线的解析式为()214y x =-++; (2)列表:x… -3 -2 -1 0 1 … y… 0 3 4 3 0 … 0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧,当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键.26.(1)应降价20元;(2)每套应降价15元【分析】(1)设每件衬衫应降价x 元,利用每件利润×总销量=总利润,列方程求解即可; (2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)解:设每件衬衫应降价x 元,根据题意,得()()402021200x x -+=,整理,得22604000x x -+=,解得110x =,220x =.∵尽快减少库存,∴20x答:应降价20元.(2)解:设每件衬衫应降价x 元,总利润为W 元,根据题意,得.()()40202W x x =-+2260800x x =-++, 当152b x a=-=时,利润最大, ()()4015202151250W =-+⨯=最大利润.【点睛】此题主要考查了一元二次方程以及二次函数的应用,正确利用每件利润×总销量=总利润得出关系式是解题关键.。
(必考题)初中数学九年级数学下册第二单元《二次函数》测试题(含答案解析)

一、选择题1.已知关于x 的一元二次方程()()250x m n x mn m n -++-=<有两个不相等的实数根(),,a b a b <则实数,,,m n a b 的大小关系可能是( )A .m a b n <<<B .m a n b <<<C .a m n b <<<D .a m b n <<<2.如图在平面直角坐标系中,点A 在抛物线245y x x =-+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,则对角线BD 的最小值为( )A .4B .3C .2D .13.已知二次函数2y x bx c =-+与x 轴只有一个交点,且图象经过两点A (1,n ),B (m +2,n ),则m 、n 满足的关系为( )A .24m n =B .22m n =C .()214m n +=D .()212m n +=4.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .5.如图,已知ABC 中,,120,3AC BC ACB AB =∠=︒=,点D 为边AB 上一点,过点D 作//DE AC ,交BC 于点E ,过点E 作EF DE ⊥,交AB 于点F .设,AD x DEF =的面积为y ,则能大致反映y 与x 函数关系的图象是( )A.B.C.D.6.已知二次函数y=ax2+bx+c的图象开口向上(如图),它与x轴的两个交点分别为(﹣1,0)、(3,0).对于下列结论:①c<0;②b<0;③4a﹣2b+c>0.其中正确的有()A.3个B.2个C.1个D.0个7.抛物线y=x2﹣2x﹣1的对称轴是()A.直线x=﹣2 B.直线x=﹣1 C.直线x=1 D.直线x=28.已知二次函数y=x2﹣4x+m2+1(m是常数),若当x=a时,对应的函数值y<0,则下列结论中正确的是()A.a﹣4<0B.a﹣4=0C.a﹣4>0D.a与4的大小关系不能确定9.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为()A .35元B .36元C .37元D .36或37元10.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =--的图象可能为( )A .B .C .D .11.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2ba =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个12.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s二、填空题13.将二次函数()2y a x m k =++(0a ≠)的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的表达式是()214y x =-+,则原函数的表达式是________. 14.如图,在平面直角坐标中,对抛物线222y x x =-+在x 轴上方的部分进行循环反复的轴对称或中心对称变换,若点A 是该抛物线的顶点,则经过第2020次变换后所得的A 点的坐标是_________.15.将抛物线2112y x =+绕原点O 旋转180︒,得到的抛物线解析式为__________. 16.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.17.抛物线2(0)y ax bx c a =++≠与x 轴的交点是(1,0)-,(5,0),则这条抛物线的对称轴是直线x =__________.18.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.19.在平面直角坐标系xOy 中,将抛物线2y x 沿着y 轴平移2个单位长度,所得抛物线的解析式为________.20.若方程20ax bx c ++=的两个根是3-和1,那么二次函数2y ax bx c =++的图象的对称轴是直线x = _____________________三、解答题21.如图,抛物线y =x 2+bx +c 经过点(1,﹣4)和(﹣2,5),请解答下列问题:(1)求抛物线的解析式,并求出对称轴及顶点坐标;(2)若与x 轴的两个交点为A 、B ,与y 轴交于点C .在该抛物线上找一点D ,使得△ABC 与△ABD 全等,求出D 点的坐标.22.在平面直角坐标系中,已知抛物线y =x 2﹣2x .(1)它的顶点坐标是 ,当x 时,y 随x 的增大而减小;(2)将抛物线y =x 2﹣2x 向左平移2个单位长度,再向下平移3个单位长度,设所得新抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,写出新抛物线的解析式并求△ABC 的面积. 23.在平面直角坐标系xOy 中,二次函数y =ax 2+2x ﹣3a (a ≠0)交x 轴于A 、B 两点(点A 在点B 的左侧),且抛物线的对称轴为直线x =﹣1.(1)求此抛物线的解析式及A 、B 两点坐标;(2)若抛物线交y 轴于点C ,顶点为D ,求四边形ABCD 的面积.24.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ; (2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 .25.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y (件)是每件售价x (元)(x 为正整数)的一次函数,其部分对应数据如下表所示:(1)求y 关于x 的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元? 每件售价x /元 … 15 16 17 18 … 每天销售量y /件…150140130120…26.如图,已知某二次函数的顶点坐标是(1,4) ,且经过点(4,5)A(1)求该二次函数的表达式;(2)点(,)P m n 是该二次函数图象上一点,若点P 到y 轴的距离不大于4,请根据图象直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设抛物线解析式为y =x 2-(m +n )x +mn -5,根据题意可得当x =a 或x =b 时,y =0,分别求出当x =n ,x =m 时y 的符号,根据二次函数的性质即可得答案. 【详解】设抛物线解析式为y=x 2-(m+n)x+mn-5,∵一元二次方程()()250x m n x mn m n -++-=<有两个不相等的实数根(),a b a b <,∴当x =a 或x =b 时,y =0, ∵1>0,∴抛物线y =x 2-(m +n )x +mn -5图象的开口向上,与x 的交点坐标为(a ,0),(b ,0), ∵a <b ,∴当a <x <b 时,y <0,当x =m 时,y =m 2-(m +n )m +mn -5=-5<0, 当x =n 时,y=n 2-(m +n )n +mn -5=-5<0, ∵m <n , ∴a <m <n <b , 故选:C . 【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数与一元二次方程之间的关系是解题关键.2.D解析:D 【分析】先利用配方法得到抛物线的顶点坐标为(2,1),再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为2,从而得到BD 的最小值. 【详解】解:∵y =x 2﹣4x +5=(x ﹣2)2+1, ∴抛物线的顶点坐标为(2,1), ∵四边形ABCD 为矩形, ∴BD =AC , 而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1, ∴对角线BD 的最小值为1. 故选:D . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.3.C解析:C 【分析】设解析式为()()12y x x m n =---+,得对称轴为32m x +=,由抛物线与x 轴只有一个交点得顶点为3,02m +⎛⎫⎪⎝⎭,代入()()12y x x m n =---+整理后即可得出结论. 【详解】解:设解析式为()()12y x x m n =---+ ∵A ,B 两点关于对称轴对称 ∴对称轴为直线12322m m x +++== ∵二次函数与x 轴只有一个交点∴顶点为3,02m +⎛⎫⎪⎝⎭把3,02m +⎛⎫⎪⎝⎭代入()()12y x x m n =---+ ∴3312022m m m n ++⎛⎫⎛⎫---+= ⎪⎪⎝⎭⎝⎭ ∴1102222m m n ⎛⎫⎛⎫+--+= ⎪⎪⎝⎭⎝⎭∴()214m n +=故选:C 【点睛】本题考查的是抛物线与x 轴的交点问题,根据题意得出抛物线的对称轴方程是解答此题的关键.4.B解析:B 【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-,∴抛物线一定经过原点, ∴选项A 排除;∵()222y mx m x =+- ,∴对称轴为直线x=22224m m m m---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m-<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合; 故选B. 【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.5.B解析:B 【分析】过点C 作CG ⊥AB ,求出CG 、AC ,证明△ACB ∽△DEB ,求出DE ,再根据直角三角形的性质求出EF ,根据三角形面积公式得到y 关于x 的函数表达式,从而判断图像. 【详解】解:∵AC=BC ,∠ACB=120°, ∴∠A=∠B=30°, 过点C 作CG ⊥AB , 则AG=BG=12AB=32,AC=2CG ,则, ∵DE ∥AC , ∴△ACB ∽△DEB ,∴AC AB DE BD =,即333DE x=-, 解得:DE=()333x -,∵∠DEF=90°,∠EDF=∠A=30°, ∴EF=3=33x-,∴y=S △DEF =12DE EF ⨯⨯=()3313233x x --⨯⨯=()23318x -, 可得:当0<x <3时,图像为抛物线,y 随x 的增大而减小, 选项B 中的图像最合适, 故选B .【点睛】本题考查了相似三角形的判定和性质,以及直角三角形的性质,二次函数,解题的关键是通过相似三角形的性质得到线段的长,从而得到二次函数表达式.6.A解析:A 【分析】根据抛物线与y 轴的交点位置可对①进行判断;根据抛物线的对称性得到x =2ba-=1,则b =﹣2a <0,于是可对②进行判断;利用x =﹣2,y >0可对③进行判断. 【详解】解:∵抛物线与y 轴的交点坐标在x 轴下方, ∴c <0,所以①正确; ∵抛物线开口向上, ∴a >0,∵抛物线与x 轴的两个交点分别为(﹣1,0),(3,0), ∴抛物线的对称轴为直线x =1,即2ba-=1, ∴b =﹣2a <0,所以②正确; ∵由图象可知,当x =﹣2时,y >0, ∴4a ﹣2b +c >0,所以③正确. 故选:A . 【点睛】本题考查了二次函数图象与系数的关系,解题关键是树立数形结合思想,准确读取图象信息,认真推理判断.7.C解析:C 【分析】先将抛物线化为顶点式,即可解决问题. 【详解】解:因为抛物线y =x 2﹣2x ﹣1=x 2﹣2x +1﹣2=(x ﹣1)2﹣2, 所以对称轴是直线x =1. 故选:C . 【点睛】本题考查了二次函数的性质,解题的关键是能将抛物线化为顶点式.8.A解析:A 【分析】画出函数图象,利用图象法解决问题即可; 【详解】解:∵抛物线的对称轴为422x -=-=, 抛物线与x 轴交于点A 、B .如图,设点A 、B 的横坐标分别为12x x 、,124x x +=,2121x x m =+,∴()()()22212121241641x x x x x x m -=+-=-+,∵210m +>,∴()212x x -的最小值为16,∴AB <4,∵当自变量x 取a 时,其相应的函数值y <0, ∴可知a 表示的点在A 、B 之间, ∴40a -<,故选:A.【点睛】本题考查了二次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.9.C解析:C【分析】根据利润=数量×每件的利润就可以求出关系式,根据(1)的解析式,将其转化为顶点式,根据二次函数的顶点式的性质就可以求出结论.【详解】解:依题意得:y=(30-20+x)(240-10x)y=-10x2+140x+2400.∵每件首饰售价不能高于40元.∴0≤x≤10.∴求y与x的函数关系式为:y=-10x2+140x+2400,x的取值范围为0≤x≤10;∴y=-10(x-7)2+2890.∴a=-10<0.∴当x=7时,y最大=2890.∴每件首饰的售价定为:30+7=37元.∴每件首饰的售价定为37元时,可使月销售利润最大,最大的月利润是2890元.故选C.【点睛】本题考查了二次函数的解析式的运用,根据解析式的函数值求自变量的值的运用,二次函数的顶点式的性质的运用,解答时求出二次函数的解析式是关键.10.D解析:D【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【详解】解:∵一次函数经过y轴上的(0,c),二次函数经过y轴上的(0,-c),∴两个函数图象交于y轴上的不同点,故A,C选项错误;当a<0,c<0时,二次函数开口向上,一次函数经过二、三、四象限,故B选项错误;当a<0,c>0时,二次函数开口向上,一次函数经过一、二、四象限,故D选项正确;故选:D.【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.11.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.12.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.二、填空题13.【分析】根据二次函数表达式是易得新抛物线的顶点然后得到经过平移后的原抛物线的顶点根据平移不改变二次项的系数可得原抛物线解析式【详解】解:∵平移后抛物线的解析式是∴此抛物线的顶点为(14)∵向左平移3 解析:()226y x =++【分析】根据二次函数表达式是()214y x =-+易得新抛物线的顶点,然后得到经过平移后的原抛物线的顶点,根据平移不改变二次项的系数可得原抛物线解析式.【详解】解:∵平移后抛物线的解析式是()214y x =-+,∴此抛物线的顶点为(1,4),∵向左平移3个单位,再向上平移2个单位可得原抛物线顶点,∴原抛物线顶点为(-2,6),∴原抛物线的解析式是()226y x =++. 故答案为:()226y x =++.【点睛】本题考查了二次函数图象与性质,掌握二次函数图象的平移与坐标的变化规律是解题的关键. 14.【分析】观察图形可知每三次对称为一个循环组依次循环用2020除以3然后根据商和余数的情况确定出变换后的点A 所在的象限然后解答即可【详解】解:∵∴抛物线的顶点坐标为点A 第一次关于x 轴对称后在第四象限第 解析:11,22⎛⎫- ⎪⎝⎭【分析】观察图形可知每三次对称为一个循环组依次循环,用2020除以3,然后根据商和余数的情况确定出变换后的点A 所在的象限,然后解答即可.【详解】解:∵2221122=2()2()22y x x x x x =-+--=--+∴抛物线222y x x =-+的顶点坐标为11,22⎛⎫ ⎪⎝⎭点A 第一次关于x 轴对称后在第四象限,第二次关于原点对称后在第二象限,第三次关于y 轴对称后在第一象限,回到原始位置,所以每3次对称为一个循环组,∵20203=6731÷∴经过第2020次变换后所得的A 点位置第一次变换后的位置相同,在第四象限,坐标为11,22⎛⎫- ⎪⎝⎭故答案为:11,22⎛⎫-⎪⎝⎭ 【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每三次对称为一个循环组依次循环是解题的关键,也是本题的难点. 15.【分析】先确定抛物线线的顶点坐标为(01)再利用关于原点对称的点的坐标特征得到点(01)变换后所得对应点的坐标为(0-1)然后利用顶点式写出旋转后抛物线【详解】解:抛物线的顶点坐标为(01)点关于原 解析:2112y x =-- 【分析】 先确定抛物线线2112y x =+的顶点坐标为(0,1),再利用关于原点对称的点的坐标特征得到点(0,1)变换后所得对应点的坐标为(0,-1),然后利用顶点式写出旋转后抛物线.【详解】 解:抛物线2112y x =+的顶点坐标为(0,1),点关于原点O 的对称点的坐标为(0,-1),此时旋转后抛物线的开口方向相反,所以旋转后的抛物线的解析式为2112y x =--. 故答案为:2112y x =--. 【点睛】本题考查了二次函数图象与几何变换:抛物线绕某点旋转180°得到旋转后的抛物线开口相反,抛物线的开口大小不变. 16.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴ 解析:2564b -<<- 【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --; ∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.17.【分析】根据抛物线的对称性即可求解【详解】解:∵抛物线y=ax2+bx+c与x 轴的公共点的坐标是(-10)(50)∴这条抛物线的对称轴是直线x=(5-1)=2故答案为2【点睛】本题考查了抛物线与x 轴解析:2【分析】根据抛物线的对称性即可求解.【详解】解:∵抛物线y=ax 2+bx+c 与x 轴的公共点的坐标是(-1,0),(5,0),∴这条抛物线的对称轴是直线x=12(5-1)=2, 故答案为2.【点睛】本题考查了抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 18.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.19.y=x2+2或y=x2-2【分析】根据图象的平移规律可得答案【详解】解:将抛物线y=x2沿着y 轴正方向平移2个单位长度所得抛物线的解析式为y=x2+2;将抛物线y=x2沿着y 轴负方向平移2个单位长度解析:y=x 2+2或y=x 2-2.【分析】根据图象的平移规律,可得答案.【详解】解:将抛物线y=x 2沿着y 轴正方向平移2个单位长度,所得抛物线的解析式为y=x 2+2;将抛物线y=x 2沿着y 轴负方向平移2个单位长度,所得抛物线的解析式为y=x 2-2; 故答案是:y=x 2+2或y=x 2-2.【点睛】本题主要考查了二次函数与几何变换问题,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.20.【分析】先根据题意得出抛物线与x 轴的交点坐标再由两点坐标关于抛物线的对称轴对称即可得出结论【详解】解:∵方程ax2+bx+c=0的两个根是-3和1∴二次函数y=ax2+bx+c 的图象与x 轴的交点分别解析:1-【分析】先根据题意得出抛物线与x 轴的交点坐标,再由两点坐标关于抛物线的对称轴对称即可得出结论.【详解】解:∵方程ax 2+bx+c=0的两个根是-3和1,∴二次函数y=ax 2+bx+c 的图象与x 轴的交点分别为(-3,0),(1,0).∵此两点关于对称轴对称,∴对称轴是直线x=312-+=-1. 故答案为:-1.【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键. 三、解答题21.(1)y =x 2﹣2x ﹣3,对称轴为:x =1,顶点(1,-4);(2)D (2,﹣3)【分析】(1)把(1,﹣4)和(﹣2,5)代入,解方程即可;根据解析式可求对称轴和顶点坐标; (2)根据对称性确定D 点位置,求出坐标.【详解】解:(1)由题意,得14425b c b c ++=-⎧⎨-+=⎩, 解得,23b c =-⎧⎨=-⎩, 所以,该抛物线的解析式为:y =x 2﹣2x ﹣3;抛物线y =x 2﹣2x ﹣3的对称轴为:2121x -=-=⨯, 把x =1代入y =x 2﹣2x ﹣3得,y =-4,∴抛物线的顶点坐标为(1,-4)(2)根据轴对称的性质,点C 关于x =1的对称点D 即为所求,此时,AC =BD ,BC =AD ,在△ABC和△BAD中,∵AB BA AC BD BC AD=⎧⎪=⎨⎪=⎩,∴△ABC≌△BAD(SSS).在y=x2﹣2x﹣3中,令x=0,得y=﹣3,则C(0,﹣3),根据C点、D点关于x=1对称,则D点坐标为(2,-3).【点睛】本题考查了待定系数法求二次函数解析式和全等三角形的判定,解题关键是熟练运用待定系数法求解析式,根据二次函数的对称性解决问题.22.(1)(1,-1),x<1;(2)y=x2+2x-3,6.【分析】(1)先将y=x2﹣2x化为顶点式,即可得出顶点坐标,再根据二次函数的性质可求出y 随x的增大而减小时自变量的取值情况;(2)根据函数图象的平移规律,可求出新抛物线的解析式,再利用新抛物线的函数解析式求出△ABC的底和高,即可求出面积.【详解】解:(1)∵y=x2﹣2x=(x-1)2-1,则顶点坐标为(1,-1),∵y=x2﹣2x为二次函数,且a=1,∴开口向上,对称轴为x=1,∴在x<1时,y随x的增大而减小.故答案为:(1,-1),x<1.(2)将抛物线y=x2﹣2x=(x-1)2-1向左平移2个单位得y=(x-1+2)2-1=(x+1)2-1,再向下平移三个单位,得y=(x+1)2-1-3=(x+1)2-4,化简得y=x2+2x-3,即新抛物线的解析式为y=x2+2x-3,∵抛物线y=x2+2x-3与x轴交于两点A、B两点,∴令y=0,则x2+2x-3=0,解得x1=-3,x2=1,∴AB=4,令x=0,y=-3,∴C点坐标为(0,-3),S△ABC中,底边为AB,三角形的高即为C点到x轴的距离,∴S△ABC=12×4×3=6.【点睛】此题考查了二次函数的综合问题,熟练掌握二次函数的图象与性质的相关知识并能灵活运用是解题的关键.23.(1)y=x2+2x﹣3,A(﹣3,0),B(1,0);(2)四边形ABCD的面积是9【分析】(1)根据抛物线对称轴方程x=b2a求得a的值,继而确定函数解析式;将二次函数解析式转换为交点式,直接写出A、B两点坐标;(2)由抛物线解析式求得点C、D的坐标,然后利用分割法求得四边形ABCD的面积.【详解】解:(1)根据题意知,抛物线的对称轴为x=﹣22a=﹣1,则a=1.故该抛物线解析式是:y=x2+2x﹣3.因为y=x2+2x﹣3=(x+3)(x﹣1),所以A(﹣3,0),B(1,0);(2)如图:由(1)知,A(﹣3,0),B(1,0),由抛物线y=x2+2x﹣3知,C(0,﹣3).∵y=x2+2x﹣3=(x+1)2﹣4,∴D(﹣1,﹣4),E(﹣1,0).∴AE=2,OC=3,OE=1,OB=1,ED=4,∴S四边形ABCD=S△BOC+S梯形OEDC+S△DAE=12×1×3+12(3+4)×1+12×2×4=9.即四边形ABCD的面积是9.【点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,得出各点的坐标是解答本题的突破口,另外注意将不规则图形的面积转化为几个规则图形的面积和进行求解.24.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y =x +3分别交x 轴和y 轴于点A 和B ,∴点A (﹣3,0),点B (0,3),∵抛物线的对称轴为直线x =﹣2.抛物线与x 轴的另一个交点为C ,∴点C (﹣1,0),故答案为(﹣1,0);(2)∵抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (0,3),点C (﹣1,0),∴30930c a b c a b c =⎧⎪=-+⎨⎪=-+⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y =x 2+4x +3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.25.(1)10300y x =-+;(2)20元或21元.【分析】(1)通过表格的数据,利用待定系数法求一次函数解析式即可;(2)通过题意得到利润和售价之间的关系式,然后当利润为900元时,解方程即可得到结果.【详解】解:(1)设该一次函数的解析式为y kx b =+,由表可知15x =时150y =,16x =时140y =,∴1501514016k b k b =+⎧⎨=+⎩∴10300k b =-⎧⎨=⎩∴一次函数的解析式为10300y x =-+;(2)设利润为W ,则()()()111110300W x y x x =-=--+,∴2104103300W x x =-+-当900W =时,2900104103300x x =-+-,即2414200x x -+=,解得120x =,221x = ∴每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润是900元. 【点睛】本题考查了函数的应用问题,正确列出函数关系式是解题的关键.26.(1)223y x x =--;(2)421n -.【分析】(1)设二次函数的解析式是y=a (x-h )2+k ,先代入顶点A 的坐标,再把B 的坐标代入,即可求出a ,即可得出解析式;(2)由点P 到y 轴的距离不大于4,得出 ,结合二次函数的图象可知,请根据图象直接写出n 的取值范围.【详解】解:(1)某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A ,设二次函数的解析式为2(1)4y a x =--,把(4,5)A 代入得:25(41)4a =--解得:1a =,所以函数表达式为:223y x x =--.(2)点P 到y 轴的距离为||m ,∴||m ≤4,∴44m -,∵2223(1)4y x x x =--=--,在44m -时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=21,∴421n -.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.。
(典型题)初中数学九年级数学下册第二单元《二次函数》检测卷(包含答案解析)(1)

一、选择题1.已知关于x 的一元二次方程()()250x m n x mn m n -++-=<有两个不相等的实数根(),,a b a b <则实数,,,m n a b 的大小关系可能是( )A .m a b n <<<B .m a n b <<<C .a m n b <<<D .a m b n <<<2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( ) A . B . C . D . 3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) A . B .C .D .4.二次函数2(0)y ax bx c a =++≠的图象如图,给出下列四个结论:①20ac b -<;②320b c +<;③()m am b b a ++≤;④22()a c b +<;其中正确结论的个数有( )A .1B .2C .3D .45.抛物线222=++y x x 与y 轴的交点坐标为( ) A .(1,0) B .(0,1) C .(0,0)D .(0,2) 6.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( )A .18m >B .1m >-C .118m -<<D .1m 18<< 7.下列函数中,当0x >时,y 随x 增大而增大的是( )A .2y x =B .22y x =+C . 1y x =-+D .22 y x =-- 8.二次函数223y x =-+在14x -≤≤内的最小值是( )A .3B .2C .-29D .-309.如图,已知二次函数()20y ax bx c a =++≠的图象与x 轴交于点()1,0A -,对称轴为直线1x =,下列结论:①0abc <;②930a b c ++=;③20a b +=;④2am bm a b +<+(m 是任意实数),其中正确的是( )A .①②B .②③C .①②③D .②③④ 10.已知二次函数223y x x =--+,下列叙述中正确的是( )A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①② B .②④ C .③④ D .②③④ 12.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P .若点P 的横坐标为1-,则一次函数()y a b x b =--的图象大致是( )A .B .C .D .二、填空题13.将二次函数y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,再向上平移2个单位后,顶点恰好在直线y =2x +1上,则k 的值为_____.14.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为________.15.计算机可以帮助我们又快又准地画出函数的图像.用“几何画板”软件画出的函数2(3)y x x =-和3y x =-的图像如图所示.若m ,n 分别满足方程2(3)1x x -=和31x -=根据图像可知m ,n 的大小关系是___________.16.已知二次函数221y x =-,如果y 随x 的增大而增大,那么x 的取值范围是__________.17.已知抛物线为21()y a x m k =++与()22()0y a x m k m =---≠关于原点对称,我们称1y 为与2y 互为“和谐抛物线”,请写出抛物线2467y x x =-++的“和谐抛物线”________.18.抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②240b ac ->;③930a b c -+=;④若点()()120.5,,2,y y --均在抛物线上,则12y y >;⑤520a b c -+<.其中正确的序号是____(填写正确的序号).19.在平面直角坐标系中,已知()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,则抛物线21y x bx =++的顶点坐标为_________.20.道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落在同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是___________.三、解答题21.某跳水运动员在进行跳水训练时,身体(看成一点)在空中的运动路线是如图所示的一条抛物线.已知跳板AB 长为2米,跳板距水面CD 高BC 为3米,训练时跳水曲线在离起跳点水平距离1米时达到距水面最大高度4米,现以CD 为横轴,CB 为纵轴建立直角坐标系.(1)求这条抛物线的解析式;(2)求运动员落水点与点C 的距离.22.在平面直角坐标系中,已知抛物线y =x 2﹣2x .(1)它的顶点坐标是 ,当x 时,y 随x 的增大而减小;(2)将抛物线y =x 2﹣2x 向左平移2个单位长度,再向下平移3个单位长度,设所得新抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,写出新抛物线的解析式并求△ABC 的面积. 23.如图,在矩形ABCD 中,2AB =,4BC =,点P 是对角线BD 上的一个动点,过点P 作PF BD ⊥,交边BC 于点F (点F 与点B ,C 都不重合),点E 是射线FC 上一动点,连结PE ,ED ,并一直保持EPF FBP ∠=∠.(1)求证:EPF EBP △△∽.(2)设BP 的长为x ,DEP 的面积为y ,求y 关于x 的函数表达式,并写出自变量x 的取值范围.(3)当DEP 与BCD △相似时,求DEP 的面积.24.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?25.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()76120,2030,mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?26.某商店销售一种纪念册,每本进价30元,规定销售单价不低于32元,且获利不高于60%,在销售期间发现销售数量y (件)与销售单价x (元)的关系如下表:1请你根据表格直接写出与之间的函数关系式,并写出自变量的取值范围; ()2当每本纪念册销售单价是多少元时,商店每天获利3400元?()3将这种纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w (元)最大?最大利润是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设抛物线解析式为y =x 2-(m +n )x +mn -5,根据题意可得当x =a 或x =b 时,y =0,分别求出当x =n ,x =m 时y 的符号,根据二次函数的性质即可得答案.【详解】设抛物线解析式为y=x 2-(m+n)x+mn-5,∵一元二次方程()()250x m n x mn m n -++-=<有两个不相等的实数根(),a b a b <, ∴当x =a 或x =b 时,y =0,∵1>0,∴抛物线y =x 2-(m +n )x +mn -5图象的开口向上,与x 的交点坐标为(a ,0),(b ,0), ∵a <b ,∴当a <x <b 时,y <0,当x =m 时,y =m 2-(m +n )m +mn -5=-5<0,当x =n 时,y=n 2-(m +n )n +mn -5=-5<0,∵m <n ,∴a <m <n <b ,故选:C .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数与一元二次方程之间的关系是解题关键.2.A解析:A【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【详解】解:2(0)y ax bx a =+≠,0c ,∴二次函数经过坐标原点,故B 、C 选项错误; A 、根据二次函数开口向上0a >,对称轴b x 02a =->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A .【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键. 4.D解析:D【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.【详解】解:∵抛物线开口向下,所以a<0,与y 轴交于正半轴,所以c >0,∴ac<0,∵b²≥0,∴20ac b -<,∴①正确;∵把x=1代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵-2b a-=-1, ∴b=2a , ∴3b+2c <0,∴②正确;∵抛物线的对称轴是直线x=-1,∴y=a-b+c 的值最大,即把x=m 代入得:y=am 2+bm+c≤a -b+c ,∴am 2+bm+b≤a ,即m (am+b )+b≤a ,∴③正确;∵a+b+c <0,a-b+c >0,∴(a+c+b )(a+c-b )<0,则(a+c )2-b 2<0,即(a+c )2<b 2,故④正确;故选:D .【点睛】本题考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax 2+bx+c=0的解的方法,同时注意特殊点的运用.5.D解析:D【分析】令x=0,则y=2,抛物线与y 轴的交点为 (0,2)【详解】令x=0,则y=2,∴抛物线与y 轴的交点为(0,2),故选:D .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;6.A解析:A【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围.【详解】解:设()()2121m x x y m m +--+=, ∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正,∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中, 1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质. 7.B解析:B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A 、2y x=,反比例函数,k=2>0,分别在一、三象限,在每一象限内,y 随x 的增大而减小,不符合题意;B 、22y x =+,a=1>0,开口向上,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而增大,符合题意;C 、1y x =-+,一次函数,k=-1<0,故y 随着x 增大而减小,不符合题意;D 、22y x =--,a=-1<0,开口向下,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而减小,不符合题意.故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.8.C解析:C【分析】根据图象,直接代入计算即可解答【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C .【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.B解析:B【分析】①抛物线开口向上,对称轴为直线x =1,即可得出a >0、b <0、c <0,进而可得出abc >0,结论①错误;②由抛物线的对称轴以及与x 轴的一个交点坐标,可得出另一交点坐标为(3,0),进而可得出9a +3b +c =0,结论②正确;③由对称轴直线x=1,可得结论③正确;④2()()0am bm a b +-+≥,可得结论④错误.综上即可得出结论.【详解】解:①∵抛物线开口向上,对称轴为直线x =1,∴a >0,12b a-=,c <0, ∴b =−2a <0,∴abc >0,结论①错误; ②∵二次函数y =ax 2+bx +c (a≠0)的图象与x 轴交于点A (−1,0),对称轴为直线x =1,∴二次函数y =ax 2+bx +c (a≠0)的图象与x 轴的另一个交点为(3,0),∴9a +3b +c =0,结论②正确;③∵对称轴为直线x =1, ∴12b a-=,即:b =−2a , ∴20a b +=,结论③正确;④∵222()()(2)(2)2am bm a b am am a a am am a +-+=---=-+22(21)(1)a m m a m =-+=-≥0,∴2am bm a b +≥+,结论④错误.综上所述,正确的结论有:②③.故选:B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象与系数的关系、二次函数的性质以及二次函数图象上点的坐标特征,逐一分析四条结论的正误是解题的关键.10.D解析:D【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论.【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误;B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误;C.2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误;D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确;故选:D .【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.B解析:B【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④.【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误;②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2b a=-1<0,即b=2a <0,即③错误; ④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确; 所以正确的有:②④,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键. 12.C解析:C【分析】根据二次函数的图象可以判断a 、b 、-a b 的正负情况,从而得以解决.【详解】解:由二次函数的图象开口向下,且经过第三象限的点P ,点P 的横坐标为1-, 则有0a <,对称轴在y 轴的左边, ∴02b a -<,且122b a ∴0b <,且a b <∴0a b -<,∴一次函数()y a b x b =--的图像向下,并且与y 轴交于正半轴,故选:C .【点睛】本题考查二次函数的性质、一次函数的性质,熟悉相关性质是解答本题的关键.二、填空题13.0【分析】先求出二次函数y =﹣(x ﹣k )2+k+1的图象平移后的顶点坐标再将它代入y =2x+1即可求出k 的值【详解】解:∵二次函数y =﹣(x ﹣k )2+k+1的顶点坐标为(kk+1)∴将y =﹣(x ﹣k解析:0【分析】先求出二次函数y =﹣(x ﹣k )2+k +1的图象平移后的顶点坐标,再将它代入y =2x +1,即可求出k 的值.【详解】解:∵二次函数y =﹣(x ﹣k )2+k +1的顶点坐标为(k ,k +1),∴将y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,向上平移2个单位后顶点坐标为(k +1,k +3).根据题意,得k +3=2(k +1)+1,解得k =0.故答案是:0.【点睛】本题考查了二次函数图象与几何变换,一次函数图象上点的坐标特征,难度适中.根据点的平移规律:右加左减,上加下减正确求出二次函数y =−(x−k )2+k +1的图象平移后的顶点坐标是解题的关键.14.【分析】由于y1y2y3是抛物线上三个点的纵坐标所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴再由对称性得A 点关于对称轴的对称点A 的坐标再根据抛物线开口向下在对称轴右边y 随x 的增大而减小便解析:231y y y >>【分析】由于y 1,y 2,y 3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A 点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y 随x 的增大而减小,便可得出y 1,y 2,y 3的大小关系.【详解】解:∵抛物线y=-(x+1)2+k ,∴对称轴为x=-1,∵A (-2,y 1),∴A 点关于x=-1的对称点A'(0,y 1),∵a=-1<0,∴在x=-1的右边y 随x 的增大而减小,∵A'(0,y 1),B (1,y 2),C (2,y 3),0<1<2,∴y 1>y 2>y 3,故答案为:231y y y >>.【点睛】本题考查了二次函数图象的性质,对称轴的求法,难度不大,关键是熟记二次函数的性质:a >0时,在对称轴左边,y 随x 的增大而减小,在对称轴右边,y 随x 的增大而增大;a <0时,在对称轴左边,y 随x 的增大而增大,在对称轴右边,y 随x 的增大而减小.15.【分析】利用函数图象通过确定函数和的图象与直线的交点位置可得到m 与n 的大小【详解】解:方程的解为函数的图象与直线的交点的横坐标的解为一次函数与直线的交点的横坐标如图由图象得故答案为:【点睛】本题考查 解析:m n <【分析】利用函数图象,通过确定函数2(3)y x x =-和3y x =-的图象与直线1y =的交点位置可得到m 与n 的大小.【详解】解:方程2(3)1x x -=的解为函数2(3)y x x =-的图象与直线1y =的交点的横坐标,31x -=的解为一次函数3y x =-与直线1y =的交点的横坐标,如图,由图象得m n <.故答案为:m n <.【点睛】本题考查了函数图象的应用,会利用图象的交点的坐标表示方程或方程组的解是解题的关键.16.【分析】由于抛物线y=2x2-1的对称轴是y 轴所以当x≥0时y 随x 的增大而增大【详解】解:∵抛物线y=2x2-1中a=2>0∴二次函数图象开口向上且对称轴是y 轴∴当x≥0时y 随x 的增大而增大故答案为解析:0x ≥【分析】由于抛物线y=2x 2-1的对称轴是y 轴,所以当x≥0时,y 随x 的增大而增大.【详解】解:∵抛物线y=2x 2-1中a=2>0,∴二次函数图象开口向上,且对称轴是y 轴,∴当x≥0时,y 随x 的增大而增大.故答案为:0x ≥.【点睛】本题考查了抛物线y=ax 2+b 的性质:①图象是一条抛物线;②开口方向与a 有关;③对称轴是y 轴;④顶点(0,b ).17.【分析】先将抛物线进行配方后根据和谐抛物线定义写出已知函数的和谐抛物线并整理成一般式【详解】解:∵∴抛物线的和谐抛物线为:即故答案为:【点睛】本题考查了新定义函数问题配方法熟练配方并准确理解新定义是 解析:2467y x x =+-.【分析】先将抛物线进行配方,后根据 “和谐抛物线”定义写出已知函数的“和谐抛物线”,并整理成一般式.【详解】解:∵223374674()44y x x x =-++=--+, ∴抛物线2467y x x =-++的“和谐抛物线”为:23374()44y x =+- 即2467y x x =+-,故答案为:2467y x x =+-.【点睛】本题考查了新定义函数问题,配方法,熟练配方,并准确理解新定义是解题的关键. 18.②③⑤【分析】利用抛物线开口方向得到a >0利用抛物线的对称轴方程得到b=2a >0利用抛物线与y 轴的交点位置得到c <0则可对①进行判断;利用抛物线与x 轴交点个数可对②进行判断;利用抛物线的对称性得到抛 解析:②③⑤【分析】利用抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b=2a >0,利用抛物线与y 轴的交点位置得到c <0,则可对①进行判断;利用抛物线与x 轴交点个数可对②进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标为(-3,0),则可对③进行判断;根据二次函数的性质,通过比较两点到对称轴的距离可对④进行判断;利用5a-2b+c=5a-4a-3a=-2a <0,则可对⑤进行判断.【详解】解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=-2b a=-1,∴b=2a >0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以②正确;∵抛物线的对称轴为直线x=-1,抛物线与x 轴的一个交点坐标为(1,0),∴抛物线与x 轴的另一个交点坐标为(-3,0),∴9a-3b+c=0,所以③正确;∵点(-0.5,y 1)到直线x=-1的距离比点(-2,y 2)到直线x=-1的距离小,而抛物线开口向上,∴y 1<y 2;所以④错误;∵5a-2b+c=5a-4a-3a=-2a <0,故⑤正确,故答案为:②③⑤.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.19.(2-3)【分析】根据坐标特点判定AB 两点是一对对称点从而得到抛物线的对称轴根据对称轴x=确定b 的值从而确定顶点坐标【详解】∵和是抛物线上的两点∴抛物线对称轴为x==2∴顶点坐标的横坐标为2;∵∴b解析:(2,-3).【分析】根据坐标特点,判定A ,B 两点是一对对称点,从而得到抛物线的对称轴,根据对称轴x=2b a-,确定b 的值,从而确定顶点坐标. 【详解】 ∵()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,∴抛物线对称轴为x=152-+=2, ∴顶点坐标的横坐标为2; ∵22b -=, ∴b= -4, ∴241y x x =-+,当x=2时,22421y =-⨯+= -3,∴抛物线的顶点坐标为(2,-3),故应填(2,-3).【点睛】本题考查了利用抛物线的对称点确定顶点坐标,熟练掌握抛物线对称轴与对称点的关系,抛物线顶点坐标的计算公式是解题的关键.20.4【分析】根据抛物线形状建立二次函数模型以AB 中点为原点建立坐标系xOy 通过已知线段长度求出A(10)B(-1O)由二次函数的性质确定y =ax2-a 利用PQ =EF 建立等式求出二次函数中的参数a 即可得解析:4【分析】根据抛物线形状建立二次函数模型,以AB 中点为原点,建立坐标系xOy ,通过已知线段长度求出A(1,0),B(-1,O),由二次函数的性质确定y =ax 2-a ,利用PQ =EF 建立等式,求出二次函数中的参数a ,即可得出EF 的值.【详解】解:如图,令P 下方的点为H ,以AB 中点为原点,建立坐标系xOy ,则A(1,0),B(-1,O),设抛物线的方程为y=ax 2+bx+c∴抛物线的对称轴为x=0,则2b a-=0,即b =0. ∴y =ax 2 +c .将A(1,0)代入得a+c =0,则c =-a .∴y =ax 2-a . ∵OH =2×15×12=0.2,则点H 的坐标为(-0.2,0) 同理可得:点F 的坐标为(-0.6,0).∴PH =a×(-0.2)2-a =-0.96aEF =a×(-0.6)2-a =-0.64a .又∵PQ =EF =1-(-0.96a )=-0.64a∴1+0.96a =-0.64a .解得a =58-. ∴y =58-x 2+58. ∴EF =(58-)×(-0.6)2+58=25. 故答案为:0.4.【点睛】 本题考查了二次函数的应用,解题的关键是能在几何图形中建立适当的坐标系并结合图形的特点建立等式求出二次函数表达式.三、解答题21.(1)y =﹣(x ﹣3)2+4;(2)5米【分析】(1)建立平面直角坐标系,列出顶点式,代入点A 的坐标,求得a 的值,则可求得抛物线的解析式;(2)令y =0,得关于x 的方程,求得方程的解并根据题意作出取舍即可.【详解】解:(1)如图所示,建立平面直角坐标系,由题意可得抛物线的顶点坐标为(3,4),点A 坐标为(2,3),设抛物线的解析式为y =a (x ﹣3)2+4,将点A 坐标(2,3)代入得:3=a (2﹣3)2+4,解得:a =﹣1,∴这条抛物线的解析式为y =﹣(x ﹣3)2+4;(2)∵y =﹣(x ﹣3)2+4,∴令y =0得:0=﹣(x ﹣3)2+4,解得:x 1=1,x 2=5,∵起跳点A 坐标为(2,3),∴x 1=1,不符合题意,∴x =5,∴运动员落水点与点C 的距离为5米.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握运用待定系数法求抛物线的解析式是解题的关键.22.(1)(1,-1),x<1;(2)y =x 2+2x -3,6.【分析】(1)先将y =x 2﹣2x 化为顶点式,即可得出顶点坐标,再根据二次函数的性质可求出y 随x 的增大而减小时自变量的取值情况;(2)根据函数图象的平移规律,可求出新抛物线的解析式,再利用新抛物线的函数解析式求出△ABC 的底和高,即可求出面积.【详解】解:(1)∵y =x 2﹣2x =(x -1)2-1,则顶点坐标为(1,-1),∵y =x 2﹣2x 为二次函数,且a =1,∴开口向上,对称轴为x=1,∴在x<1时,y 随x 的增大而减小.故答案为:(1,-1),x<1.(2)将抛物线y =x 2﹣2x =(x -1)2-1向左平移2个单位得y =(x -1+2)2-1=(x +1)2-1,再向下平移三个单位,得y =(x +1)2-1-3=(x +1)2-4,化简得y =x 2+2x -3,即新抛物线的解析式为y =x 2+2x -3,∵抛物线y =x 2+2x -3与x 轴交于两点A 、B 两点,∴令y =0,则x 2+2x -3=0,解得x 1=-3,x 2=1,∴AB =4,令x =0,y =-3,∴C 点坐标为(0,-3),S △ABC 中,底边为AB ,三角形的高即为C 点到x 轴的距离,∴S △ABC =12×4×3=6. 【点睛】此题考查了二次函数的综合问题,熟练掌握二次函数的图象与性质的相关知识并能灵活运用是解题的关键.23.(1)见解析;(2)0x <<3)54=DEP S △ 【分析】(1)直接利用相似三角形的判定定理解答即可(2)过点E 作EH BF ⊥于H ,利用相似三角形的性质,三角函数解直角三角形可得12PE PF EF BE PB PE ===,34BF BE =,再利用BHE BPF △△∽求出EH ,即可得到y 与x 的关系式,利用F 点与C 点重合的时求出x 的最大值,即可求得x 的范围(3)若DEP 与BCD △相似,分两种情况求解:当90PED ∠=︒时;当90EDP ∠=︒时,利用相似三角形的性质,等腰三角形的性质,勾股定理等知识,求解即可【详解】(1)证明:∵EPF FBP ∠=∠,PEF FEP ∠=∠.∴EPF EBP △△∽.(2)解:∵2AB CD ==,4BC AD ==,∴在Rt ABC 中22222425BD AB AD =+=+=∴21tan 42AB ADB AD ∠===. PF BD ∴在Rt BPF 中,tan PF PBF BP∠= //AD BCADB PBF ∴∠=∠12PF AB BP AD ∴== BP x =12PF x ∴= 25DP x ∴=-∵EPF EBP △△∽.∴12PE PF EF BE BP PE === ∴14EF BE =. ∴34BF BE =. 过点E 作EH BF ⊥于H ,EH BF ⊥,PF BD ⊥∴//EH PF ,∴BHE BPF △△∽, ∴34PF BF HE BE ==. 12PF x = ∴412323HE x x =⨯=. ∴()2112125252233y HE PD x x x x =⨯⨯=⨯⨯-=-+ 当点F 与点重合时,则有1122S BD FP BC CD ⋅=⋅△BDC = 45525BC CD FP BD ⋅∴=== 12FP BP = 855BP ∴= x 的最大值为855∴自变量x 的取值范围:8055x <<. (3)解:若DEP 与BCD △相似,∴90PED ∠=︒或90EDP ∠=︒时,DEP 与BCD △相似.当90PED ∠=︒时,如图:∴90DPE PDE ∠+∠=︒.∵90DPE EPF ∠+∠=︒,∴PDE EPF ∠=∠.EPF EBP △△∽∴EPF FBP ∠=∠,∴DBE BDE ∠=∠,∴BE DE =.设BE a =,DE a =,4EC a =-.在Rt CDE △中,222DE EC CD ,()22242a a =-+,52a =.∴52BE ED ==,54PE =,115525224216DEP S EP ED =⨯⨯=⨯⨯=. 当90EDP ∠=︒时,如图∵90BDC DBC ∠+∠=︒,90DBC DEB ∠+∠=︒∴BDC DEB ∠=∠又∵90DPE EPF ∠+∠=︒∵DBC EPF ∠=∠,∴BDC DPE ∠=∠∴BDC DPE DEB ∠=∠=∠在Rt DPE △中,tan tan tan 2DPE BDC DEC ∠=∠=∠= ∵2CD =,∴1CE =,∴5DE∴152PD , 1115552224DEP S DE DP =⨯⨯=△. 【点睛】本题考查了相似三角形的判定和性质,勾股定理,等腰三角形的判定和性质,三角函数解直角三角形等知识,熟练掌握相似三角形的判定和性质,以及对所学知识的综合运用是解题关键.24.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x > 【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可.【详解】解:(1)∵抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,抛物线()214y a x =++过点(0,3), 4=3a +,1a =-,抛物线的解析式为()214y x =-++;(2)列表: x… -3 -2 -1 0 1 … y… 0 3 4 3 0 … 0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧,当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键.25.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值.【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得 321276m m =-,解得12m =-, 当地26天的售价为25元/千克时,代入y n =,则25n =,故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +.当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭, ∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+,∵280>,∴W 随x 的增大而增大,∴当30x =时,952W =最大.∵968952>,∴当18x =时,968W =最大.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.26.()110740y x =-+3248x ≤≤();()240元;()3销售单价定为48元时,商店每天销售纪念册获得的利润w 最大,最大利润是4680元【分析】(1)根据图表信息可知销售单价每上涨1元,每天销售量减少10件,利用原销售件数减去减少的件数即为所求;(2)利用每本的利润乘以销售量得到总利润得到(x-30)(-10x+740)=3400,然后解方程后利用 x 的范围确定销售单价;(3)利用每本的利润乘以销售量得到总利润得到 w =(x-30)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质求解即可.【详解】解:(1)由题意得,y =420﹣10(x ﹣32)=﹣10x +740;即y 与x 之间的函数关系式为: 10740y x =-+3248x ≤≤(); ()2由题意,可列出方程为:(30)(10740)3400x x 整理并化简得,210425600x x 解得,1240,64x x 3248x ≤≤答:销售单价是40元时,商店每天获利3400元;(3)(30)Wx y 2-10104022200x x2-10(52)4840x100a =-<,∴开口向下,522b a, ∴当3248x ≤≤时,W 随x 的增大而增大∴当48x =时,=4680W 最大答:销售单价定为48元时,商店每天销售纪念册获得的利润w 最大,最大利润是4680元.【点睛】本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量 x 的取值范围,也考查了一元二次方程的应用.。
九年级下数学第二章二次函数测试题及答案.docx

的纵坐标为
9
,所以
9
18
9
,得x
5
2.
D
20
20
125
10
4
所以点D的坐标为(
5
2,
9),点E的坐标为(
5
2,
9
).
4
20
4
20
所以DE
5
2 (
5
2)
52
.
4
4
2
因此卢浦大桥拱内实际桥长为
5
2
1100 0.01
275 2
385
(米).
2
5.解:(1)∵AB=3,x1x2,∴x2x13 .由根与系数的关系有x1x21 .
交y轴的负半轴与C点,且AB=3,tan
(1)求此二次函数的解析式;
(2)在第一象限 ,抛物线上是否存在点
......
的坐标;若不存在,请你说明理由
∠BAC= tan∠ABC=1.
,使
△PAB=6
若存在,请你求出点
P
P
S
.
提高题
1.已知抛物线yx2bxc与x轴只有一个交点,且交点为A(2, 0) .
位长度,建立平面直角坐标系,如图(2).
(1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;
(2)如果
DE与
AB的距离
OM=,求卢浦大桥拱内实际桥长(备用数据:
2≈,
计算结果精确到
1米).
C
C
m
D
M
E
D
M
E
c
9
.
O
O
0
A
5cm
(常考题)北师大版初中数学九年级数学下册第二单元《二次函数》测试卷(包含答案解析)(1)
一、选择题1.若二次函数22y x x c =-+的图象与x 轴有两个交点,与y 轴交于正半轴,则下列说法中正确的是( )A .该函数图象的对称轴是直线2x =B .该函数图象与y 轴有可能交于点()0,2C .若点()11,A c y -,()2,B c y 是该函数图象上的两点,则12y y <D .该函数图象与x 轴的交点一定位于y 轴的右侧2.抛物线222=++y x x 与y 轴的交点坐标为( )A .(1,0)B .(0,1)C .(0,0)D .(0,2) 3.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1) 4.小凯在画一个开口向上的二次函数图象时,列出如下表格:x… -1 0 1 2 … y … 1 2 1 1 …A .(-1,1)B .(0,2)C .(1,1)D .(2,1) 5.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个6.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个 7.当函数21(1)23ay a x x +=-++ 是二次函数时,a 的取值为( ) A .1a = B .1a =±C .1a ≠D .1a =- 8.已知二次函数()20y ax bx c a =++≠的图象如图所示,若方程20ax bx c ++=的两个根为11x =,25x =-,下列结论中:①0bc >;②4b a =;③0a b c -+>;④540b c +=.其中所有正确的结论有( )A .①②B .③④C .②③④D .②③ 9.如图1,在矩形ABCD 中,动点E 从点A 出发,沿A B C →→的路线运动,当点E 到达点C 时停止运动.若FE AE ⊥,交CD 于点F 设点E 运动的路程为x ,FC y =,已知y 关于x 的图象如图2所示,则m 的值为( )A 2B .2C .1D .2310.对于抛物线22()1y x =-+,下列说法错误的是( )A .抛物线的开口向上B .抛物线与x 轴有两个交点C .抛物线的对称轴是2x =D .抛物线的顶点坐标是(2,1)11.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①②B .②④C .③④D .②③④ 12.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m > 二、填空题 13.如图,二次函数2y ax bx c =++与反比例函数k y x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2kax bx c x ++>的解是____.14.用一根长为24cm 的绳子围成一个矩形,则围成矩形的最大面积是_____cm 2. 15.若A (m-2,n ),B (m+2,n )为抛物线2()2020y x h =--+上两点,则n=_______.16.抛物线y =a (x ﹣2)(x ﹣2a )(a 是不等于0的整数)顶点的纵坐标是一个正整数,则a 等于_____.17.在平面直角坐标系中,把抛物线22y x =+先绕其顶点旋转180︒后,再向右平移2个单位,向下平移3个单位后的抛物线解析式为__________.18.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.19.如图,已知点()6,0A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数1y 和过P 、A 两点的二次函数2y 的图像开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当5OD AD ==时,这两个二次函数的最大值之和等于________.20.已知y 是x 的二次函数,y 与x 的部分对应值如表:该二次函数图象向左平移____________个单位,图象经过原点.x… ﹣2 ﹣1 0 1 2 … y … 0 4 6 6 4 …三、解答题21.某旅馆有客房120间,经市场调查发现,客房每天的出租数量y (间)与每间房的日租金x (元)的关系如图所示,为保证旅馆的收益,每天出租的房间数不少于90间. (1)结合图象,求出客房每天的出租的房间数y (间)与每间房的日租金x (元)之间的函数关系式和自变量的取值范围;(2)设客房的日租金总收入为W (元),不考虑其它因素,旅馆将每间客房的日租金定为多少元时,客房的日租金总收入最高?最高总收入为多少?22.如图,抛物线2y x bx c =+-与x 轴交于A (-1,0),B (3,0)两点,直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求抛物线及直线AC 的函数表达式;(2)点M 是线段AC 上的点(不与A ,C 重合)过M 作MF //y 轴交抛物线于F ,若点M 的横坐标为m ,请用含m 的代数式表示MF 的长.23.已知抛物线23(0)y ax bx a =+-≠经过(1,0)(3,0)A B -,两点,C 点是抛物线与y 轴交点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得ACM △的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.24.如图(1),已知抛物线C 1:y =﹣x 2+2x +3与x 轴交于点A 、B (点A 在点B 左边),与y 轴交于点C ,抛物线C 2经过点A ,与x 轴的另一个交点为E (4,0),与y 轴交于点D (0,﹣2).(1)求抛物线C 2的解析式;(2)点P (m ,0)为线段AB 上一动点(不与A 、B 重合),过点P 作y 轴的平行线交抛物线C 1于点M ,交抛物线C 2于点N .①请用含m 的代数式分别表示点M 、N 的坐标;②设四边形OMEN 的面积为S ,求S 关于m 的函数关系式,并求出当S 的最大值以及此时m 的值;③在点P 移动的过程中,若CM =DN ≠0,则m 的值为 .(3)如图(2),点Q (0,n )为y 轴上一动点(0<n <4),过点Q 作x 轴的平行线依次交两条抛物线于点R 、S 、T 、U ,则TU ﹣RS = .25.已知直线y =x +3分别交x 轴和y 轴于点A 和B ,抛物线y =ax 2+bx +c 经过点A 和B ,且抛物线的对称轴为直线x =﹣2.(1)抛物线与x 轴的另一个交点C 的坐标为 ;(2)试确定抛物线的解析式;(3)在同一平面直角坐标系中分别画出两个函数的图象(请用2B 铅笔或黑色水笔加黑加粗),观察图象,写出二次函数值小于一次函数值的自变量x 的取值范围 .26.如图,已知抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C 且AB =6,抛物线的对称轴为直线x =1(1)抛物线的解析式;(2)x 轴上A 点的左侧有一点E ,满足S △ECO =4S △ACO ,求直线EC 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次函数的对称轴公式可判断A ,根据函数图像与x 轴的交点求出c 的取值范围,可判断B ,根据c 的取值范围,结合函数的增减性可判断C ,根据函数的开口方向,对称轴,以及与y 轴交于正半轴可判断D .【详解】解:在二次函数22y x x c =-+中,对称轴为直线x =221--⨯=1,开口向上, ∵二次函数22y x x c =-+的图象与x 轴有两个交点,则对应方程220x x c -+=中,△=()224c -->0, ∴c <1,∵与y 轴交于正半轴,∴c >0,即0<c <1,∴该函数图象与y 轴不可能交于点()0,2,∴-1<c -1<0, ∵函数开口向上,∴当x <1时,y 随x 的增大而减小,∴点()11,A c y -,()2,B c y 都在对称轴左侧,∴12y y >,∵对称轴为直线x =221--⨯=1,与y 轴交于正半轴,开口向上, ∴该函数图象与x 轴的交点一定位于y 轴的右侧,故选D .【点睛】 本题考查了二次函数的对称轴,增减性,图像性质,解题的关键是掌握二次函数的性质,结合图像回答问题.2.D解析:D【分析】令x=0,则y=2,抛物线与y 轴的交点为 (0,2)【详解】令x=0,则y=2,∴抛物线与y 轴的交点为(0,2),故选:D .【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;3.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C.【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答.4.A解析:A【分析】观察图表数据,根据二次函数的对称性即可判断出计算错误的一组数据,然后再利用二次函数的增减性得出结论.【详解】解:观察y值发现y =1时x有三个不同的值,因此这三个值中必有一对计算错误.由二次函数的对称性:如果(-1,1),(1,1)是图象的两个对称点,那么根据描点得到这个函数图象的开口应该是向下的.同理若(-1,1),(2,1)是两个对称点,那么该函数图象的开口也是向下的,所以(1,1),(2,1)是图象的两个对称点,因此该图像的对称轴为直线03 2x=,根据二次函数的增减性,当开口向上时,在对称轴的左边,y随x的增大而减小,所以1x=-时,y 一定是大于1的,故选A.【点睛】本题考查了二次函数的图象,找出图表数据特点,根据函数的对称性解答即可,熟练掌握二次函数的图象和性质,是解答的关键.5.B解析:B【分析】根据抛物线与系数的关系判断即可.【详解】解:抛物线开口向下,a<0,故①错误;对称轴在y轴右侧,a、b异号,b>0,故②正确;抛物线与x轴交点为(﹣1,0),对称轴为直线x=1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x的取值范围是﹣1<x<3时;抛物线在x轴上方,故④正确;故选:B.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.6.D解析:D【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①∵a <0,2b a-<0, ∴b <0.∵抛物线交y 轴与正半轴,∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确;③∵该函数图象的开口向下,∴a <0; 又∵对称轴-1<x=2b a-<0, ∴2a-b <0,故③正确; ④∵y=244ac b a->2,a <0, ∴4ac-b 2<8a ,即b 2+8a >4ac ,故④正确.综上所述,正确的结论有①②③④.故答案为:D .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.7.D解析:D【分析】根据二次函数的定义去列式求解计算即可.【详解】∵函数21(1)23a y a x x +=-++ 是二次函数,∴a-1≠0,2a 1+=2,∴a≠1,21a =,∴1a =-,故选D .【点睛】本题考查了二次函数的定义,熟记二次函数的定义并灵活列式计算是解题的关键. 8.C解析:C【分析】由方程20ax bx c ++=的两个根为11x =,25x =-方程变为2450ax ax a +-=,比较系数得4=5b a c a =-,,①()245200bc a a a =⋅-=-<,故①不正确,②4b a =正确,③80a b c a -+=->③正确,④54b c +换成a 计算即可确定④正确.【详解】解:二次函数()20y ax bx c a =++≠的图象开口向下,0a <,∵方程20ax bx c ++=的两个根为11x =,25x =-,∴()()150a x x -+=,∴2450ax ax a +-=,比较系数得:4=5b a c a =-,,①()245200bc a a a =⋅-=-<,故①不正确, ②4b a =正确,③4580a b c a a a a -+=--=->,③正确,④()54=544520200b c a a a a +⨯+⨯-=-=,④正确.故选择:C .【点睛】本题考查一元二次方程的根与系数关系,二次函数的性质,掌握一元二次方程的根与系数关系,二次函数的性质,解题关键是找出b,c 与a 的关系.9.D解析:D【分析】分别求出点E 在AB 、BC 段运动时函数的表达式,即可求解.【详解】解:由图2可知,AB=6,BC=10-6=4,①当点E 在AB 上运动时,y=FC=BE=AB-AE=6-x ,即y=6-x (0≤x≤6),图象为一次函数;②当点E 在BC 上运动时,如下图,则BE=x-AB=x-6,EC=BC-BE=4-(x-6)=10-x , FC=y ,AB=6,∵∠FEC+∠AEB=90°,∠AEB+∠EAB=90°,∴∠FEC=∠EAB ,∴∠CFE=∠AEB ,∴△ABE ∽△ECF ,∴BE AB CF CE=,即6610x y x -=-, 整理得:()2181061063y x x x =-+-<≤,图象为二次函数, ∵106-<, 故()2218121086363y x x x =-+-=--+有最大值,最大值为23, 即23m =, 故选:D .【点睛】本题考查的是动点图象问题,涉及到二次函数、一次函数、相似三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.10.B解析:B【分析】根据抛物线的性质逐条判断即可.【详解】解:抛物线22()1y x =-+是二次函数的顶点式,由此可知,抛物线开口向上,对称轴是2x =,顶点坐标是(2,1),故A 、C 、D 正确,不符合题意;∵抛物线顶点在第一象限,开口向上,∴抛物线与x 轴没有交点,故B 错误,符合题意;故选:B .【点睛】本题考查了二次函数图象的性质,解题关键是熟知抛物线顶点式的意义,根据顶点位置和开口确定与x 轴是否有交点. 11.B解析:B【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④.【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误;②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2b a=-1<0,即b=2a <0,即③错误;④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确; 所以正确的有:②④,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键. 12.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m ⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =,134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键.二、填空题13.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】 解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.14.36【分析】设围成矩形的长为xcm 则宽为=(12﹣x )cm 设围成矩形的面积为Scm2根据矩形的面积公式列出S 关于x 的二次函数将其写成顶点式根据二次函数的性质可得答案【详解】解:设围成矩形的长为xcm解析:36【分析】设围成矩形的长为xcm ,则宽为2422x -=(12﹣x ) cm ,设围成矩形的面积为Scm 2,根据矩形的面积公式列出S 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】解:设围成矩形的长为xcm ,则宽为2422x - =(12﹣x ) cm , 设围成矩形的面积为Scm 2,由题意得:S =x (12﹣x )=﹣x 2+12x=﹣(x ﹣6)2+36,∵二次项系数为负,抛物线开口向下,∴当x =6cm 时,S 有最大值,最大值为36cm 2.故答案为:36.【点睛】本题考查了二次函数在几何图形问题中的应用,熟练掌握二次函数的性质是解题的关键; 15.2016【分析】根据二次函数的图象与性质可得抛物线的对称轴为再利用m-2+m+2=2h 解得m=h 则可得A (h−2n )B (h +2n )将B (h +2n )代入函数关系式即可求出结果【详解】解:∵A (m-2n解析:2016【分析】根据二次函数的图象与性质可得抛物线2()2020y x h =--+的对称轴为x h =,再利用m-2+m+2=2h ,解得m=h ,则可得A (h−2,n ),B (h +2,n ),将B (h +2,n )代入函数关系式即可求出结果.【详解】解:∵A (m-2,n ),B (m+2,n )是抛物线2()2020y x h =--+上两点, ∴抛物线2()2020y x h =--+的对称轴为x h =,∴m-2+m+2=2h ,解得m=h ,∴A (h−2,n ),B (h +2,n ),当x =h +2时,n =−(h +2−h )2+2020=2016,故答案为:2016.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上的点的坐标特征并灵活运用所学知识解决问题.16.-1【分析】令y=0时则有则有进而可得对称轴为直线然后可求抛物线顶点纵坐标为由此可得当a 不为±1时纵坐标不为整数进而可求解a 的值【详解】解:由题意得:令y=0时则有解得:∴抛物线与x 轴交点的坐标为由解析:-1【分析】令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,则有122,2x x a==,进而可得对称轴为直线11x a =+,然后可求抛物线顶点纵坐标为12a a--+,由此可得当a 不为±1时,纵坐标不为整数,进而可求解a 的值.【详解】解:由题意得:令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭, 解得:122,2x x a==, ∴抛物线与x 轴交点的坐标为()2,0,2,0a ⎛⎫ ⎪⎝⎭, 由抛物线的对称性可得对称轴为直线11x a =+, ∴把11x a =+代入抛物线解析式得顶点纵坐标为12y a a=--+, ∵顶点的纵坐标是一个正整数且a 是不等于0的整数,∴1a =±,当1a =时,y=0(不符合题意,舍去);当1a =-时,y=4,(符合题意)∴1a =-;故答案为-1.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.17.【分析】先求出抛物线绕其顶点旋转后解析式再根据平移规律即可求解【详解】解:抛物线先绕其顶点旋转后解析式为将抛物线向右平移个单位向下平移个单位后的抛物线解析式为故答案为:【点睛】本题考查了抛物线图象与 解析:2(2)1=---y x【分析】先求出抛物线22y x =+绕其顶点旋转180︒后解析式,再根据平移规律即可求解.【详解】解:抛物线22y x =+先绕其顶点旋转180︒后解析式为22y x =-+,将抛物线22y x =-+向右平移2个单位,向下平移3个单位后的抛物线解析式为()212y x =---.故答案为:2(2)1=---y x【点睛】本题考查了抛物线图象与几何变换,熟知二次函数图象旋转与平移规律是解题关键. 18.【分析】根据题意先把抛物线的一次项系数和常数项用含的式子表示出来从而表示出点P 的坐标再利用两点间的距离求出MN 的长和点P 到MN 的距离即可求出三角形的面积;再根据点MN 在矩形内部求出的范围进而可求的范 解析:42b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m +抛物线2y x bx c =++的对称轴为:2b x =- 22b m ∴-=+ 24b m ∴=--将点 M (m 、n )代入2y x bx c =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△ 2224424b c m m m n m m n +=--+++=++-②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<<点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围19.4【分析】过B 作BF ⊥OA 于F 过D 作DE ⊥OA 于E 过C 作CM ⊥OA 于M 则BF+CM 是这两个二次函数的最大值之和BF ∥DE ∥CM 求出AE=OE=3DE=4设P (2x0)根据二次函数的对称性得出OF=P解析:4【分析】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=3,DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BF OF DE OE =,CM AM DE AE=,代入求出BF 和CM ,相加即可求出答案. 【详解】解:过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM ,∵OD=AD=5,DE ⊥OA ,∴OE=EA=12OA=3, 由勾股定理得:DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE ,∴BF OF DE OE =,CM AM DE AE=, ∵AM=PM=12(OA-OP )=12(6-2x )=3-x , 即43BF x =,343CM x -=, 解得:BF=43x ,CM=4-43x , ∴BF+CM=4.故答案为4.【点睛】 此题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.20.3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(30)可得结论【详解】解:由表格得:二次函数的对称轴是直线x ==∵抛物线与x 轴一个交点为(−20)∴抛物线与x 轴另一个交点为(30)∴该二次解析:3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(3,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x =012+=12, ∵抛物线与x 轴一个交点为(−2,0),∴抛物线与x 轴另一个交点为(3,0),∴该二次函数图象向左平移3个单位,图象经过原点;或该二次函数图象向右平移2个单位,图象经过原点.故答案为:3.【点睛】本题考查了二次函数图象与几何变换−平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决. 三、解答题21.(1)32165y x =-+,160210x ≤≤;(2)每间客房的日租金定为180元时,客房日租金的总收入最高为19440元【分析】(1)首先假设出一次函数解析式,再利用待定系数法求一次函数解析式即可;(2)根据客房日租金的总收入为W=每间客房的日租金×每天客房出租数,再利用配方法求出二次函数的最值即可.【详解】解:(1)设客房每天的出租数量y (间)与每间房的日租金x (元)之间的函数关系式(0)y kx b k =+≠.把(160,120),(170,114)代入得160120170114k b k b +=⎧⎨+=⎩, 解得35216k b ⎧=-⎪⎨⎪=⎩,∴ 32165y x =-+, 由题意得:321690532161205x ⎧-+≥⎪⎪⎨⎪-+≤⎪⎩ ∴160210x ≤≤∴自变量x 的取值范围是160210x ≤≤(2)由题意得:()2332161801944055W y x x x x ⎛⎫=⋅=-+⋅=--+ ⎪⎝⎭∵305-<,160210x ≤≤ ∴当180x =时,19440w =最大.答:每间客房的日租金定为180元时,客房日租金的总收入最高为19440元.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值问题,得出客房日租金的总收入为W=每间客房的日租金×每天客房出租数是解题关键. 22.(1)223y x x =--,1y x =--;(2)22MF m m =-++【分析】(1)把点A 和点B 的坐标代入抛物线解析式求出b 和c 的值即可求出抛物线解析式;再把点C 的横坐标代入已求出的抛物线解析式可求出其纵坐标,进而可求出直线AC 的表达式;(2)已知点M 的横坐标为m ,点M 又在直线AB 上,所以可求出其纵坐标,而点F 在抛物线上,所以可求出其纵坐标,进而可用m 的代数式表示MF 的长.【详解】解:(1)把A (-1,0)、B (3,0)代入y=x 2+bx-c 得:01093b c b c--⎧⎨+-⎩==, 解得:23b c =-⎧⎨=⎩, ∴解析式为:y=x 2-2x-3,把x=2代入y=x 2-2x-3得y=-3,∴C (2,-3),设直线AC 的解析式为y=kx+n ,把A (-1,0)、C (2,-3)代入得023k n k n -+=⎧⎨+=-⎩, 解得:11k n =-⎧⎨=-⎩, ∴直线AC 的解析式为1y x =--;(2)∵点M 在直线AC 上,∴M 的坐标为(m ,-m-1);∵点F 在抛物线y=x 2-2x-3上,∴F 点的坐标为(m ,m 2-2m-3),∴MF=(-m-1)-( m 2-2m-3)=-m 2+m+2.【点睛】本题考查了待定系数法求二次函数的解析式、待定系数法求一次函数的解析式、二次函数图象上点的坐标特征.在(1)中注意待定系数法的应用步骤,在(2)中用m 表示出点M 、F 的坐标是解题的关键.23.(1)223y x x =--;(2)在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【分析】(1)利用待定系数法即可得出结论;(2)点确定出点M 时直线BC 与直线l 的交点,利用待定系数法求出直线BC 解析式即可得出结论;【详解】解:(1)把(1,0)A -,(3,0)B 代入23y ax bx =+-得,309330a b a b --=⎧⎨+-=⎩, 解得,12a b =⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--; (2)抛物线223y x x =--的对称轴为212x -=-=, 点M 在对称轴1x =上,且ACM ∆的周长最短,MC MA ∴+最小,点A 、点B 关于直线1x =对称,∴连接BC 交直线1x =于点M ,此时MC MA +最小,设直线BC 的关系式为y kx b =+,(3,0)B ,(0,3)C -,∴303k b b +=⎧⎨=-⎩, 解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当1x =时,132y =-=-,∴点(1,2)M -,∴在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【点睛】此题时二次函数综合题,主要考查了待定系数法,对称性,解题关键时掌握待定系数法,和判断出点M 的位置,24.(1)y =12x 2﹣32x ﹣2;(2)①M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2);②S AMBN =﹣3m 2+7m +10(﹣1<m <3),当m =76时,S AMBN 有最大值,最大值=16912;③1或73;(3)1. 【分析】(1)令抛物线l 1:y=0,可求得点A 和点B 的坐标,然后设设抛物线l 2的解析式为y=a (x+1)(x-4),将点D 的坐标代入可求得a 的值,从而得到抛物线的解析式. (2)①利用待定系数法可得,M (m ,-m 2+2M+3),N (M ,12m 2-32m-2). ②由点A 和点B 的坐标可求得AB 的长,依据S AMBN =12AB•MN 列出S 与x 的函数关系,从而可得到当S 有最大值时,m 的值,于是可得结论.③CM 与DN 不平行时,可证明四边形CDNM 为等腰梯形,然后可证明GM=HN ,列出关于m 的方程,于是可求得点P 的坐标;当CM ∥DN 时,四边形CDNM 为平行四边形.故此DC=MN=5,从而得到关于m 的方程,从而可得结论.(3)设S ,T 的横坐标分别为x 1,x 2,设R ,U 的横坐标分别为x 3,x 4.利用根与系数的关系解决问题即可.【详解】解:(1)∵令﹣x 2+2x +3=0,解得:x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0),设抛物线l 2的解析式为y =a (x +1)(x ﹣4),∵将D (0,﹣2)代入得:﹣4a =﹣2,∴a =12, ∴抛物线的解析式为y =12x 2﹣32x ﹣2. (2)①由题意P (m ,0),可得M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2). ②如图1所示:∵A (﹣1,0),B (3,0),∴AB =4,∵P (m ,0),M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2), ∵MN ⊥AB ,∴S AMBN =12AB •MN =﹣3m 2+7m +10(﹣1<m <3), ∴当m =76时,S AMBN 有最大值,最大值=16912. ③如图2所示:作CG ⊥MN 于G ,DH ⊥MN 于H ,如果CM 与DN 不平行.∵DC ∥MN ,CM =DN ,∴四边形CDNM 为等腰梯形.∴∠DNH =∠CMG .在△CGM 和△DNH 中,DNH CMG DHN CGM DN CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGM ≌△DNH (AAS ),∴MG =HN .∴PM ﹣PN =1.∵P (m ,0),则M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2). ∴(﹣m 2+2m +3)+(12m 2﹣32m ﹣2)=1,解得:m 1=0(舍去),m 2=1. 当CM ∥DN 时,如图3所示:∵DC∥MN,CM∥DN,∴四边形CDNM为平行四边形.∴DC=MN=5∴﹣m2+2m+3﹣(12m2﹣32m﹣2)=5,∴m1=0(舍去),m2=73,综上所述,m的值为1或73.故答案为:1或73.(3)设S,T的横坐标分别为x1,x2,设R,U的横坐标分别为x3,x4.则TU=x4﹣x2,RS=x1﹣x3,∴TU﹣RS=(x4﹣x2)﹣(x1﹣x3)=(x3+x4)﹣(x1+x2),由﹣x2+2x+3=n,可得,x2﹣2x﹣3+n=0,∴x1+x2=2,由12x2﹣32x﹣2=n,可得x2﹣3x﹣4﹣2n=0,∴x3+x4=3,∴TU﹣RS=(x3+x4)﹣(x1+x2)=3﹣2=1,故答案为:1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,全等三角形的判定和性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数,构建一元二次方程解决问题,属于中考压轴题.25.(1)(﹣1,0);(2)y =x 2+4x +3;(3)﹣3<x <0.【分析】(1)先求出点B ,点A 坐标,由对称性可求点C 坐标;(2)利用待定系数法可求解析式;(3)由图象可求解.【详解】解:(1)∵直线y =x +3分别交x 轴和y 轴于点A 和B ,∴点A (﹣3,0),点B (0,3),∵抛物线的对称轴为直线x =﹣2.抛物线与x 轴的另一个交点为C ,∴点C (﹣1,0),故答案为(﹣1,0);(2)∵抛物线y =ax 2+bx +c 经过点A (﹣3,0),B (0,3),点C (﹣1,0),∴30930c a b c a b c =⎧⎪=-+⎨⎪=-+⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴二次函数的解析式为:y =x 2+4x +3;(3)如图所示:当﹣3<x <0时,二次函数值小于一次函数值,故答案为:﹣3<x <0.【点睛】本题考查了二次函数与不等式,待定系数法求解析式,求出抛物线的解析式是本题的关键.26.(1)2142y x x =-++;(2)142y x =+. 【分析】(1)已知了抛物线的对称轴以及AB 的长,即可得到A 、B 的坐标,代入抛物线的解析式中求得待定系数的值,即可得出抛物线的解析式;(2)由于△ECO 和△ACO 的高都为OC ,根据等高三角形的面积比等于底边比可知:OE :OA =4:1,据此可求出E 点坐标,然后根据E 、C 坐标可用待定系数法求出直线EC 的解析式.【详解】解:(1)∵抛物线的对称轴为直线x =1,12a =-, ∴12b a-=, ∴1b =,∵AB =6, ∴A (−2,0),B (4,0),将B (4,0),1b =代入解析式212y x bx c =-++得4c =, ∴抛物线的解析式为:2142y x x =-++; (2)S △ECO =12EO•OC ,S △ACO =12AO•OC , ∵S △ECO =4S △ACO ,且OA=2,∴EO =4AO =8,∵点E 在A 点的左侧,∴E (−8,0),由抛物线的解析式得:C (0,4),设直线EC 的解析式为:y =kx +b ,将E (−8,0),C (0,4),代入得:804k b b -+=⎧⎨=⎩, 解得124k b ⎧=⎪⎨⎪=⎩,∴直线EC 的解析式为142y x =+. 【点睛】本题综合考查了二次函数的图象与性质、待定系数法求函数解析式等知识,熟练掌握二次函数的图象与性质并能准确利用待定系数法求函数解析式是解题的关键.。
(必考题)初中数学九年级数学下册第二单元《二次函数》检测卷(含答案解析)
一、选择题1.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( )A .B .C .D .3.二次函数2y ax bx c =++的图象如图所示,则函数值y 0>时,x 的取值范围是( )A .x 2<-B .x 5>C .2x 5-<<D .x 2<-或x 5>4.如图在平面直角坐标系中,点A 在抛物线245y x x =-+上运动.过点A 作AC x ⊥轴于点C ,以AC 为对角线作矩形ABCD ,则对角线BD 的最小值为( )A .4B .3C .2D .15.二次函数2(0)y ax bx c a =++≠的图象如图,给出下列四个结论:①20ac b -<;②320b c +<;③()m am b b a ++≤;④22()a c b +<;其中正确结论的个数有( )A .1B .2C .3D .46.下列函数中,当0x >时,y 随x 增大而增大的是( ) A .2y x=B .22y x =+C . 1y x =-+D .22 y x =--7.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( ) A .2B .4C .-4D .8.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+ B .23(-5)1y x =- C .23(5)1y x =+-D .23(5)1y x =++9.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①②B .②④C .③④D .②③④10.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >11.已知二次函数2y ax bx c =++的图象如图所示,则下列结论正确的个数有( ) ①0c >;②240b ac -<;③0a b c -+>;④当1x >时,y 随x 的增大而减小A .4个B .3个C .2个D .1个12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.将抛物线243y x x =-+沿y 轴向下平移3个单位,则平移后抛物线的顶点坐标为_____.14.如图,二次函数2y x mx =-+的图象与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在14x <<的范围内有解,则t 的取值范围是_______.15.如图,在平面直角坐标系中,点A 从点(0,5)M 出发向原点O 匀速运动,与此同时点B 从点(3,0)N 出发,在x 轴正半轴上以相同的速度向右运动,当点A 到达终点O 时,两点同时停止运动.连接AB ,以线段AB 为边在第一象限内作正方形ABCD ,则正方形ABCD 面积的最小值为____________.16.抛物线y =a (x ﹣2)(x ﹣2a)(a 是不等于0的整数)顶点的纵坐标是一个正整数,则a 等于_____. 17.将抛物线2112y x =+绕原点O 旋转180︒,得到的抛物线解析式为__________. 18.二次函数()20y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,有下列结论:①240b ac ->;②421a b c -+>-;③132x -<<-;④当m 为任意实数时,2a b am bm -≤+;⑤30a c +<.其中,正确结论的序号是(________)19.在平面直角坐标系中,把抛物线22y x =+先绕其顶点旋转180︒后,再向右平移2个单位,向下平移3个单位后的抛物线解析式为__________.20.如图,已知点()6,0A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数1y 和过P 、A 两点的二次函数2y 的图像开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当5OD AD ==时,这两个二次函数的最大值之和等于________.三、解答题21.如图,在平面直角坐标系中,(0,1)A ,(2,0)B ,将线段AB 绕原点O 逆时针旋转90°,得到线段A B '',且点A ',B ',B 均在抛物线上.(1)求该抛物线的函数表达式.(2)该抛物线的对称轴上有一点Q ,使ABQ △是以AB 为直角边的直角三角形,求Q 点的坐标.22.一个二次函数图像上部分点的横坐标x ,纵坐标y 的对应值如下表: x … 0 1 2 3 4 … y…m﹣13…的值为 ;(2)在给定的直角坐标系中,画出这个函数的图像; (3)根据图像,写出当y >0时,x 的取值范围.23.已知抛物线y =x 2﹣bx +c (b ,c 为常数)的顶点坐标为(2,﹣1). (1)求该抛物线的解析式;(2)点M (t ﹣1,y 1),N (t ,y 2)在该抛物线上,当t <1时,比较y 1与y 2的大小;(3)若点P (m ,n )在该抛物线上,求m ﹣n 的最大值.24.某商店销售一种商品,每件进价为40元,对销售情况作了调查,结果发现月最大销售是y (件)与销售单价x (元)(5090)x ≤≤之间的函数关系如图中的线段AB .(月最大销售量指进货量足够的情况下最多售出件数)(1)求出y 与x 之间的函数表达式.(2)该商品每月的总利润w (元),求w 关于x 的函数表达式,并指出销售单价x 为多少元时利润w 最大,该月进货数量应定为多少?(3)若该商店进货350件,如果销售不完,就以亏本36元/件计入总利润,则销售单价定为多少,当月月利润最大?25.在二次函数y =ax 2+bx +c (a≠0)中,函数y 与自变量x 的部分对应值如表: x … 0 1 23 4…y … 3 0 ﹣1 0 m …m 的值;并利用所给的坐标网格,画出该函数图象; (2)将这个二次函数向左平移2个单位,再向上平移1个单位,求平移后的函数解析式.26.如图,已知一次函数2y kx =-的图象与x 轴交于点A ,与y 轴交于点B ,二次函数2y x bx c =++经过点B ,且与一次函数2y kx =-的图象交于点()6,4C .(1)求一次函数与二次函数的解析式.(2)在y 轴上是否存在点M ,使得以点B ,M ,C 为顶点的三角形与BAO 相似?若存在,请求出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可. 【详解】解:当0<x≤1时,2yx ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-, ∵Rt △ABC 中,AC=BC=2, ∴△ADM 为等腰直角三角形, ∴2DM x =-,∴()222EM x x x =--=-, ∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A . 【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.2.A解析:A 【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解. 【详解】 解:2(0)y ax bx a =+≠,0c,∴二次函数经过坐标原点,故B 、C 选项错误;A 、根据二次函数开口向上0a >,对称轴bx 02a=->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交, 所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A . 【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.C解析:C 【分析】根据函数图象求出与x 轴的交点坐标,再由图象得出答案. 【详解】解:有函数图象观察可知,当25x -<<时,函数值0y >. 故选:C . 【点睛】本题考查二次函数与不等式.掌握数形结合思想是解题关键.4.D解析:D 【分析】先利用配方法得到抛物线的顶点坐标为(2,1),再根据矩形的性质得BD =AC ,由于AC 的长等于点A 的纵坐标,所以当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为2,从而得到BD 的最小值. 【详解】解:∵y =x 2﹣4x +5=(x ﹣2)2+1, ∴抛物线的顶点坐标为(2,1), ∵四边形ABCD 为矩形, ∴BD =AC , 而AC ⊥x 轴,∴AC 的长等于点A 的纵坐标,当点A 在抛物线的顶点时,点A 到x 轴的距离最小,最小值为1, ∴对角线BD 的最小值为1. 故选:D . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.5.D解析:D 【分析】利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断. 【详解】解:∵抛物线开口向下,所以a<0,与y 轴交于正半轴,所以c >0,∴ac<0,∵b²≥0,∴20ac b -<,∴①正确;∵把x=1代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∵-2b a-=-1, ∴b=2a , ∴3b+2c <0,∴②正确;∵抛物线的对称轴是直线x=-1,∴y=a-b+c 的值最大,即把x=m 代入得:y=am 2+bm+c≤a -b+c ,∴am 2+bm+b≤a ,即m (am+b )+b≤a ,∴③正确;∵a+b+c <0,a-b+c >0,∴(a+c+b )(a+c-b )<0,则(a+c )2-b 2<0,即(a+c )2<b 2,故④正确;故选:D .【点睛】本题考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax 2+bx+c=0的解的方法,同时注意特殊点的运用.6.B解析:B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A 、2y x=,反比例函数,k=2>0,分别在一、三象限,在每一象限内,y 随x 的增大而减小,不符合题意; B 、22y x =+,a=1>0,开口向上,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而增大,符合题意;C 、1y x =-+,一次函数,k=-1<0,故y 随着x 增大而减小,不符合题意;D 、22y x =--,a=-1<0,开口向下,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而减小,不符合题意.故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.7.D解析:D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯, ∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.8.C解析:C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2;再向下平移1个单位为:y=3(x+5)2-1.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 9.B解析:B【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④.【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误;②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2b a=-1<0,即b=2a <0,即③错误; ④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确;所以正确的有:②④,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键. 10.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =, 134m ∴>时有2个交点,综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键. 11.B解析:B【分析】根据二次函数的图象与y 轴的交点判断c 的正负;根据二次函数的图象与x 轴交点个数,判断②的正确性;根据1x =-时,y 取值的正负,判断③的正确性;根据图象中函数的增减性判断④的正确性.【详解】解:∵二次函数的图象与y 轴的交点在正半轴,∴0c >,故①正确;∵二次函数的图象与x 轴有两个交点,∴方程20ax bx c ++=有两个不相同的实数根,∴240b ac ->,故②错误;当1x =-时,0y >,即0a b c -+>,故③正确;根据图象,当1x >时,y 随x 的增大而减小,故④正确.故选:B .【点睛】本题考查二次函数,解题的关键是根据二次函数的图象分析解析式中系数的关系. 12.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b ,∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2-4)【分析】首先根据二次函数解析式写成顶点式可得顶点坐标再根据平移得性质得出平移后得顶点坐标即可【详解】∵y=x2-4x+3=(x-2)2-1∴顶点坐标为(2-1)∵将抛物线y=x2-4x+3解析:(2,-4)【分析】首先根据二次函数解析式写成顶点式,可得顶点坐标,再根据平移得性质得出平移后得顶点坐标即可.【详解】∵y=x 2-4x+3=(x-2)2-1,∴顶点坐标为(2,-1),∵将抛物线y=x 2-4x+3沿y 轴向下平移3个单位,∴平移后得抛物线得顶点坐标为(2,-4),故答案为:(2,-4)【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移.14.【分析】求出函数解析式求出函数值取值范围把t 的取值范围转化为函数值的取值范围【详解】先由已知可得二次函数y=−x2+mx 的图象与x 轴交于坐标原点和(40)所以对称轴x==所以m=4代入方程y=−x2解析:04t <≤【分析】求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围.【详解】先由已知可得,二次函数 y=−x 2+mx 的图象与 x 轴交于坐标原点和 (4,0)所以对称轴 x=2b a-=()221m -=⨯-, 所以m=4,代入 方程y=−x 2+mx 得,y=-x 2+4x ,当x=2时,y=4即顶点坐标是(2,4)当x=1时,y=3,当x=4时,y=0由x 2−mx+t=0得 t=-x 2+4x=y因为当 1<x<4 时, 0<y≤4,所以在 1<x<4 范围内有实数解,则 t 的取值范围是0<t≤4,故答案为:0<t≤4 .【点睛】本题考查了二次函数和一元二次方程数形结合分析问题,注意函数的最低点和最高点. 15.32【分析】根据题意可以得到OA+OB 的关系再根据勾股定理和二次函数的性质即可得到正方形ABCD 面积的最小值【详解】解:由题意可得NB=MA 则AO+OB=8设AO=x 则OB=8-x ∵S 正方形ABCD解析:32【分析】根据题意,可以得到OA+OB 的关系,再根据勾股定理和二次函数的性质,即可得到正方形ABCD 面积的最小值.【详解】解:由题意可得,NB=MA ,则AO+OB=8,设AO=x ,则OB=8-x ,∵S 正方形ABCD =AB 2=AO 2+OB 2=x 2+(8-x )2=2(x-4)2+32,∴当x=4时,正方形ABCD 的面积取得最小值32,故答案为:32.本题考查了正方形的性质、坐标与图形的性质、二次函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.16.-1【分析】令y=0时则有则有进而可得对称轴为直线然后可求抛物线顶点纵坐标为由此可得当a 不为±1时纵坐标不为整数进而可求解a 的值【详解】解:由题意得:令y=0时则有解得:∴抛物线与x 轴交点的坐标为由解析:-1【分析】令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭,则有122,2x x a==,进而可得对称轴为直线11x a =+,然后可求抛物线顶点纵坐标为12a a--+,由此可得当a 不为±1时,纵坐标不为整数,进而可求解a 的值.【详解】解:由题意得:令y=0时,则有()220a x x a ⎛⎫--= ⎪⎝⎭, 解得:122,2x x a==, ∴抛物线与x 轴交点的坐标为()2,0,2,0a ⎛⎫ ⎪⎝⎭, 由抛物线的对称性可得对称轴为直线11x a =+, ∴把11x a =+代入抛物线解析式得顶点纵坐标为12y a a=--+, ∵顶点的纵坐标是一个正整数且a 是不等于0的整数,∴1a =±,当1a =时,y=0(不符合题意,舍去);当1a =-时,y=4,(符合题意)∴1a =-;故答案为-1.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.17.【分析】先确定抛物线线的顶点坐标为(01)再利用关于原点对称的点的坐标特征得到点(01)变换后所得对应点的坐标为(0-1)然后利用顶点式写出旋转后抛物线【详解】解:抛物线的顶点坐标为(01)点关于原 解析:2112y x =--先确定抛物线线2112y x =+的顶点坐标为(0,1),再利用关于原点对称的点的坐标特征得到点(0,1)变换后所得对应点的坐标为(0,-1),然后利用顶点式写出旋转后抛物线.【详解】 解:抛物线2112y x =+的顶点坐标为(0,1),点关于原点O 的对称点的坐标为(0,-1),此时旋转后抛物线的开口方向相反,所以旋转后的抛物线的解析式为2112y x =--. 故答案为:2112y x =--. 【点睛】本题考查了二次函数图象与几何变换:抛物线绕某点旋转180°得到旋转后的抛物线开口相反,抛物线的开口大小不变. 18.①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:故③正确;x=0与x=-2时的函数值相等即可判断②错误;根据对称轴为直线得到当x=-1时函数值最小故当x=m 时函数值大于等于解析:①③④【分析】根据函数图象与x 轴有两个交点即可判断①正确;根据对称性可得:132x -<<-,故③正确;x=0与x=-2时的函数值相等,即可判断②错误;根据对称轴为直线1x =-,得到当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++,即可判断④正确;由对称轴为直线1x =-,得到b=2a ,由图象可得:当x=1时,y>0,故a+b+c>0,代入得到3a+c>0,由此判断⑤错误.【详解】∵函数图象与x 轴的交点为()()12,0,0x x ,∴240b ac ->,故①正确;∵对称轴为直线1x =-,与x 轴的交点为()()12,0,0x x ,其中201x <<,∴132x -<<-,故③正确;根据抛物线的对称性得到:x=0与x=-2时的函数值相等,∵图象与y 轴的交点纵坐标小于-1,∴421a b c -+<-,故②错误;∵对称轴为直线1x =-,∴当x=-1时,函数值最小,故当x=m 时,函数值大于等于x=-1时的函数值,即2a b c am bm c -+≤++,∴2a b am bm -≤+,故④正确;∵对称轴为直线1x =-, ∴12b a-=-,得b=2a , 由图象可得:当x=1时,y>0,∴a+b+c>0,∴3a+c>0,故⑤错误,故答案为:①③④.【点睛】此题考查二次函数的图象,函数图象与x 轴交点问题,利用图象判断式子的正负,函数最值,根据图象得到相关的信息是解题的关键.19.【分析】先求出抛物线绕其顶点旋转后解析式再根据平移规律即可求解【详解】解:抛物线先绕其顶点旋转后解析式为将抛物线向右平移个单位向下平移个单位后的抛物线解析式为故答案为:【点睛】本题考查了抛物线图象与 解析:2(2)1=---y x【分析】先求出抛物线22y x =+绕其顶点旋转180︒后解析式,再根据平移规律即可求解.【详解】解:抛物线22y x =+先绕其顶点旋转180︒后解析式为22y x =-+,将抛物线22y x =-+向右平移2个单位,向下平移3个单位后的抛物线解析式为()212y x =---.故答案为:2(2)1=---y x【点睛】本题考查了抛物线图象与几何变换,熟知二次函数图象旋转与平移规律是解题关键. 20.4【分析】过B 作BF ⊥OA 于F 过D 作DE ⊥OA 于E 过C 作CM ⊥OA 于M 则BF+CM 是这两个二次函数的最大值之和BF ∥DE ∥CM 求出AE=OE=3DE=4设P (2x0)根据二次函数的对称性得出OF=P解析:4【分析】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,则BF+CM 是这两个二次函数的最大值之和,BF ∥DE ∥CM ,求出AE=OE=3,DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,推出△OBF ∽△ODE ,△ACM ∽△ADE ,得出BF OF DE OE =,CM AM DE AE=,代入求出BF 和CM ,相加即可求出答案. 【详解】解:过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA ,∴BF ∥DE ∥CM ,∵OD=AD=5,DE ⊥OA ,∴OE=EA=12OA=3, 由勾股定理得:DE=4.设P (2x ,0),根据二次函数的对称性得出OF=PF=x ,∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE , ∴BF OF DE OE =,CM AM DE AE=, ∵AM=PM=12(OA-OP )=12(6-2x )=3-x , 即43BF x =,343CM x -=, 解得:BF=43x ,CM=4-43x , ∴BF+CM=4.故答案为4.【点睛】 此题考查了二次函数的最值,勾股定理,等腰三角形的性质,以及相似三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题.三、解答题21.(1)22y x x =-++;(2)(12,-3)或(12,2) 【分析】(1)利用旋转的性质得出A′(-1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)分AQ 是斜边、BQ 是斜边两种情况,利用勾股定理分别求解即可.【详解】解:(1)线段AB 绕原点O 逆时针旋转90°,得到线段A B '',又A (0,1),B (2,0),∴A′(-1,0),B′(0,2),∵A′(-1,0),B′(0,2),B (2,0),设抛物线的解析式为:y=a (x+1)(x-2)将B′(0,2)代入得出:2=a (0+1)(0-2),解得:a=-1,故满足条件的抛物线的解析式为y=-(x+1)(x-2)=-x 2+x+2;(2)由抛物线的表达式知,函数的对称轴为x=12,故设点Q (12,m ), 则()222112AQ m ⎛⎫=+- ⎪⎝⎭,222122BQ m ⎛⎫=-+ ⎪⎝⎭,AB 2=22+1=5, 当AQ 是斜边时, 则()22221112522m m ⎛⎫⎛⎫+-=-++ ⎪ ⎪⎝⎭⎝⎭, 解得m=-3,当BQ 是斜边时,()22221115222m m ⎛⎫⎛⎫+-+=-+ ⎪ ⎪⎝⎭⎝⎭, 解得m=2,故点Q 的坐标为(12,-3)或(12,2). 【点睛】本题主要考查了待定系数法求二次函数的解析式,二次函数的性质,坐标和图形的变换-旋转,其中(2),利用勾股定理得出方程求出m 是解题关键.22.(1)3;(2)见解析;(3)x <1或x >3.【分析】(1)利用抛物线的对称性得到抛物线的对称轴为直线x=2,则x=4和x=0时的函数值相等,从而得到m 的值;(2)利用描点法画出二次函数图象;(3)结合函数图象,写出抛物线在x 轴上方所对应的自变量的范围.【详解】解:(1)∵抛物线经过点(1,0),(3,0),∴抛物线的对称轴为直线x=2,顶点坐标为(2,-1),∴x=4和x=0时的函数值相等,∴m=3;故答案为:3;(2)描点,连线,二次函数图象如图所示,(3)观察图象,0y 时,x<1或x>3.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.23.(1)y=x2﹣4x+3;(2)y1>y2;(3)m=52时,m﹣n有最大值,最大值为134【分析】(1)利用顶点式直接写出抛物线的解析式;(2)根据二次函数的性质判断y1与y2的大小;(3)先用m表示m﹣n得到m﹣n=﹣m2+5m﹣3,然后配成顶点式,从而得到m﹣n的最大值.【详解】解:(1)∵抛物线y=x2﹣bx+c(b,c为常数)的顶点坐标为(2,﹣1),∴抛物线的解析式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)∵抛物线的对称轴为直线x=2,而t<1,∴点M(t﹣1,y1),N(t,y2)对称轴的左侧的抛物线上,∵抛物线开口向上,在对称轴的左侧y随x增大而减小,∵t﹣1<t,∴y1>y2;(3)∵点P(m,n)在该抛物线上,∴n=m2﹣4m+3,∴m﹣n=m﹣(m2﹣4m+3)=﹣m2+5m﹣3=﹣(m﹣52)2+134,∴当m=52时,m﹣n有最大值,最大值为134.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.24.(1)()1010005090y x x =-+;(2)当销售单价为70元时,总利润w 最大,进货数量为300件;(3)此时销售单价定为68元时,当月月利润最大.【分析】(1)利用待定系数法即可求出y 与x 之间的函数表达式;(2)根据“总利润=单件利润×销售件数”列出函数关系式,配成顶点式,根据二次函数性质即可求解;(3)设当月月利润为m ,根据“总利润=总盈利-总亏损”得到m 与x 函数关系式,根据二次函数性质即可求解.【详解】解:(1)设y 与x 之间函数关系式为()0y kx b k =+≠,将点A (50,500),B (90,100)代入函数关系式得5050090100k b k b +=⎧⎨+=⎩, 解得101000k b =-⎧⎨=⎩, ∴求出y 与x 之间的函数表达式为()1010005090y x x =-+;(2)由题意得()()10100040w x x =-+-21014004000x x =-+-()210709000x =--+,∴当销售单价为70元时,总利润w 最大,此时该月进货数量应为-10×70+1000=300件; (3)设当月月利润为m , ()()()()210100040403635010001010136037400m x x x x x =-+----+=-+-, ∵-10<0,∴当136068220b x a =-==-时,m 最大, 答:此时销售单价定为68元时,当月月利润最大.【点睛】本题为一次函数、二次函数综合题,综合性较强,熟练掌握待定系数法和求总利润的数量关系,二次函数性质是解题关键.25.(1)y =x 2﹣4x +3,m 的值为3,见解析;(2)y =x 2【分析】(1)由二次函数图象经过点(1,0),(3,0),设出交点式,利用待定系数法求函数解析式,进一步代入点得出m 的值;然后利用表中的点描点,画出函数图象即可;(2)将抛物线解析式化为顶点式,再根据“上加下减、左加右减”的原则进行解答即可.【详解】解:(1)抛物线y =ax 2+bx +c (a≠0)过点(1,0),(3,0),可设抛物线解析式为y =a (x ﹣1)(x ﹣3)∵过点(0,3),∴3=3a ,解得a =1,∴y =(x ﹣1)(x ﹣3)=x 2﹣4x +3,当x =4时,y =16﹣16+3=3,∴抛物线的解析式为y =x 2﹣4x +3,m 的值为3,函数图象如下:(2)∵y =x 2﹣4x +3=(x ﹣2)2﹣1,∴将函数y =x 2﹣4x +3向左平移2个单位,再向上平移1个单位,得y =(x ﹣2+2)2﹣1+1,即y =x 2,所以平移后的函数解析式为y =x 2.【点睛】本题考查了待定系数法、抛物线的平移和画函数图象,解题关键是熟练运用待定系数法,掌握抛物线平移规律.26.(1)一次函数解析式为2y x =-,二次函数解析式为:252y x x =--;(2)存在,点M 的坐标为(0,4)或(0,10).【分析】(1)由一次函数2y kx =-的图象与y 轴交于点B ,可求B (0,-2),由一次函数2y kx =-的图象过点()6,4C ,可求1k =,一次函数解析式为2y x =-,由2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩,解方程组求出52b c =-⎧⎨=-⎩即可;(2)存在,先求出OA=2,OB=2,∠AOB=90°,由勾股定理2222OA +OB =2+2=22()()22604262-++=M 为直角顶点时,当点C 为直角顶点时,利用相似三角形及其性质,可求BM=6或12,即可求出点M 的坐标.【详解】解:(1)∵一次函数2y kx =-的图象与y 轴交于点B ,∴当x=0时,y=-2,B (0,-2),∵一次函数2y kx =-的图象过点()6,4C ,∴462k =-,∴1k =,∴一次函数解析式为2y x =-,∵2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩, 解方程组得52b c =-⎧⎨=-⎩, ∴二次函数解析式为:252y x x =--;(2)存在,理由如下,∵已知一次函数2y x =-的图象与x 轴交于点A ,∴y=0,x=2,∴A(2,0),B(0,-2),∴OA=2,OB=2,∠AOB=90°,在Rt △AOB 中,由勾股定理由勾股定理= ①当点M 为直角顶点时,CM ⊥y 轴,CM ∥OA ,∴∠MCB=∠OAB ,∠MBC=∠OBA , ∴△CMB ∽△AOB ,∴BM BC =BO BA 即BM 2, ∴BM=6,∴OM=MB-OB=6-2=4,∴M (0,4),②当点C 为直角顶点时,∴CM ⊥BC ,∴∠MCB=∠AOB=90°,∠MBC=∠ABO , ∴△MCB ∽△AOB ,∴BC BM =BO BA 即2 ∴BM=12,∴OM=MB-OB=12-2=10,∴M(0,10),∴以点B,M,C为顶点的三角形与BAO相似点M的坐标为M(0,4)或(0,10).【点睛】本题考查一次函数解析式与二次函数解析式,等腰直角三角形,勾股定理,相似三角形的性质与判定,掌握一次函数解析式与二次函数解析式,等腰直角三角形,勾股定理,相似三角形的性质与判定,解题关键是分类考虑以点C与点M为直角时的相似三角形.。
(必考题)初中数学九年级数学下册第二单元《二次函数》检测题(有答案解析)
一、选择题1.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 2.把二次函数243y x x =-+化成2()y a x h k =++的形式是( ) A .2(2)1y x =++B .2(2)7y x =++C .2(2)1y x =--D .2(2)7y x =-- 3.抛物线222=++y x x 与y 轴的交点坐标为( )A .(1,0)B .(0,1)C .(0,0)D .(0,2) 4.二次函数2y x bx c =++的图象经过坐标原点O 和点()7,0A ,直线AB 交y 轴于点()0,7B -,动点(),C x y 在直线AB 上,且17x <<,过点C 作x 轴的垂线交抛物线于点D ,则CD 的最值情况是( )A .有最小值9B .有最大值9C .有最小值8D .有最大值8 5.如图,抛物线与x 轴交于()2,0A -,()4,0B 两点,点()P m n ,从点A 出发,沿抛物线向点B 匀速运动,到达点B 停止,设运动时间为t 秒,当3t =和9t =时,n 的值相等.有下列结论:①6t =时,n 的值最大;②10t =时,点P 停止运动;③当5t =和7t =时,n 的值不相等;④4t =时,0m =.其中正确的是( )A .①④B .②④C .①③D .②③6.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( )A .18m >B .1m >-C .118m -<<D .1m 18<< 7.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个8.如图,抛物线2y ax bx c =++的顶点坐标为(1,4)a -,点()14,A y 是该抛物线上一点,若点()22,B x y 是该抛物线上任意一点.有下列结论:①420a b c -+>;②抛物线2y ax bx c =++与x 轴交于点(1,0)-,(3,0);③若21y y >,则24x >;④若204x ≤≤,则235a y a -≤≤.其中,正确结论的个数是( )A .0B .1C .2D .39.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =-+-与反比例函数a b c y x -+=在同一平面直角坐标系内的图象大致为( )A .B .C .D .10.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( )A .2B .4C .-4D .11.已知二次函数2y ax bx c =++的部分图象如图所示,下列关于此函数图象的描述中,正确的个数是( )①对称轴是直线1x =;②当0x <时,函数值y 随x 的增大而增大;③方程20ax bx c ++=的解为11x =-,23x =;④当1x <-或3x >时,20ax bx c ++<.A .1B .2C .3D .412.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<<二、填空题13.已知将抛物线2y ax c =+向右平移2个单位,再向上平移3个单位后得到的抛物线经过点(0,5),则1234a c +-的值为______.14.已知二次函数y=ax 2﹣4ax+4,当x 分别取x 1、x 2两个不同的值时,函数值相等,则当x 取x 1+x 2时,y 的值为________________________15.如图已知1A ,2A ,3A ,n A ⋅⋅⋅是x 轴上的点,且112233411n n OA A A A A A A A A -====⋅⋅⋅==,分别过点1A ,2A ,3A ,n A ⋅⋅⋅作x 轴的垂线交二次函数()02>=x x y 的图象于点1P ,2P ,3P ,n P ⋅⋅⋅,若记11OA P △的面积为1S ,过点1P 作1122P B A P ⊥于点1B ,记112P B P △的面积为2S ,过点2P 作2233P B A P ⊥于点2B ,记223P B P △的面积为3S ,…依次进行下去,则3S =______,最后记()111n n n PB P n -->△的面积为n S ,则n S =______.16.现从四个数1,2,1-,3-中任意选出两个不同的数,分别作为二次函数2y ax bx =+中a ,b 的值,则所得二次函数满足开口方向向下且对称轴在y 轴右侧的概率是__________.17.抛物线212133y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,则ABC 的面积为 _______.18.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A 点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m 处达到最高,高度为5m ,水柱落地处离池中心距离为6m ,则水管的长度OA 是________m .19.将抛物线2y x =-先向左平移1个单位长度,再向上平移2个单位长度后,得到的抛物线的解析式是______.20.已知y 是x 的二次函数,y 与x 的部分对应值如表:该二次函数图象向左平移____________个单位,图象经过原点. x… ﹣2 ﹣1 0 1 2 … y … 0 4 6 6 4 …三、解答题21.如图,抛物线y =a (x ﹣1)2+4与x 轴交于点A ,B ,与y 轴交于点C ,过点C 作CD//x 轴交抛物线的对称轴于点D ,连接BD ,已知点A 的坐标为(﹣1,0)(1)求该抛物线的解析式;(2)求梯形COBD 的面积.(3)直线BC 上方的抛物线上是否存在一点P ,使△PBC 的面积最大?若存在,求出点P 的坐标;若不存在,请说明理由.22.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值互为相反数;当0x <时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x -≥⎧=⎨<⎩. (1)已知点(1,3)A -在一次函数2y ax =-的相关函数的图象上,求a 的值;(2)已知二次函数2283y x x =-+-.①当点(,4)B m -在这个函数的相关函数的图象上时,求m 的值;②当23x -≤≤时,求函数2283y x x =-+-的相关函数的最大值和最小值. 23.喜迎元旦,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.(1)假设设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,求y 与x 之间的函数关系式.(2)每件商品的售价上涨多少元时,该商店每星期销售这种商品可获得最大利润?此时,该商品的定价为多少元?获得的最大利润为多少?24.某商店销售一种商品,每件进价为40元,对销售情况作了调查,结果发现月最大销售是y (件)与销售单价x (元)(5090)x ≤≤之间的函数关系如图中的线段AB .(月最大销售量指进货量足够的情况下最多售出件数)(1)求出y 与x 之间的函数表达式.(2)该商品每月的总利润w (元),求w 关于x 的函数表达式,并指出销售单价x 为多少元时利润w 最大,该月进货数量应定为多少?(3)若该商店进货350件,如果销售不完,就以亏本36元/件计入总利润,则销售单价定为多少,当月月利润最大?25.如图,在平面直角坐标系中,点()2,3A 为二次函数()220y ax bx a =+-≠与反比例函数()0k y k x=≠在第一象限的交点,已知该抛物线()220y ax bx a =+-≠与x 轴正、负半轴分别交于点E 、点D ,交y 轴负半轴于点B ,且1tan 2ADE ∠=. (1)求二次函数和反比例函数的表达式; (2)已知点M 为抛物线上一点,且在第三象限,顺次连接点D M B E 、、、,求四边形DMBE 面积的最大值.26.在平面直角坐标系中,抛物线212y x bx c =++经过点(4,0)A -,点M 为抛物线的顶点,点B 在y 轴上,且OA OB =,直线AB 与抛物线在第一象限交于点()2,6C ,如图.(1)求抛物线的解析式;(2)求直线AB 的函数解析式、点M 的坐标和ABO ∠的余弦值.(3)连接OC ,若过点O 的直线交线段AC 于点P ,将AOC △的面积分成1:2的两部分,求点P 的坐标为______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.2.C解析:C【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式.【详解】解:()()22243443421y x x x x x =-+=-++-=--. 故选:C .【点睛】此题考查了二次函数的顶点式,掌握利用配方法将二次函数一般式转化为顶点式是解题的关键.3.D解析:D【分析】令x=0,则y=2,抛物线与y 轴的交点为 (0,2)【详解】令x=0,则y=2,∴抛物线与y 轴的交点为(0,2),【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数图象与坐标轴的交点是解题的关键;4.B解析:B【分析】根据待定系数法求得抛物线的解析式和AB 的解析式,设(,7)C x x -,则2(,7)D x x x -,根据图象的位置即可得出2(4)9CD x =--+,根据二次函数的性质即可求得.【详解】 解:二次函数2y x bx c =++的图象经过坐标原点O 和点(7,0)A , ∴04970c b c =⎧⎨++=⎩,解得70b c =-⎧⎨=⎩, ∴二次函数为27y x x =-,(7,0)A ,(0,7)B -,∴直线AB 为:7y x =-,令277x x x -=-,解得:11x =,27x =,∴点E 的横坐标为1,则点C 始终在点D 上方,设(,7)C x x -,则2(,7)D x x x -,2227(7)87(4)9CD x x x x x x ∴=---=-+-=--+,17x ∴<<范围内,有最大值9,故选:B .【点睛】本题考查了二次函数的性质,待定系数法求一次函数的解析式,求二次函数的解析式,表示出CD 的关系式是解题的关键.5.A解析:A根据题意首先求得抛物线的对称轴,然后由抛物线的轴对称性质和二次函数的性质解答.【详解】解:过点P 作PQ ⊥x 轴于Q ,根据题意,该抛物线的对称轴是直线x=422- =1.设点Q 的运动速度是每秒v 个单位长度,则∵当t=3和t=9时,n 的值相等,∴x=12[(9v−2)+(3v−2)] =1, ∴v=12. ①当t=6时,AQ=6×12=3,此时点P 是抛物线顶点坐标,即n 的值最大,故结论正确; ②当t=10时,AQ=10×12 =5,此时点Q 与点B 不重合,即n≠0,故结论错误; ③当t=5时,AQ=52,此P 时点的坐标是(12 ,0); 当t=7时,AQ=72,此时点P 的坐标是(32,0). 因为点(12,0)与点(32,0)关于对称轴直线x=1对称,所以n 的值一定相等,故结论错误; ④t=4时,AQ=4×12=2,此时点Q 与原点重合,则m=0,故结论正确. 综上所述,正确的结论是①④.故选:A .【点睛】 本题主要考查了抛物线与x 轴的交点,二次函数的最值,二次函数图象上点的坐标特征,根据题意求得对称轴和点Q 的运动速度是解题的关键.6.A解析:A【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围.【详解】解:设()()2121m x x y m m +--+=, ∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正,∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中, 1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质. 7.D解析:D【分析】把P 点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可.【详解】解:甲:当n =﹣1时,m (﹣m +2)=﹣1,整理得:m 2﹣2m ﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,即此时点P 的个数为2,故甲的说法正确;乙:当n =0时,m (﹣m +2)=0,解得:m =0或2,即此时点P 的个数为2,故乙的说法错误;丙:当n =1时,m (﹣m +2)=1,整理得:m 2﹣2m +1=0,△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,即此时点P 的个数为1,故丙的说法正确;丁:当n =2时,m (﹣m +2)=2,整理得:m 2﹣2m +2=0,△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,即此时点P 的个数为0,故丁的说法正确;所以正确的个数是3个,故选:D .【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.8.C解析:C【分析】利用对称轴公式和顶点坐标得出4a a b c -=++,2b a =-,3c a =-,则可对①进行判断;抛物线解析式为223y ax ax a =--,配成交点式得()()31y a x x =-+,可对②进行判断;根据二次函数对称性和二次函数的性质可对③进行判断;计算4x =时5y a =,根据二次函数的性质可对④进行判断【详解】①根据抛物线()20y ax bx c a =++≠的图像可知 抛物线的对称轴12b x a=-= 2b a ∴=-顶点坐标为(1、4a -)4a a b c ∴-=++3c a ∴=-424435a b c a a a a ∴-+=+-=抛物线开口向上,则0a >420a b c ∴-+>故结论①正确②2b a =-,3c a =-()()22331y ax ax a a x x ∴=--=-+∴抛物线()20y ax bx c a =++≠与x 轴交于(1-、0),(3、0)故结论②正确③A (4、1y )关于直线1x =的对称点为(2-、1y )∴当21y y >时,则24x >或22x <-故结论③错误④当4x =时,116416835y a b c a a a a =++=--=∴当204x ≤≤时,245a y a -≤≤故结论④错误故选:C .【点睛】本题考查了抛物线与x 轴的交点,也考查了二次函数的性质,解题关键是把求二次函数与x 轴交点问题转化为解关于x 一元二次方程,并熟练掌握二次函数的性质.9.B解析:B【分析】先根据二次函数2y ax bx c =++的图象判断出a 、b 、c 、a b c -+的符号,再用排除法对四个答案进行逐一检验.【详解】解:由二次函数2y ax bx c =++的图象开口向上可知,0a >,因为图象与y 轴的交点在y 轴的负半轴,所以0c <,对称轴位于y 轴右侧,可知02b a ->,所以0b <, ∵0a >,0b <,0c <,0ac <,∴b 2−4ac >0,-b >0,∴二次函数24y bx b ac =-+-的图象过一、二、四象限,故可排除A 、C ;由函数图象可知,当1x =-时,0y >,即0y a b c =-+>,∴反比例函数a b c y x-+=的图象在一、三象限,可排除D 选项, 故选:B .【点睛】此题比较复杂,综合考查了二次函数、一次函数及反比例函数图象的特点,锻炼了学生数形结合解题的思想方法. 10.D解析:D【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解.【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯, ∵顶点在x 轴上, ∴241441b ⨯⨯-⨯=0, 解得b 2=16,b=±4.故选:D .【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.11.D解析:D【分析】利用拋物线的顶点的横坐标为1可对①进行判断;根据二次函数的性质对②进行判断;利用对称性得到拋物线与x 轴的另一个交点坐标为(3、0),则可对③进行判断;观察函数图象,当抛物线在x 轴下方时,得出其x 的取值范围,则可对④进行判断.【详解】根据函数图像可知,抛物线的对称轴为直线1x =,故①的说法正确;当1x <时,函数y 随x 的增大而增大,故②的说法正确;点(1-、0)关于1x =的对称点为(3、0),则抛物线与x 轴的另一个交点坐标为(3、0),所以方程20ax bx c ++=的解为121,3x x =-=,故③说法正确; 由函数图像可知,当1x <-或3x >时,抛物线在x 的下方,即20ax bx c ++<,所以④的说法正确综上所述①②③④的说法都正确故选:D .【点睛】本题考查了拋物线与x 轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质. 12.A解析:A【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键.二、填空题13.【分析】首先求出平移后的抛物线的解析式把点(05)代入解析式得变形为再把变形为代入求值即可【详解】解:抛物线向右平移2个单位解析式为再向上平移3个单位后得到的抛物线解析式为∵抛物线经过点∴∴∴=故答 解析:【分析】首先求出平移后的抛物线的解析式2(2)3y a x c =-++,把点(0,5)代入解析式得435a c ++=,变形为42a c +=,再把1234a c +-变形为3(4)4a c +-代入求值即可.【详解】解:抛物线2y ax c =+向右平移2个单位,解析式为2(2)y a x c =-+,再向上平移3个单位后得到的抛物线解析式为2(2)3y a x c =-++∵抛物线经过点(0,5),∴435a c ++=∴42a c +=∴1234a c +-=3(4)4a c +- 324=⨯-64=-2=故答案为:2.【点睛】本题考查了二次函数的图象与几何变换,掌握旋转及平移的规律是解题的关键. 14.4【分析】根据二次函数的性质和二次函数图象具有对称性可以求得的值从而可以求得相应的y 的值【详解】解:∵y=当x 分别取两个不同的值时函数值相等∴∴当x 取时y=故答案为4【点睛】本题考查二次函数图象上的 解析:4【分析】根据二次函数的性质和二次函数图象具有对称性,可以求得12x x +的值,从而可以求得相应的y 的值.【详解】解:∵y=()2244244ax ax a x a -+=--+,当x 分别取 12,x x 两个不同的值时,函数值相等,∴124x x +=,∴当x 取12x x +时,y=()242444a a --+=,故答案为4.【点睛】本题考查二次函数图象上的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答. 15.【分析】先根据二次函数图象上点的坐标特征求出点P (11)则根据三角形面积公式求得S1=同样求得S2=S3=S4=所有对应的三角形面积的分母都为2分子为2n-1从而可得Sn=【详解】解:∵当∴点P1( 解析:52, 212n - 【分析】 先根据二次函数图象上点的坐标特征求出点P (1,1),则根据三角形面积公式求得S 1=12,同样求得S 2=32,S 3=52,S 4=72,所有对应的三角形面积的分母都为2,分子为2n-1,从而可得S n =212n -. 【详解】解:∵()02>=x x y 当1x =,1y =,∴点P 1(1,1)∴S 1=111122=⨯⨯= 当2x =时,224y ==∴点P 2(2,4)∴S 2()1314122=⨯⨯-=当3x =时,239y ==∴点P 2(3,9)∴S 3()1519422=⨯⨯-= 同理:S 4()17116922=⨯⨯-= ∴S n 212n -= 故答案为:52;212n - 【点睛】 本题考查二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也涉及到三角形面积公式,图形类规律探索,解题的关键是学会利用数形结合的思想,找出相应三角面积的规律.16.【分析】把ab 所有可能的取值及满足题目的条件通过表格列出来再根据概率的定义列式求解即可【详解】解:∵二次函数满足开口方向向下即要a<0对称轴在y 轴右侧即要求∴可以列出如下表格:其中第三和第四行数字0解析:13【分析】把a 、b 所有可能的取值及满足题目的条件通过表格列出来,再根据概率的定义列式求解即可.【详解】解:∵二次函数满足开口方向向下即要a<0,对称轴在y 轴右侧即要求02b a->, ∴可以列出如下表格:其中第三和第四行数字0表示不满足题中某个条件 , 数字1表示满足题中某个条件, ∴由题意,只有第三和第四行两个数字都为1时才满足题目所有条件,此时a 和b 的值分别为-1和1、-1和2、-3和1、-3和2共4种情况,∴所求概率为41123=,故答案为13. 【点睛】 本题考查二次函数的性质,用列表法计算概率的方法,熟练掌握列表法的步骤及题目条件的符号表示是解题关键.17.2【分析】由与x 轴交于点AB 即y=0求出x 即得到图象与x 轴的交点坐标与y 轴交于点C 即x=0求出y 得到与y 轴的交点坐标得出ABAC 的长度从而得出△ABC 的面积;【详解】∵与x 轴交于点AB 则解得:即交点解析:2【分析】 由212133y x x =-++与x 轴交于点A 、B ,即y=0,求出x ,即得到图象与x 轴的交点坐标,与y 轴交于点C ,即x=0,求出y ,得到与y 轴的交点坐标,得出AB 、AC 的长度,从而得出△ABC 的面积;【详解】 ∵212133y x x =-++与x 轴交于点A 、B , 则2121=033x x -++, 解得:11x =- ,23x = ,即交点坐标分别为(-1,0),(3,0); ∵212133y x x =-++与y 轴交于点C , 将x=0代入得y=1,∴ 点C(0,1),∴ △ABC 的面积为:1141222AB OC ⨯⨯=⨯⨯= , 故答案为:2.【点睛】本题主要考查了二次函数与坐标轴的交点坐标求法,进而得出有关三角形的面积,正确得出有关坐标是解题的关键. 18.【分析】设抛物线解析式为y=a (x-h )2+k 将(25)与(60)代入解析式求得a 的值再令x=0求得y 的值即可得出答案【详解】解:设抛物线解析式为y=a (x-h )2+k 由题意可知抛物线的顶点为(25 解析:154【分析】设抛物线解析式为y=a (x-h )2+k ,将(2,5)与(6,0)代入解析式,求得a 的值,再令x=0,求得y 的值,即可得出答案.【详解】解:设抛物线解析式为y=a (x-h )2+k ,由题意可知抛物线的顶点为(2,5),与x 轴的一个交点为(6,0),∴0=a (6-2)2+5,解得:516a, ∴抛物线解析式为:25(2)516y x =--+ 当x=0时,2515(02)5164y ==--+ ∴水管的长度OA 是154m . 故答案为:154. 【点睛】 本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握待定系数法是解题的关键.19.【分析】根据左加右减上加下减的原则进行解答即可【详解】解:将抛物线向左平移1个单位所得直线解析式为:;再向上平移2个单位为:故答案为:【点睛】此题主要考查了二次函数图象与几何变换要求熟练掌握平移的规 解析:()212y x =-++【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线2y x =-向左平移1个单位所得直线解析式为:()2+1y x =-; 再向上平移2个单位为:()2+21+y x =-.故答案为:()212y x =-++.【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减. 20.3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(30)可得结论【详解】解:由表格得:二次函数的对称轴是直线x ==∵抛物线与x 轴一个交点为(−20)∴抛物线与x 轴另一个交点为(30)∴该二次解析:3【分析】利用表格中的对称性得:抛物线与x 轴另一个交点为(3,0),可得结论.【详解】解:由表格得:二次函数的对称轴是直线x =012+=12, ∵抛物线与x 轴一个交点为(−2,0),∴抛物线与x 轴另一个交点为(3,0), ∴该二次函数图象向左平移3个单位,图象经过原点;或该二次函数图象向右平移2个单位,图象经过原点.故答案为:3.【点睛】本题考查了二次函数图象与几何变换−平移,根据平移的原则:左加右减进行平移;也可以利用数形结合的思想画图解决.三、解答题21.(1)y =﹣(x ﹣1)2+4;(2)6;(3)存在,当P 31524⎛⎫ ⎪⎝⎭,时,△PBC 的面积最大,最大值为278. 【分析】(1)把A 的坐标代入抛物线解析式求得a 的值即可得解;(2)根据抛物线的性质可以得到CD 、OC 、OB 的值,再根据梯形面积的计算公式可以得到答案;(3)过点P 作y 轴的平行线,交直线BC 于点F ,交AB 于点E ,设P (m ,﹣2m +2m+3),则△PBC 的面积可以表示为m 的二次函数,最后根据二次函数的性质即可得到解答.【详解】解:(1)将A (﹣1,0)代入y =()214a x -+中,解得:a =﹣1,则抛物线解析式为y =()214x --+;(2)对于抛物线解析式y =()214x --+,令x =0,得到y =3,即OC =3,∵抛物线解析式为y =()214x --+的对称轴为直线x =1, ∴CD =1,∵A (﹣1,0),∴B (3,0),即OB =3则COBD S 梯形=1332+⨯()=6; (3)y =()221423x x x --+++=﹣.设直线BC 为(0)y px q p =+≠将B (3,0),C (0,3)代入直线BC 得:直线BC 的解析式为:y =﹣x+3.如图,过点P 作y 轴的平行线,交直线BC 于点F ,交AB 于点E ,设P (m ,﹣2m +2m+3),则F (m ,﹣m+3),∴PF =﹣2m +2m+3+m ﹣3=﹣2m +3m .∴PBC S =12PF•OB =12(﹣2m +3m )×3 =23327m 228--+() ∴当m=32时,△PBC 的面积最大,此时﹣2m +2m+3=2332322-+⨯+()=154, 即当P 31524(,)时,△PBC 的面积最大,最大值为278. 【点睛】 本题考查二次函数的综合应用,熟练掌握二次函数与一次函数解析式的求法、抛物线的性质及梯形和三角形面积的求法是解题关键.22.(1)-5;(2)①m =3222-,m =222+,m =222-;②最大值为3,最小值为-27【分析】(1)先得到2y ax =-的相关函数,再将点A 代入计算即可;(2)①写出二次函数2283y x x =-+-的相关函数,再代入计算; ②根据二次函数的最大值和最小值的求法解答.【详解】解:(1)2y ax =-的相关函数为2(0)2(0)ax x y ax x -+≥⎧=⎨-<⎩, 将(1,3)A -代入2y ax =-,得5a =-;(2)①二次函数2283y x x =-+-的相关函数为22283(0)283(0)x x x y x x x ⎧-+≥=⎨-+-<⎩, 当0m <时,将(,4)B m -代入2283y x x =-+-,得:m =2+m =22-, 当0m ≥时,将(,4)B m -代入2283y x x =-+,得:m =2m =2∴m =2-m =2+m =2- ②当20x -≤<时,2283y x x =-+-,抛物线的对称轴为2x =,此时y 随x 的增大而增大,∴此时273y -≤<-,当03x ≤≤时,函数2283y x x =-+,抛物线的对称轴为2x =,当2x =有最小值,最小值为-5,当0x =时,有最大值,最大值3y =,∴当23x -≤≤时,函数2283y x x =-+-的相关函数的最大值为3,最小值为-27.【点睛】本题考查的是互为相关函数的定义,掌握二次函数的性质、二次函数与一元二次方程的关系是解题的关键.23.(1)2101002000(020)y x x x =-++≤<;(2)每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y 与x 的函数关系式; (2)根据二次函数的性质即可得到结论.【详解】(1)(6050)(20010)y x x =-+-2(10)(20010)101002000(020)x x x x x =+-=-++≤<.(2)2210100200010(52250y x x x =-++=--+)所以,当5x =时,y 取得最大值为2250.答:每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元.【点睛】此题主要考查了根据实际问题列二次函数解析式,根据每天的利润=一件的利润⨯销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.24.(1)()1010005090y x x =-+;(2)当销售单价为70元时,总利润w 最大,进货数量为300件;(3)此时销售单价定为68元时,当月月利润最大.【分析】(1)利用待定系数法即可求出y 与x 之间的函数表达式;(2)根据“总利润=单件利润×销售件数”列出函数关系式,配成顶点式,根据二次函数性质即可求解;(3)设当月月利润为m ,根据“总利润=总盈利-总亏损”得到m 与x 函数关系式,根据二次函数性质即可求解.【详解】解:(1)设y 与x 之间函数关系式为()0y kx b k =+≠,将点A (50,500),B (90,100)代入函数关系式得5050090100k b k b +=⎧⎨+=⎩, 解得101000k b =-⎧⎨=⎩, ∴求出y 与x 之间的函数表达式为()1010005090y x x =-+;(2)由题意得()()10100040w x x =-+-21014004000x x =-+-()210709000x =--+,∴当销售单价为70元时,总利润w 最大,此时该月进货数量应为-10×70+1000=300件; (3)设当月月利润为m , ()()()()210100040403635010001010136037400m x x x x x =-+----+=-+-, ∵-10<0,∴当136068220b x a =-==-时,m 最大, 答:此时销售单价定为68元时,当月月利润最大.【点睛】本题为一次函数、二次函数综合题,综合性较强,熟练掌握待定系数法和求总利润的数量关系,二次函数性质是解题关键.25.(1)213222y x x =+-;6y x =;(2)9 【分析】(1)将()2,3A 代入反比例函数解析式即可求出k 值;再根据1tan 2ADE ∠=构建直角三角形即可求出D 点坐标;再讲A 、D 两点坐标代入二次函数解析式即可求出二次函数的表达式;(2)作出辅助线后将所求四边形的面积分为三部分,即DHM △、OEB 和梯形HOBM ,分别求出后求和,即可得出面积S 与M 点横坐标m 的二次函数关系式,有函数性质即可求出四边形DMBE 面积的最大值.【详解】解:(1)如图,过A 点作AC x ⊥轴且与x 轴交于点C ;将()2,3A 代入k y x =中,解得6k =, ∴6y x=, ∴3AC =,2OC = ∵1tan 2ADE ∠=, ∴6DC =,∴4DO DC OC =-=,∴(4,0)D -,将A ,D 代入()220y ax bx a =+-≠中得: 422316420a b a b +-=⎧⎨--=⎩ 解得1232a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴二次函数表达式为:213222y x x =+-; (2)如图,过M 作MH x ⊥轴于H ,并设点M 的坐标为213(,2)22m m m +-, ∵M 点在第三象限∴213222MH m m =--+ 则+DMBE HOBM S S S S =+△DHM △OEB 四边形梯形, 4212=222m MH m ++⨯++()MH ()(-) 42=12mMH MH m mMH +--+ =21MH m -+213=2(2)122m m m --+-+ 2=45m m --+2=(2)9m -++∴当2m =-时四边形DMBE 的面积最大,最大面积为9.【点睛】本题主要考查利用待定系数法求解二次函数、反比例函数的解析式以及函数的性质和数形结合的能力,对于学生的综合能力要求较高.26.(1)2122y x x =+;(2)4y x =+,()2,2M --,cos 2ABO ∠=;(3)(2,2)P -或(0,4)【分析】(1)将点A 、C 的坐标代入抛物线表达式,求出b 、c 的值,即可求解抛物线的解析式; (2)点A (−4,0),OB =OA =4,故点B (0,4),利用待定系数法求出AB 的表达式,并根据二次函数关系式,可求得点M 的坐标,并由函数关系式得ABO ∠的度数,即可求出ABO ∠的余弦值;(3)OP 将△AOC 的面积分成1:2的两部分,则可利用高相等时,面积比等于底之比得13AP AC =或23AC ,得出13p c y y =或23p c y y =,即可求解. 【详解】解:(1)将点A 、C 的坐标代入抛物线表达式得:11640214262b c b c ⎧⨯-+=⎪⎪⎨⎪⨯++=⎪⎩, 解得20b c =⎧⎨=⎩, 故抛物线的解析式为:2122y x x =+.(2)点(4,0)A -,4OB OA ==,故点(0,4)B ,设直线AB 的解析式为y =kx +4,将点A 坐标代入得,−4k +4=0,∴k =1.∴直线AB 的表达式为:y =x +4. 对于2122y x x =+,函数的对称轴为2x =-,故点()2,2M --, 则45ABO ∠=︒,故cos 2ABO ∠=. (3)∵OP 将AOC △的面积分成1:2的两部分, ∴13OAP OAC S S =△△或23OAP OAC S S =△△, 则13AP AC =或23AP AC =. ①13AP AC =,则13p c y y =, 即163p y =. 解得2p y =.当2p y =时,42x +=解得2x =-, ②23AP AC =,则23p c y y =, 即236py =. 解得4p y =.当4p y =时,44x +=,解得0x =,故点(2,2)P -或(0,4).故答案为:(2,2)P -或(0,4).【点睛】本题属于二次函数综合题,考查了待定系数法求函数的解析式、二次函数的图象与性质、面积的计算等,掌握待定系数法、二次函数的图象与性质等相关知识并能灵活应用其解决问题是解题的关键.。
(典型题)初中数学九年级数学下册第二单元《二次函数》测试卷(有答案解析)(1)
一、选择题1.把二次函数243y x x =-+化成2()y a x h k =++的形式是( )A .2(2)1y x =++B .2(2)7y x =++C .2(2)1y x =--D .2(2)7y x =--2.已知y 是x 的二次函数,y 与x 的部分对应值如表所示,若该二次函数图象向左平移后通过原点,则应平移( ) x … 1-0 1 2 … y…343…A .1个单位B .2个单位C .3个单位D .4个单位3.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,有下列结论:①240b ac ->;②0abc >;③420a b c -+>;④30a c +<.其中,正确结论的个数是( )A .1B .2C .3D .45.已知关于x 的二次三项式()()2121m x m x m +--+的值恒为正,则m 的取值范围是( ) A .18m >B .1m >-C .118m -<<D .1m 18<<6.抛物线()2212y x =+-的对称轴是( ) A .直线1x =B .直线1x =-C .直线2x =D .直线2x =-7.如图是二次函数()20y ax bx c a =++≠图象的一部分,对称轴是直线12x =,且经过点()20,,下列说法∶①0abc >;②240b ac -<;③1x =-是关于x 的方程20ax bx c ++=的一个根;④0a b +=.其中正确的个数为( )A .1B .2C .3D .48.已知抛物线24y x bx =++的顶点在x 轴上,则b 的值为( ) A .2B .4C .-4D .9.如图,抛物线22y x x m =-+交x 轴于点(),0A a ,(),0B b ,交y 轴于点C ,抛物线的顶点为D ,下列四个结论:①无论m 取何值,2CD =恒成立;②当0m =时,ABD △是等腰直角三角形;③若2a =-,则6b =;④()11,P x y ,()22,Q x y 是抛物线上的两点,若121x x ,且122x x +>,则12y y <.正确的有( )A .①②③④B .①②④C .①②D .②③④10.已知二次函数24y x x m =-+的图象与x 轴有两个交点,若其中一个交点的横坐标为1,则另一个交点的横坐标为( ) A .1- B .2-C .2D .311.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =--的图象可能为( )A .B .C .D .12.二次函数()20y ax bx c a =++≠的图象如图所示,给出下列四个结论:①240b ac -<;②0a b c ++<;③2a b >;④0abc >,其中正确的结论是( ). A .①②B .②④C .③④D .②③④二、填空题13.将二次函数()2y a x m k =++(0a ≠)的图象先向右平移3个单位长度,再向下平移2个单位长度,所得图象的表达式是()214y x =-+,则原函数的表达式是________. 14.已知:二次函数y =ax 2+bx +c (a≠0)中的x 和y 满足如表: x … 0 1 23 45 …y … 3 0-1 0 m 8 …(2)求出这个二次函数的解析式_____; (3)当0<x <3时,则y 的取值范围为_____.15.将抛物线y =2x 2向左平移2个单位,所得抛物线的对称轴是直线_____. 16.将抛物线2112y x =+绕原点O 旋转180︒,得到的抛物线解析式为__________. 17.已知抛物线22y x x c =-+与直线y m =相交于,A B 两点,若点A 的横坐标1A x =-,则点B 的横坐标B x 的值为_______.18.如图,矩形OABC 中,3OA =,5AB =,抛物线2y x bx c =++的顶点为P ,且经过点(),M m n 和()4,N m n +,其中点M ,N 位于矩形OABC 的内部(不含边界),则MNP ∆的面积是___________,b c +的取值范围是___________.19.二次函数y=ax 2+c 的图象与y=3x 2的图象形状相同,开口方向相反,且经过点(1,1),则该二次函数的解析式为________________ .20.若方程20ax bx c ++=的两个根是3-和1,那么二次函数2y ax bx c =++的图象的对称轴是直线x = _____________________三、解答题21.平安路上,多“盔”有你.在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价1元,平均每周可多售出20顶. (1)若该商店希望平均每周获利4000元,则每顶头盔应降价多少?(2)商店降价销售后,决定每销售1顶头盔,就向某慈善机构捐赠m 元(m 为整数,且15m <),帮助做“交通安全”宣传.捐赠后发现,该商店每周销售这种商品的利润仍随售价的增大而增大,求m 的值.22.扶贫工作小组对果农精准扶贫,帮助果农将一种有机生态水果推广进市场.某水果店从果农处直接批发这种水果,批发价格为每千克24元,当每千克的销售价格定为32元时,每天可售出80千克,根据市场行情,若每千克的销售价格降低0.5元,则每天可多售出10千克(销售单价不低于批发价)现决定降价销售,设这种水果每千克的销售价格为x 元,每天的销售量为y 千克.(1)求每天的销售量y 千克与销售单价x 元之间的函数关系式以及x 的取值范围;(2)当销售单价为多少元时,这种水果每天的销售利润最大,最大利润为多少元? 23.已知抛物线y =x 2+bx +c 经过点(2,﹣3)和(4,5). (1)求抛物线的函数解析式及顶点坐标;(2)将抛物线沿x 轴翻折,得到图象G ,直接写出图象G 的函数解析式.24.某产品的成本是120元/件,在试销阶段,当产品的售价为x (元/件)时,日销售量为(200-x )件.(1)写出用售价x (元/件)表示每日的销售利润y (元)的表达式 (2)当日销售利润是1500元时,产品的售价是多少?日销售量是多少件? (3)当售价定位多少时,日销售利润最大?最大日销售利润是多少元? 25.如图,抛物线223y x x =--与x 轴交于A 、B 两点.(1)抛物线与x 轴的交点坐标为______; (2)求抛物线与坐标轴围成的ABC 的面积;(3)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足6PAB S =△,并求出此时P 点的坐标.26.如图1,在矩形ABCD 中,8AB =,6AD =,沿对角线AC 剪开,再把ACD △沿AB 方向平移得到图2,其中A D '交AC 于E ,A C ''交BC 于F .(1)在图2中,除ABC 与C DA ''△外,指出图中全等三角形(不能添加辅助线和字母)并选择一对加以证明; (2)设AA x '=.①当x 为何值时,四边形A ECF '是菱形?②设四边形A ECF '的面积为y ,求y 与x 的关系式,并求出y 最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式. 【详解】解:()()22243443421y x x x x x =-+=-++-=--.故选:C . 【点睛】此题考查了二次函数的顶点式,掌握利用配方法将二次函数一般式转化为顶点式是解题的关键.2.C解析:C 【分析】由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==,进而可得点()1,4是二次函数的顶点,故设二次函数解析式为()214y a x =-+,然后代入点()1,0-可得二次函数解析式,最后问题可求解.【详解】解:由表格可得点()0,3与点()2,3是关于二次函数对称轴对称的,则有二次函数的对称轴为直线0212x +==, ∴点()1,4是二次函数的顶点,设二次函数解析式为()214y a x =-+,代入点()1,0-可得:1a =-,∴二次函数解析式为()214y x =--+,∵该二次函数图象向左平移后通过原点, ∴设平移后的解析式为()214y x b =--++,代入原点可得:()2014b =--++,解得:123,1b b ==-(舍去), ∴该二次函数的图象向左平移3个单位长度; 故选C . 【点睛】本题主要考查二次函数的图象与性质及平移,熟练掌握二次函数的图象与性质及平移是解题的关键.3.A【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可. 【详解】解:当0<x≤1时,2yx ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-, ∵Rt △ABC 中,AC=BC=2, ∴△ADM 为等腰直角三角形, ∴2DM x =-,∴()222EM x x x =--=-, ∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A . 【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.4.D解析:D 【分析】根据二次函数图象的开口方向、对称轴位置、与x 轴的交点坐标等知识,逐个判断即可.解:抛物线与x 轴有两个不同的交点,因此b 2-4ac >0,故①正确;抛物线开口向上,因此a >0,对称轴为x=1>0,a 、b 异号,因此b <0,抛物线与y 轴交在负半轴,因此c <0,所以abc >0,故②正确; 由图象可知,当x=-2时,y=4a-2b+c >0,故③正确; ∵对称轴x=-2b a=1 ∴-b=2a当x=-1时,y=a-b+c <0,∴a+2a+c <0,即30a c +<,故④正确; 综上所述,正确结论有:①②③④ 故选:D . 【点睛】考查二次函数的图象和性质,掌握a 、b 、c 的值决定抛物线的位置以及二次函数的图象与性质,是正确判断的前提.5.A解析:A 【分析】根据二次三项式()()2121m x m x m +--+的值恒为正,可设()()2121m x x y m m +--+=,从而得到1m +>0且∆<0,进而即可求得m 的取值范围. 【详解】解:设()()2121m x x y m m +--+=,∵关于x 的二次三项式()()2121m x m x m +--+的值恒为正, ∴()()2121m x m x m +--+>0,∴在函数()()2121m x x y m m +--+=中,1m +>0,且()()22141m m m ∆=--⎡⎤-+⎣⎦<0,解得:m >18故选:A 【点睛】本题考查二次函数的应用,解题的关键是明确题意,利用数形结合的思想,熟练掌握二次函数的性质.6.B解析:B 【分析】根据二次函数的顶点式的性质求对称轴即可;∵ ()2212y x =+- ,∴对称轴为:x=-1, 故选:B . 【点睛】本题考查了二次函数顶点式的性质,正确掌握知识点是解题的关键.7.B解析:B 【分析】①根据抛物线开口方向、对称轴位置、抛物线与y 轴交点位置求得a 、b 、c 的符号即可判断;②根据抛物线与x 轴的交点即可判断; ③根据二次函数的对称性即可判断; ④由对称轴求出=-b a 即可判断. 【详解】解:①∵二次函数的图象开口向下, ∴0a <,∵二次函数的图象交y 轴的正半轴于一点, ∴0c >, ∵对称轴是直线12x =, ∴122b a -=, ∴0b a =->, ∴0abc <.故①错误;②∵抛物线与x 轴有两个交点, ∴240b ac ->, 故②错误; ③∵对称轴为直线12x =,且经过点()2,0, ∴抛物线与x 轴的另一个交点为()1,0-,∴1x =-是关于x 的方程20ax bx c ++=的一个根,故③正确; ④∵由①中知=-b a , ∴0a b +=, 故④正确;综上所述,正确的结论是③④共2个. 故选:B .本题考查了二次函数的图象和系数的关系的应用,注意:当0a >时,二次函数的图象开口向上,当0a <时,二次函数的图象开口向下.8.D解析:D 【分析】抛物线的顶点在x 轴上,则顶点的纵坐标为0,根据顶点纵坐标公式,列方程求解. 【详解】解:抛物线24y x bx =++的顶点纵坐标为241441b ⨯⨯-⨯,∵顶点在x 轴上,∴241441b ⨯⨯-⨯=0,解得b 2=16, b=±4. 故选:D . 【点睛】本题考查了二次函数的性质,抛物线y=ax 2+bx+c 的顶点在x 轴上,则顶点坐标的纵坐标为0.9.B解析:B 【分析】①先求出C 、D 的坐标,再根据两点距离公式求得CD ,便可判断; ②当m=0时,可得抛物线与x 轴的两个交点坐标和顶点坐标即可判断; ③根据抛物线与x 轴的一个交点坐标和对称轴即可得另一个交点坐标即可判断; ④根据二次函数图象当x 1<1<x 2,且x 1+x 2>2,根据离对称越远的点的纵坐标就越大得出结论. 【详解】解:①∵y=x 2-2x+m=(x-1)2+m-1, ∴C (0,m ),D (1,m-1), ∴, 故①正确;②当m=0时,抛物线与x 轴的两个交点坐标分别为A (0,0)、B (2,0),顶点D (1,-1), ∴,∴△ABD 是等腰直角三角形, 故②正确;③当a=-2时,抛物线与x 轴的一个交点坐标为(-2,0),∵对称轴x=1,∴另一个交点坐标为(4,0),∴b=4,故③错误;④观察二次函数图象可知:当x 1<1<x 2,且x 1+x 2>2,则1-x 1<x 2-1∴y 1<y 2.故④正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点、等腰直角三角形,解决本题的关键是综合利用以上知识.10.D解析:D【分析】函数的对称轴为:x=-22b a =,一个交点的坐标为(1,0),则另一个交点的坐标为(3,0),即可求解.【详解】解:∵二次函数y=x 2-4x+m 中a=1,b=-4,∴函数的对称轴为:x=-22b a=, ∵一个交点的坐标为(1,0)与另一个交点的坐标关于对称轴对称,∴另一个交点的坐标为(3,0),即另一个交点的横坐标为3.故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 11.D解析:D【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【详解】解:∵一次函数经过y 轴上的(0,c ),二次函数经过y 轴上的(0,-c ),∴两个函数图象交于y 轴上的不同点,故A ,C 选项错误;当a <0,c <0时,二次函数开口向上,一次函数经过二、三、四象限,故B 选项错误; 当a <0,c >0时,二次函数开口向上,一次函数经过一、二、四象限,故D 选项正确;故选:D .【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.12.B解析:B【分析】根据抛物线与x 轴交点可判断①;根据x=1时,y <0,可判断②;对称轴x=-1可判断③;根据抛物线开口方向、对称轴、与y 轴交点可判断④.【详解】解:①由抛物线图象与x 轴有两个交点可知240b ac ->,故①错误;②由图象知,当x=1时,y=a+b+c <0,故②正确;③抛物线对称轴x=-1,即-2b a=-1<0,即b=2a <0,即③错误; ④由抛物线图象得:开口向下,即a <0;c >0,b <0,∴abc >0,故④正确; 所以正确的有:②④,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定是解题的关键.二、填空题13.【分析】根据二次函数表达式是易得新抛物线的顶点然后得到经过平移后的原抛物线的顶点根据平移不改变二次项的系数可得原抛物线解析式【详解】解:∵平移后抛物线的解析式是∴此抛物线的顶点为(14)∵向左平移3 解析:()226y x =++【分析】根据二次函数表达式是()214y x =-+易得新抛物线的顶点,然后得到经过平移后的原抛物线的顶点,根据平移不改变二次项的系数可得原抛物线解析式.【详解】解:∵平移后抛物线的解析式是()214y x =-+,∴此抛物线的顶点为(1,4),∵向左平移3个单位,再向上平移2个单位可得原抛物线顶点,∴原抛物线顶点为(-2,6),∴原抛物线的解析式是()226y x =++.故答案为:()226y x =++.【点睛】本题考查了二次函数图象与性质,掌握二次函数图象的平移与坐标的变化规律是解题的关键. 14.【分析】(1)先求得对称轴然后根据抛物线的对称性即可求得;(2)把点(03)(10)(30)代入设抛物线解析式利用待定系数法求函数解析式;(3)利用图表和抛物线的性质即可得出答案【详解】解:(1)∵解析:243y xx =-+13y -≤< 【分析】(1)先求得对称轴,然后根据抛物线的对称性即可求得;(2)把点(0,3)、(1,0)、(3,0)代入设抛物线解析式,利用待定系数法求函数解析式;(3)利用图表和抛物线的性质即可得出答案.【详解】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)过点(1,0),(3,0),∴抛物线对称轴为直线x 132+==2, ∴点(0,3)关于对称轴的对称点是(4,3),∴m =3,故答案为3;(2)把点(0,3)、(1,0)、(3,0)代入设抛物线解析式y =ax 2+bx +c 得30930c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得413a c b =⎧==-⎪⎨⎪⎩,∴抛物线的解析式为y =x 2﹣4x +3,故答案为y =x 2﹣4x +3;(3)由抛物线的性质得当x=2时,y 有最小值-1,由图表可知抛物线y =ax 2+bx +c 过点(0,3),(3,0),因此当0<x <3时,则y 的取值范围为是﹣1≤y <3.【点睛】此题考查待定系数法求函数解析式,二次函数的性质,掌握待定系数法求函数解析式的方法与步骤是解决问题的关键.15.x =-2【分析】利用平移可求得平移后的抛物线的解析式可求得其对称轴【详解】解:∵将抛物线y =2x2向左平移2个单位长度后抛物线解析式为y =2(x+2)2∴所得抛物线的对称轴为直线x =-2故答案是:x解析:x =-2【分析】利用平移可求得平移后的抛物线的解析式,可求得其对称轴.【详解】解:∵将抛物线y =2x 2向左平移2个单位长度后抛物线解析式为y =2(x +2)2, ∴所得抛物线的对称轴为直线 x =-2.故答案是:x =-2.【点睛】主要考查了二次函数的图象与性质,熟练掌握函数图象平移的规律并准确运用平移规律求函数解析式是解题的关键.16.【分析】先确定抛物线线的顶点坐标为(01)再利用关于原点对称的点的坐标特征得到点(01)变换后所得对应点的坐标为(0-1)然后利用顶点式写出旋转后抛物线【详解】解:抛物线的顶点坐标为(01)点关于原 解析:2112y x =-- 【分析】 先确定抛物线线2112y x =+的顶点坐标为(0,1),再利用关于原点对称的点的坐标特征得到点(0,1)变换后所得对应点的坐标为(0,-1),然后利用顶点式写出旋转后抛物线.【详解】 解:抛物线2112y x =+的顶点坐标为(0,1),点关于原点O 的对称点的坐标为(0,-1),此时旋转后抛物线的开口方向相反,所以旋转后的抛物线的解析式为2112y x =--. 故答案为:2112y x =--. 【点睛】本题考查了二次函数图象与几何变换:抛物线绕某点旋转180°得到旋转后的抛物线开口相反,抛物线的开口大小不变. 17.3【分析】根据题意AB 的纵坐标相同先根据A 的横坐标求得纵坐标把纵坐标代入解析式解关于x 的方程即可求得【详解】解:把xA=-1代入y=x2-2x+c 得y=1+2+c=3+c ∴A (-13+c )∵抛物线y解析:3【分析】根据题意A 、B 的纵坐标相同,先根据A 的横坐标求得纵坐标,把纵坐标代入解析式,解关于x 的方程即可求得.【详解】解:把x A =-1代入y=x 2-2x+c 得,y=1+2+c=3+c ,∴A (-1,3+c ),∵抛物线y=x 2-2x+c 与直线y=m 相交于A ,B 两点,∴B 的纵坐标为3+c ,把y=3+c 代入y=x 2-2x+c 得,3+c=x 2-2x+c ,解得x=-1或x=3,∴点B 的横坐标x B 的值为3,故答案为3.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,明确A 、B 的纵坐标相同是解题的关键.18.【分析】根据题意先把抛物线的一次项系数和常数项用含的式子表示出来从而表示出点P 的坐标再利用两点间的距离求出MN 的长和点P 到MN 的距离即可求出三角形的面积;再根据点MN 在矩形内部求出的范围进而可求的范 解析:42b c -<+<【分析】根据题意,先把抛物线的一次项系数和常数项用含,m n 的式子表示出来,从而表示出点P 的坐标,再利用两点间的距离求出MN 的长,和点P 到MN 的距离,即可求出三角形的面积;再根据点M ,N 在矩形内部求出,m n 的范围,进而可求b c +的范围【详解】点M 和点N 的纵坐标均为n 可知,M 与N 关于对称轴对称,点M (m 、n )点N (4m +、n )∴MN 的距离为:44m m +-=∴点P 的横坐标为:2m +抛物线2y x bx c =++的对称轴为:2b x =- 22b m ∴-=+ 24b m ∴=--将点 M (m 、n )代入2y x bx c =++得:2m bm c n ++=,则24c m m n =++①,点P 为抛物线的顶点,则点P 的纵坐标为:22244416164444ac b c m m c m m a ----==---,将①式代入得P 点的坐标为(2m +、4n -)∴点P 到MN 的距离为:()44n n --=14482PMN S ∴=⨯⨯=△ 2224424b c m m m n m m n +=--+++=++-②点M 在矩形的内部,045m m >⎧∴⎨+<⎩01m ∴<<点N 在矩形的内部03n ∴<<代入②式有:42b c -<+<故答案为:①8;②42b c -<+<【点睛】本题考查了二次函数的性质以及二次函数图像上点的特征,解题关键是用含,m n 式子表示出点P 的坐标,结合题意求出,m n 的范围19.y=-3x2+4【分析】根据二次函数的性质利用待定系数法求解【详解】解:由题意可设所求函数为:∵所求函数经过点(11)∴∴c=4∴所求函数为:故答案为【点睛】本题考查二次函数的应用熟练掌握利用待定系解析:y=-3x 2+4【分析】根据二次函数的性质,利用待定系数法求解.【详解】解:由题意可设所求函数为:23y x c =-+,∵所求函数经过点(1,1),∴2131c =-⨯+,∴c=4,∴所求函数为:234y x =-+,故答案为234y x =-+.【点睛】本题考查二次函数的应用,熟练掌握利用待定系数法求二次函数解析式是解题关键. 20.【分析】先根据题意得出抛物线与x 轴的交点坐标再由两点坐标关于抛物线的对称轴对称即可得出结论【详解】解:∵方程ax2+bx+c=0的两个根是-3和1∴二次函数y=ax2+bx+c 的图象与x 轴的交点分别解析:1-【分析】先根据题意得出抛物线与x 轴的交点坐标,再由两点坐标关于抛物线的对称轴对称即可得出结论.【详解】解:∵方程ax 2+bx+c=0的两个根是-3和1,∴二次函数y=ax 2+bx+c 的图象与x 轴的交点分别为(-3,0),(1,0).∵此两点关于对称轴对称,∴对称轴是直线x=312-+=-1. 故答案为:-1.【点睛】本题考查的是抛物线与x 轴的交点,熟知抛物线与x 轴的交点与一元二次方程根的关系是解答此题的关键. 三、解答题21.(1)20元;(2)3或4【分析】(1)设每顶头盔应降价x 元,根据题意列出方程求解即可;(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意列出函数求解即可;【详解】解:(1)设每顶头盔应降价x 元.根据题意,得(10020)(6840)4000x x +--=.解得123,20x x ==.当3x =时,68365-=;当20x 时,682048-=;每顶售价不高于58元,∴每顶头盔应降价20元.(2)设每周扣除捐赠后可获得利润为w 元,每顶头盔售价a 元,根据题意,得 [10020(68)](40)w a a m =+---220(202260)1460(40)a m a m =-++-+ 抛物线对称轴为直线1132m a +=,开口向下, 当58a 时,利润仍随售价的增大而增大,113582m +∴,解得3m . 15,35m m <∴<. m 为整数,3m ∴=或4. 【点睛】本题主要考查了二次函数的应用,结合一元二次方程的求解是解题的关键.22.(1)()207202432y x x -+≤≤= ;(2)当销售单价为30元时,这种水果每天的销售利润最大,最大利润为720元.【分析】(1)根据题意,可以写出每天的销售量y 千克与销售单价x 元之间的函数关系式以及x 的取值范围;(2)根据题意和(1)中的函数解析式,可以得到利润与x 的函数关系,然后根据二次函数的性质,即可得到当销售单价为多少元时,这种水果每天的销售利润最大,最大利润为多少元.【详解】解:(1)由题意可得:328010207200.5x y x -=+⨯=-+ ∵销售单价不低于批发价,∴2432x ≤≤,即每天的销售量y 千克与销售单价x 元之间的函数关系式是()207202432y x x =-+≤≤;(2)设销售利润为w 元,由题意可得,()()()224207202030720w x x x =--+=--+ ,∴当x =30时,w 取得最大值,此时w =720,即当销售单价为30元时,这种水果每天的销售利润最大,最大利润为720元.【点睛】本题考查一次函数、二次函数的应用;关键在于明确题意,列出相应的关系式,利用二次函数的性质解决.23.(1)y =(x ﹣1)2﹣4,抛物线的顶点坐标为(1,﹣4);(2)y =﹣x 2+2x +3【分析】(1)直接把A 、B 两点的坐标代入y =x 2+bx +c 得到关于b 、c 的方程组,然后解方程组求出b 、c 即可得到抛物线的解析式;利用配方法把解析式变形为顶点式,然后写出顶点坐标.(2)根据关于x 轴对称的两点x 坐标相同,y 坐标互为相反数,即可求得图象G 的表达式.【详解】解:(1)∵抛物线y =x 2+bx +c 经过点(2,﹣3)和(4,5),∴将点(2,﹣3)和(4,5)代入,得 4231645b c b c ++=-⎧⎨++=⎩, 解得23b c =-⎧⎨=-⎩, 所以抛物线的解析式为y =x 2﹣2x ﹣3.∵抛物线的解析式为y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的顶点坐标为(1,﹣4).(2)将抛物线沿x 轴翻折后,得出﹣y =x 2﹣2x ﹣3,则图象G 的函数解析式y =﹣x 2+2x +3.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数图象上点的坐标特征以及翻折的性质,用待定系数法求出二次函数的解析式是解题的关键.24.(1)y=-x 2+320x-24000 ;(2)当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件;(3)当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元.【分析】(1)根据利润=(销售价-成本价)×销售量可以得到解答;(2)令(1)中y=1500可以得到关于x 的一元二次方程,解方程即可得到产品售价x 的值,并进一步得到日销售量;(3)把(1)得到的函数配方,再根据二次函数的性质即可得到解答 .【详解】解:(1)y =(x -120)(200-x )=-x 2+320x-24000 ;(2)日销售利润是1500元,即y=1500,则1500=-x 2+320x-24000解得:x 1=170,x 2=150当x=170时,日销售量是30件,当x=150时,日销售量是50件∴当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件 .(3)∵y=-x 2+320x-24000=-(x-160)2+1600∴当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元.【点睛】本题考查二次函数的综合应用,由题意列出二次函数关系式,然后根据二次函数的性质求解即可.25.(1)()1,0-或()3,0;(2)6;(3)点P 的坐标为()1、()1、()0,3-、()2,3-.【分析】(1)令y=0,转化为一元二次方程,方程的根就是与x 轴交点的横坐标;(2)求出AB 的长度,OC 的长度,按公式计算即可;(3)利用面积公式,抛物线的解析式转化成一元二次方程求解即可.【详解】解:(1)当0y =时,2230x x --=,解得 11x =-,23x =,∴抛物线与x 轴的交点坐标为()1,0-或()3,0,故答案为:()1,0-或()3,0.(2)由(1)点()1,0A -,()3,0B ,()0,3C-, ∴()314AB =--=,3OC =, ∴14362ABC S =⨯⨯=△. (3)∵点()1,0A -,点()3,0B ,()222314y x x x =--=--,∴此抛物线有最小值,此时4y =-,()314AB =--=,∵6PAB S =△,抛物线上有一个动点P ,∴点P 的纵坐标的绝对值为6234⨯=, ∴2233x x --=或2233x x --=-, 解得,117x =,217x =,30x =,42x =,∴点P 的坐标为()17,3、()17,3-、()0,3-、()2,3-.【点睛】本题考查了二次函数与坐标轴的交点,抛物线上的内接三角形的面积,动点问题,熟练掌握性质,并能灵活运用是解题的关键.26.(1)AA E C CF ''△≌△,A BF CDE '△≌△;证明见解析 (2)①5 ②23(4)124y x =--+;12 【分析】 (1)根据矩形的性质、全等三角形的判定定理证明;(2)①设A′E=a ,A′F=b ,根据相似三角形的性质用x 表示出a 、b ,根据菱形的判定定理列出方程,解方程即可;②根据三角形的面积公式求出y 关于x 的二次函数解析式,根据二次函数的性质计算即可.【详解】解:(1)△AA′E ≌△C′CF ,△A′BF ≌△CDE ,由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∴AA′=CC′,∵AB ∥CD ,∴∠BA′F=∠C′,由题意得,∠BA′F=∠A ,∴∠A=∠C′,在△AA′E 和△C′CF 中,A C AA C CAA E C CF ∠∠'⎧⎪''⎨⎪∠'∠'⎩===, ∴△AA′E ≌△C′CF (ASA );由题意得,四边形A′DCB 是矩形,∴A′B=DC ,∠B=∠D=90゜,DA′=CB ,DA′//CB ,由△AA′E ≌△C′CF ,得,A′E=FC∵四边形A′DCF 是平行四边形,∴A′F=EC ,∴Rt △A′BF ≌△CDE ;(2)①设A′E=a ,A′F=b ,在Rt △ABC 中,8AB =,6AD =,∠B=90゜∴10AC ===∵A′F ∥AC , ∴A F BA AC BA ''=,即8108b x -=, 解得,4054x b -=, 同理68a x =, 解得,34a x =, 当A′E=A′F 时,四边形A′ECF 是菱形, ∴4054x -=34x , 解得,x=5,∴当x=5时,四边形A′ECF 是菱形; ②3(8)4y A E A B x x ''=⨯=-,即364y x x =-+.23(4)124y x =--+,y 的最大值为12. 【点睛】本题考查的是四边形的综合题,矩形的性质、相似三角形的判定和性质、全等三角形的判定和性质、二次函数的解析式的确定以及二次函数的最值的求法,掌握相关的判定定理和性质定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1~2.3 二次函数所描述的关系、结识抛物线、刹车距离与二次函数(B 卷)
(50分钟,共100分)
一、请准确填空(每小题3分,共24分)
1.若函数y =(k 2-4)x 2
+(k +2)x +3是二次函数,则k ______.
2.函数y =k
k
kx 2
,当k =______时,它的图象是开口向下的抛物线;此时当x ______时,
y 随x 的增大而减小.
3.二次函数y =-
4
1x 2
,当x 1<x 2<0时,y 1与y 2的大小为______.
4.二次函数y =ax 2
+bx +c (a ≠0)中,当b =0,c ≠0时,函数表达式为______;当b ≠0, c =0时,函数表达式为______;当b =c =0时,函数表达式为______.
5.在边长为6 cm 的正方形中间剪去一个边长为x cm(x <6)的小正方形,剩下的四方框形的面积为y ,y 与x 之间的函数关系是______.
6.已知二次函数y 甲=mx 2和y 乙=nx 2,对任意给定一个x 值都有y 甲≥y 乙,关于m ,n 的关系正确的是_____(填序号).
①m <n <0 ②m >0,n <0 ③m <0,n >0 ④m >n >0
7.写出一个开口向上,顶点是坐标原点的二次函数的表达式:______.
8.小立存入银行人民币500元,年利率为x %,两年到期,本息和为y 元(不含利息税),y 与x 之间的函数关系是_______,若年利率为6%,两年到期的本利共______元.
二、相信你的选择(每小题3分,共24分) 9.下列函数不属二次函数的是 A.y =(x -1)(x +2) B.y =
2
1(x +1)2
C.y =2(x +3)2-2x 2
D.y =1-3x 2
10.下列函数中,具有过原点,且当x >0时,y 随x 增大而减小,这两个特征的有 ①y =-ax 2(a >0) ②y =(a -1)x 2(a <1) ③y =-2x +a 2(a ≠0) ④y =
5
1x -a
A.1个
B.2个
C.3个
D.4个 11.下列说法错误的是
A.二次函数y =3x 2
中,当x >0时,y 随x 的增大而增大 B.二次函数y =-6x 2中,当x =0时,y 有最大值0
C.a 越大图象开口越小,a 越小图象开口越大
D.不论a 是正数还是负数,抛物线y =ax 2(a ≠0)的顶点一定是坐标原点 12.在同一坐标系中,作y =x 2,y =-2
1x 2,y =
3
1x 2的图象,它们的共同特点是
A.抛物线的开口方向向上
B.都是关于x 轴对称的抛物线,且y 随x 的增大而增大
C.都是关于y 轴对称的抛物线,且y 随x 的增大而减小
D.都是关于y 轴对称的抛物线,有公共的顶点
13.若对任意实数x ,二次函数y =(a +1)x 2的值总是非负数,则a 的取值范围是 A.a ≥-1 B.a ≤-1 C.a >-1 D.a <-1 14.如图1,函数y =-a (x +a )与y =-ax 2(a ≠0)在同一坐标系上的图象是
B
A
图1
15.直线y =x 与抛物线y =-2x 2
的交点是 A.(
2
1,0)
B.(-
2
1,-
2
1)
C.(-2
1,-
2
1),(0,0) D.(0,0)
16.已知a <-1,点(a -1,y 1),(a ,y 2)(a +1,y 3)都在函数y =x 2
的图象上,则
A.y 1<y 2<y 3
B.y 1<y 3<y 2
C.y 3<y 2<y 1
D.y 2<y 1<y 3 三、考查你的基本功(共16分)
17.(8分)正方形的边长为1 cm ,假设边长增加x cm 时,正方形的面积增加y cm 2. (1)请写出y 与x 之间的关系表达式;
(2)当正方形边长分别增加1 cm ,3 cm ,2 cm 时,正方形的面积增加多少? 18.(8分)二次函数y =ax 2与直线y =2x -1的图象交于点P (1,m ). (1)求a 、m 的值;
(2)写出二次函数的表达式,并指出x 取何值时,该表达式的y 随x 的增大而增大. 四、生活中的数学(共24分)
19.(12分)影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天在某段公路上行驶时,速度v (km/h)的汽车的刹车距离s (m)可以由公式s =100
1v 2
确定;雨天行驶时,这一公式为s =
50
1v 2
.
(1)如果行车速度是70 km/h ,那么在雨天行驶和在晴天行驶相比,刹车距离相差多 少米?
(2)如果行车速度分别是60 km/h 与80 km/h ,那么同在雨天行驶(相同的路面)相比,刹车距离相差多少?
(3)根据上述两点分析,你想对司机师傅说些什么?
20.(12分)有一座抛物线形拱桥,桥下面在正常水位时AB 宽20米,水位上升3米就达到警戒线CD ,这时水面宽度为10米;
(1)在如图2的坐标系中,求抛物线的表达式.
(2)若洪水到来时,再持续多少小时才能到拱桥顶?(水位以每小时0.2米的速度上升)
图2
图3
五、探究拓展与应用(共12分)
21.(12分)如图3,直线AB 过x 轴上的点A (2,0),且与抛物线y =ax 2相交于B 、C 两点,B 点坐标为(1,1).
(1)求直线和抛物线所表示的函数表达式;
(2)在抛物线上是否存在一点D ,使得S △OAD =S △OBC ,若不存在,说明理由;若存在,请求出点D 的坐标,与同伴交流.
参考答案
一、1.≠±2 2.-1 >0 3.y 1<y 2
4.y =ax 2
+c y =ax 2
+bx y =ax 2
5.y =36-x 2
6.②④
7.y =2x 2(不唯一)
8.y =500(1+x %)2 561.8 二、
9.C 10.B 11.C 12.D 13.C 14.A 15.C 16.C
三、17.解:(1)y =(x +1)2
-1, ∴y =x 2+2x . (2)当x =1时,y =3; 当x =3时,y =3+23 当x =2时,y =8.
18.解:(1)点P (1,m )在y =2x -1的图象上, ∴m =2×1-1=1代入y =ax 2, ∴a =1.
(2)二次函数表达式:y =x 2,
当x >0时,y 随x 的增大而增大. 四、19.解:(1)v =70 km/h, s 晴=100
1v 2=100
1×702=49(m),
s 雨=
50
1v 2=
50
1×702=98(m),
s 雨-s 晴=98-49=49(m). (2)v 1=80 km/h,v 2=60 km/h. s 1=501v 12=501×802=128(m). s 2=
50
1v 22=
50
1×602=72(m).
刹车距离相差:
s 1-s 2=128-72=56(m).
(3)在汽车速度相同的情况下,雨天的刹车距离要大于晴大的刹车距离. 在同是雨天的情况下,汽车速度越大,刹车距离也就越大. 请司机师傅一定要注意天气情况与车速. 20.解:(1)设拱桥顶到警戒线的距离为m . ∵抛物线顶点在(0,0)上,对称轴为y 轴, ∴设此抛物线的表达式为y =ax 2
(a ≠0). 依题意:C (-5,-m ),A (-10,-m -3).
∴⎩
⎨⎧-=---=-.)10(3,)5(22
a m a m ⎪⎩
⎪⎨
⎧
-=-
=∴
.1,251m a
∴抛物线表达式为y =-
251x 2
.
(2)∵洪水到来时,水位以每小时0.2米的速度上升,|m |=1, ∴从警戒线开始再持续
2
.01
=5(小时)到拱桥顶.
五、21.解:(1)设直线表达式为y =ax +b . ∵A (2,0),B (1,1)都在y =ax +b 的图象上, ∴⎩⎨
⎧+=+=.
1,20b a b a ∴⎩⎨
⎧=-=.
2,1b a
∴直线AB 的表达式y =-x +2. ∵点B (1,1)在y =ax 2
的图象上,
∴a =1,其表达式为y =x 2
.
(2)存在点C 坐标为(-2,4),设D (x ,x 2). ∴S △OAD =
2
1|OA |·|y D |=
21×2·x 2=x 2. ∴S △BOC =S △AOC -S △OAB =2
1
×2×4-
2
1×2×1=3.
∵S △BOC =S △OAD ,∴x 2
=3, 即x =±3.
∴D 点坐标为(-3,3)或(3,3).。