ACM解题模版
acm 算法模板 适合初学者使用

三角形面积计算 (1)字典树模板 (2)求线段所在直线 (5)求外接圆 (5)求内接圆 (6)判断点是否在直线上 (8)简单多边形面积计算公式 (8)stein算法求最大共约数 (9)最长递增子序列模板——o(nlogn算法实现) (9)判断图中同一直线的点的最大数量 (10)公因数和公倍数 (12)已知先序中序求后序 (12)深度优先搜索模板 (13)匈牙利算法——二部图匹配BFS实现 (15)带输出路径的prime算法 (17)prime模板 (18)kruskal模板 (19)dijsktra (22)并查集模板 (23)高精度模板 (24)三角形面积计算//已知三条边和外接圆半径,公式为s = a*b*c/(4*R)double GetArea(double a, double b, double c, double R){return a*b*c/4/R;}//已知三条边和内接圆半径,公式为s = prdouble GetArea(double a, double b, double c, double r){return r*(a+b+c)/2;}//已知三角形三条边,求面积double GetArea(doule a, double b, double c){double p = (a+b+c)/2;return sqrt(p*(p-a)*(p-b)*(p-c));}//已知道三角形三个顶点的坐标struct Point{double x, y;Point(double a = 0, double b = 0){x = a; y = b;}};double GetArea(Point p1, Point p2, Point p3){double t =-p2.x*p1.y+p3.x*p1.y+p1.x*p2.y-p3.x*p2.y-p1.x*p3.y+p2.x*p3.y;if(t < 0) t = -t;return t/2;}字典树模板#include <stdio.h>#include <string.h>#include <memory.h>#define BASE_LETTER 'a'#define MAX_TREE 35000#define MAX_BRANCH 26struct{int next[MAX_BRANCH]; //记录分支的位置int c[MAX_BRANCH]; //查看分支的个数int flag; //是否存在以该结点为终止结点的东东,可以更改为任意的属性}trie[MAX_TREE];int now;void init(){now = 0;memset(&trie[now], 0, sizeof(trie[now]));now ++;}int add (){memset(&trie[now], 0, sizeof(trie[now]));return now++;}int insert( char *str){int pre = 0, addr;while( *str != 0 ){addr = *str - BASE_LETTER;if( !trie[pre].next[addr] )trie[pre].next[addr] = add();trie[pre].c[addr]++;pre = trie[pre].next[addr];str ++;}trie[pre].flag = 1;return pre;}int search( char *str ){int pre = 0, addr;while( *str != 0 ){addr = *str - BASE_LETTER;if ( !trie[pre].next[addr] )return 0;pre = trie[pre].next[addr];str ++;}if( !trie[pre].flag )return 0;return pre;}pku2001题,源代码:void check( char *str ){int pre = 0, addr;while(*str != 0){addr = *str - BASE_LETTER;if( trie[pre].c[addr] == 1) {printf("%c\n", *str);return;}printf("%c", *str);pre = trie[pre].next[addr];str ++;}printf("\n");}char input[1001][25];int main(){int i = 0,j;init();while(scanf("%s", input[i]) != EOF){getchar();insert(input[i]);i++;}for(j = 0; j < i; j ++){printf("%s ", input[j]);check(input[j]);}return 0;}求线段所在直线//*****************************线段所在的直线struct Line{double a, b, c;};struct Point{double x, y;}Line GetLine(Point p1, Point p2){//ax+by+c = 0返回直线的参数Line line;line.a = p2.y - p1.y;line.b = p1.x - p2.x;line.c = p2.x*p1.y - p1.x*p2.y;return line;}求外接圆//***************已知三角形三个顶点坐标,求外接圆的半径和坐标********************struct Point{double x, y;Point(double a = 0, double b = 0){x = a; y = b;}};struct TCircle{double r;Point p;}double distance(Point p1, Point p2){return sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));}double GetArea(doule a, double b, double c){double p = (a+b+c)/2;return sqrt(p*(p-a)*(p-b)*(p-c));}TCircle GetTCircle(Point p1, Point p2, Point p3){double a, b, c;double xa,ya, xb, yb, xc, yc, c1, c2;TCircle tc;a = distance(p1, p2);b = distance(p2, p3);c = distance(p3, p1);//求半径tc.r = a*b*c/4/GetArea(a, b, c);//求坐标xa = p1.x; ya = p1.b;xb = p2.x; yb = p2.b;xc = p3.x; yc = p3.b;c1 = (xa*xa + ya*ya - xb*xb - yb*yb)/2;c2 = (xa*xa + ya*ya - xc*xc - yc*yc)/2;tc.p.x = (c1*(ya-yc) - c2*(ya-yb))/((xa-xb)*(ya-yc) - (xa-xc)*(ya-yb)); tc.p.y = (c1*(xa-xc) - c2*(xa-xb))/((ya-yb)*(xa-xc) - (ya-yc)*(xa-xb));return tc;}求内接圆struct Point{double x, y;Point(double a = 0, double b = 0){x = a; y = b;}};struct TCircle{double r;Point p;}double distance(Point p1, Point p2){return sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));}double GetArea(doule a, double b, double c){double p = (a+b+c)/2;return sqrt(p*(p-a)*(p-b)*(p-c));}TCircle GetTCircle(Point p1, Point p2, Point p3){double a, b, c;double xa,ya, xb, yb, xc, yc, c1, c2, f1, f2;double A,B,C;TCircle tc;a = distance(p1, p2);b = distance(p3, p2);c = distance(p3, p1);//求半径tc.r = 2*GetArea(a, b, c)/(a+b+c);//求坐标A = acos((b*b+c*c-a*a)/(2*b*c));B = acos((a*a+c*c-b*b)/(2*a*c));C = acos((a*a+b*b-c*c)/(2*a*b));p = sin(A/2); p2 = sin(B/2); p3 = sin(C/2);xb = p1.x; yb = p1.b;xc = p2.x; yc = p2.b;xa = p3.x; ya = p3.b;f1 = ( (tc.r/p2)*(tc.r/p2) - (tc.r/p)*(tc.r/p) + xa*xa - xb*xb + ya*ya - yb*yb)/2;f2 = ( (tc.r/p3)*(tc.r/p3) - (tc.r/p)*(tc.r/p) + xa*xa - xc*xc + ya*ya - yc*yc)/2;tc.p.x = (f1*(ya-yc) - f2*(ya-yb))/((xa-xb)*(ya-yc)-(xa-xc)*(ya-yb)); tc.p.y = (f1*(xa-xc) - f2*(xa-xb))/((ya-yb)*(xa-xc)-(ya-yc)*(xa-xb));return tc;}判断点是否在直线上//**************判断点是否在直线上********************* //判断点p是否在直线[p1,p2]struct Point{double x,y;};bool isPointOnSegment(Point p1, Point p2, Point p0){//叉积是否为0,判断是否在同一直线上if((p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y) != 0)return false;//判断是否在线段上if((p0.x > p1.x && p0.x > p2.x) || (p0.x < p1.x && p0.x < p2.x)) return false;if((p0.y > p1.y && p0.y > p1.y) || (p0.y < p1.y && p0.y < p2.y)) return false;return true;}简单多边形面积计算公式struct Point{double x, y;Point(double a = 0, double b = 0){x = a; y = b;}};Point pp[10];double GetArea(Point *pp, int n){//n为点的个数,pp中记录的是点的坐标int i = 1;double t = 0;for(; i <= n-1; i++)t += pp[i-1].x*pp[i].y - pp[i].x*pp[i-1].y;t += pp[n-1].x*pp[0].y - pp[0].x*pp[n-1].y;if(t < 0) t = -t;return t/2;}stein算法求最大共约数int gcd(int a,int b){if (a == 0) return b;if (b == 0) return a;if (a % 2 == 0 && b % 2 == 0) return 2 * gcd(a/2,b/2); else if (a % 2 == 0) return gcd(a/2,b);else if (b % 2 == 0) return gcd(a,b/2);else return gcd(abs(a-b),min(a,b));}最长递增子序列模板——o(nlogn算法实现)#include <stdio.h>#define MAX 40000int array[MAX], B[MAX];int main(){int count,i,n,left,mid,right,Blen=0,num;scanf("%d",&count); //case的个数while(count--){scanf("%d",&n); //每组成员的数量Blen = 0;for(i=1;i<=n;i++)scanf("%d",&array[i]); //读入每个成员for(i=1;i<=n;i++){num = array[i];left = 1;right = Blen;while(left<=right){mid = (left+right)/2;if(B[mid]<num)left = mid+1;elseright = mid-1;}B[left] = num;if(Blen<left)Blen++;}printf("%d\n",Blen);//输出结果}return 1;}判断图中同一直线的点的最大数量#include <iostream>#include <cstdio>#include <memory>using namespace std;#define MAX 1010 //最大点的个数struct point{int x,y;}num[MAX];int used[MAX][MAX*2]; //条件中点的左边不会大于1000,just equal MAX int countN[MAX][MAX*2];#define abs(a) (a>0?a:(-a))int GCD(int x, int y){int temp;if(x < y){temp = x; x = y; y = temp;}while(y != 0){temp = y;y = x % y;x = temp;}return x;}int main(){int n,i,j;int a,b,d,ans;while(scanf("%d", &n)==1){//initeans = 1;memset(used, 0, sizeof(used));memset(countN, 0, sizeof(countN));//readfor(i = 0; i < n; i++)scanf("%d%d", &num[i].x, &num[i].y);for(i = 0; i < n-1; i++){for(j = i+1; j < n; j++){b = num[j].y-num[i].y;a = num[j].x-num[i].x;if(a < 0) //这样可以让(2,3)(-2,-3)等价{a = -a; b = -b;}d = GCD(a,abs(b));a /= d;b /= d; b += 1000;//条件中点的左边不会大于1000if(used[a][b] != i+1){used[a][b] = i+1;countN[a][b] = 1;}else{countN[a][b]++;if(ans < countN[a][b])ans = countN[a][b];}}//for}//forprintf("%d\n", ans+1);}return 0;}公因数和公倍数int GCD(int x, int y){int temp;if(x < y){temp = x; x = y; y = temp;}while(y != 0){temp = y;y = x % y;x = temp;}return x;}int beishu(int x, int y){return x * y / GCD(x,y);}已知先序中序求后序#include <iostream>#include <string>using namespace std;string post;void fun(string pre, string mid){if(pre == "" || mid == "") return;int i = mid.find(pre[0]);fun(pre.substr(1,i), mid.substr(0,i));fun(pre.substr(i+1, (int)pre.length()-i-1), mid.substr(i+1, (int)mid.length()-i-1));post += pre[0];}int main(){string pre, mid;while(cin >> pre){cin >> mid;post.erase();fun(pre, mid);cout << post << endl;}return 0;}深度优先搜索模板int t; //t用来标识要搜索的元素int count; //count用来标识搜索元素的个数int data[m][n]; //data用来存储数据的数组//注意,数组默认是按照1……n存储,即没有第0行//下面是4个方向的搜索,void search(int x, int y){data[x][y] = *; //搜索过进行标记if(x-1 >= 1 && data[x-1][y] == t){count++;search(x-1,y);}if(x+1 <= n && data[x+1][y] == t){count++;search(x+1,y);}if(y-1 >= 1 && data[x][y-1] == t){count++;search(x,y-1);}if(y+1 <= n && data[x][y+1] == t){count++;search(x,y+1);}}//下面是8个方向的搜索void search(int x, int y){data[x][y] = *; //搜索过进行标记if(x-1 >= 1){if(data[x-1][y] == t){count++;search(x-1,y);}if(y-1 >= 1 && data[x-1][y-1] == t) {count++;search(x-1,y-1);}if(y+1 <= n && data[x-1][y+1] == t) {count++;search(x-1,y+1);}}if(x+1 <= n){if(data[x+1][y] == t){count++;search(x+1,y);}if(y-1 >= 1 && data[x+1][y-1] == t) {count++;search(x+1,y-1);}if(y+1 <= n && data[x+1][y+1] == t) {count++;search(x+1,y+1);}}if(y-1 >= 1 && data[x][y-1] == t){count++;search(x,y-1);}if(y+1 <= n && data[x][y+1] == t){count++;search(x,y+1);}}匈牙利算法——二部图匹配BFS实现//匈牙利算法实现#define MAX 310 //二部图一侧顶点的最大个数int n,m; //二分图的两个集合分别含有n和m个元素。
ACM 算法模板2

目录一、图论 (2)1.1.最小生成树类prim算法 (2)1.2.拓扑排序 (4)1.3.最短源路径Folyd实现 (5)1.4.关键路径实现算法 (6)1.5.二分图最大匹配的匈牙利算法 (8)1.6.并查集 (9)二、动规 (11)2.1.求最长子序列 (11)2.2.求解最长升序列长度及子序列 (12)2.3.完全背包问题 (13)2.4.0-1背包问题 (14)2.5.母函数DP算法求组合数 (15)2.6.滚动数组求回文串问题 (17)三、贪心 (18)3.1.时间安排问题 (18)3.2.求最大子段和 (19)3.3.贪心求最少非递减序列数 (20)四、数论 (21)4.1.简单求Cnk问题 (21)4.2.巧求阶乘位数 (21)4.3.线性算法求素数 (22)五、其他 (22)5.1.采用位操作递归求解示例 (22)5.2.Stack和Queue用法 (23)5.3.map使用详解 (24)5.4.字典树建立与查找 (25)5.5.KMP匹配算法 (26)5.6.后缀数组求最长连续公共子序列长度 (28)5.7.循环字符串最小位置表示及同构判断 (30)5.8.求哈夫曼树编码长度 (32)5.9.堆排序算法 (34)5.10.线段树着色问题 (35)六、附: (39)6.1.C++最值常量 (39)6.2.类型转换 (39)6.3.String常用函数举例 (39)6.4.C++常用头文件 (40)一、图论1.1.最小生成树类prim算法1.1.1下标从1开始#include<iostream>#include<cstdio>#include<algorithm>using namespace std;#define SIZE 101#define MAXSIZE 10201int n,nline;/*n 个点,nline行关系*/int in[SIZE];struct Point{int x,y;/*编号从1开始*/int v;/*根据实际情况更改类型*/}p[MAXSIZE];/*n*(n-1)/2*/int cmp(Point a,Point b){return a.v<b.v;}int prim(){int dis,count,i,j;memset(in,0,sizeof(in));in[p[1].x]=in[p[1].y]=1;dis=p[1].v;count=n-1;while(count--){/*做n-1次*/for(j=2;j<nline;j++){if((in[p[j].x]&&!in[p[j].y])||(!in[p[j].x]&&in[p[j].y])){in[p[j].x]=1;in[p[j].y]=1;dis+=p[j].v;break;}}}return dis;}int main(){int x,y,v,i;while(scanf("%d",&n)&&n){if(n==1){/*有可能输入的为1个点*/printf("0\n");continue;}nline=n*(n-1)/2+1;for(i=1;i<nline;i++){scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].v);}sort(p+1,p+nline,cmp);printf("%d\n",prim());}return 0;}1.1.2下标从0开始#include<iostream>#include<cstdio>#include<algorithm>using namespace std;#define SIZE 101#define MAXSIZE 10201int n,nline;/*n 个点,nline行关系*/int in[SIZE];struct Point{int x,y;/*编号从1开始*/int v;/*根据实际情况更改类型*/}p[MAXSIZE];/*n*(n-1)/2*/int cmp(Point a,Point b){return a.v<b.v;}int prim(){int dis,count,i,j;memset(in,0,sizeof(in));in[p[0].x]=in[p[0].y]=1;dis=p[0].v;count=n-1;while(count--){/*做n-1次*/for(j=1;j<nline;j++){if((in[p[j].x]&&!in[p[j].y])||(!in[p[j].x]&&in[p[j].y])){in[p[j].x]=1;in[p[j].y]=1;dis+=p[j].v;break;}}}return dis;}int main(){int x,y,v,i;while(scanf("%d",&n)&&n){if(n==1){/*有可能输入的为1个点*/printf("0\n");continue;}nline=n*(n-1)/2;for(i=0;i<nline;i++){scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].v);}sort(p,p+nline,cmp);printf("%d\n",prim());}return 0;}1.2.拓扑排序#include<iostream>#include<cstdio>#include<cstring>#define M 501using namespace std;int map[M][M],degree[M];int ne;/*个数*/void topo(){int i,j,k;for(i=0;i<ne;i++){j=1;while(j<=ne&°ree[j])j++;//直到一个度为零的顶点,这里不检查有多个度为零的情况//if(j>ne){break;}不是拓扑结构if(i)printf(" ");printf("%d",j);degree[j]=-1;for(k=1;k<=ne;k++){degree[k]-=map[j][k];}}printf("\n");}int main(){int a,b,i,j,nline;/*nline行*/while(scanf("%d%d",&ne,&nline)!=EOF){memset(map,0,sizeof(map));memset(degree,0,sizeof(degree));while(nline--){scanf("%d%d",&a,&b);map[a][b]=1;/*a to b*/}for(i=1;i<=ne;i++){for(j=1;j<=ne;j++){if(map[i][j])degree[j]++;}}topo();/*拓扑*/}return 0;}1.3.最短源路径Folyd实现#include<iostream>#include<cstdio>#include<cstring>#define M 201using namespace std;int n,map[M][M],start,end;void folyd(){int i,j,k;for(i=0;i<n;i++){for(j=0;j<n;j++){for(k=0;k<n;k++){if(map[j][i]==-1||map[i][k]==-1)continue;if(map[j][k]==-1||map[j][i]+map[i][k]<map[j][k]){map[j][k]=map[j][i]+map[i][k];}}}}}int main(){int nline,i,j,a,b,v;while(scanf("%d%d",&n,&nline)!=EOF){memset(map,-1,sizeof(map));for(i=0;i<n;i++){map[i][i]=0;}for(i=0;i<nline;i++){scanf("%d%d%d",&a,&b,&v);/*编号从0开始*/if(map[a][b]==-1||map[a][b]>v){//一个点到另一个有多条路map[b][a]=map[a][b]=v;}}scanf("%d%d",&start,&end);folyd();if(map[start][end]!=-1){printf("%d\n",map[start][end]);}else printf("-1\n");}return 0;}1.4.关键路径实现算法#include<iostream>#include<cstdio>#include<cstring>#define M 501using namespace std;int map[M][M],degree[M],dp[M];int ne;/*个数*/int topoplus(){int i,j,k,maxnum;for(i=0;i<ne;i++){j=1;while(j<=ne&°ree[j])j++;//直到一个度为零的顶点,这里不检查有多个度为零的情况//if(j>ne){break;}不是拓扑结构degree[j]=-1;for(k=1;k<=ne;k++){if(map[j][k]){if(map[j][k]+dp[j]>dp[k]){dp[k]=map[j][k]+dp[j];}degree[k]--;}}}for(i=0;i<=ne;i++){if(dp[i]>maxnum){maxnum=dp[i];}}return maxnum;}int main(){int a,b,v,i,j,nline;/*nline行*/while(scanf("%d%d",&ne,&nline)!=EOF){memset(map,0,sizeof(map));memset(degree,0,sizeof(degree));memset(dp,0,sizeof(dp));while(nline--){scanf("%d%d%d",&a,&b,&v);map[a][b]=v;/*a to b,v>0*/}for(i=1;i<=ne;i++){for(j=1;j<=ne;j++){if(map[i][j])degree[j]++;}}printf("%d\n",topoplus());/*拓扑改进*/}return 0;}1.5.二分图最大匹配的匈牙利算法#include<iostream>#include<cstdio>#define N 301using namespace std;int isuse[N]; //记录y中节点是否使用int lk[N]; //记录当前与y节点相连的x的节点int mat[N][N];//记录连接x和y的边,如果i和j之间有边则为1,否则为0 int gn,gm; //二分图中x和y中点的数目int can(int t){int i;for(i=1;i<=gm;i++){//下标从1开始if(isuse[i]==0 && mat[t][i]){isuse[i]=1;if(lk[i]==-1 || can(lk[i])){lk[i]=t;return 1;}}}return 0;}int MaxMatch(){int i,num=0;memset(lk,-1,sizeof(lk));for(i=1;i<=gn;i++){memset(isuse,0,sizeof(isuse));if(can(i))num++;}return num;}int main(){int t,i,j,k,tmp;scanf("%d",&t);while(t--){scanf("%d%d",&gn,&gm);memset(mat,0,sizeof(mat));//主要得到mat这个数组for(i=1;i<=gn;i++){scanf("%d",&k);for(j=1;j<=k;j++){scanf("%d",&tmp);mat[i][tmp]=1;//注意从1开始}}if(MaxMatch()==gn){printf("YES\n");}else printf("NO\n");}return 0;}/*In:23 33 1 2 32 1 21 13 32 1 32 1 31 1Out:YESNO*/1.6.并查集#include<iostream>#include<cstdio>using namespace std;const int N=1010;int pre[N];void Merge(int x,int y){int i,t,rx=x,ry=y;while(pre[rx]!=-1)//搜索x的树根rx=pre[rx];while(pre[ry]!=-1)//搜索y的树根ry=pre[ry];i=x;//压缩xwhile(pre[i]!=-1){t=pre[i];pre[i]=rx;i=t;}i=y;//压缩ywhile(pre[i]!=-1){t=pre[i];pre[i]=rx;i=t;}if(ry!=rx)//合并pre[ry]=rx;return;}int main(){int x,y,i,ans,n,m;while(scanf("%d",&n)&&n){scanf("%d",&m);memset(pre,-1,sizeof(pre));for(i=0;i<m;i++){//x与y连通scanf("%d %d",&x,&y);Merge(x,y);}ans=0;for(i=1;i<=n;i++)if(pre[i]==-1)ans++;printf("%d\n",ans-1);}}/*/showproblem.php?pid=1232 in:4 21 34 3999 0out:1998*/二、动规2.1.求最长子序列#include<iostream>#include<cstdio>#define M 1001using namespace std;char a[M],b[M];int dp[M+1][M+1],lena,lenb;void init(){int i,j;for(i=0;i<=lena;i++){for(j=0;j<=lenb;j++){dp[i][j]=0;}}}int cmax(int x,int y){return x>y?x:y;}int main(){int i,j,len;while(scanf("%s",a)!=EOF){scanf("%s",b);init();//下面这步很重要,否则会超时lena=strlen(a);lenb=strlen(b);for(i=0;i<lena;i++){for(j=0;j<lenb;j++){if(a[i]==b[j]){dp[i+1][j+1]=dp[i][j]+1;}else{dp[i+1][j+1]=cmax(dp[i][j+1],dp[i+1][j]);}}}//子序列长度printf("%d\n",dp[i][j]);/*打印出子序列*/len=1;for(i=1;i<=lena;i++){for(j=1;j<=lenb;j++){if(len==dp[i][j]){printf("%c",a[i-1]);len++;break;}}}printf("\n");}return 0;}2.2.求解最长升序列长度及子序列#include<iostream>#include<cstdio>#define M 1001using namespace std;int a[M],dp[M];void init(int n){int i;for(i=0;i<n;i++){dp[i]=1;}}int lis(int n){int i,j,maxlen=1;//初始长度为1for(i=n-2;i>=0;i--){for(j=n-1;j>i;j--){if(a[i]<a[j]){if(dp[j]+1>dp[i]){dp[i]=dp[j]+1;}if(dp[i]>maxlen)maxlen=dp[i];}}}return maxlen;}void showlis(int n,int maxlen){int i;for(i=0;i<n;i++){if(dp[i]==maxlen){printf("%d ",a[i]);maxlen--;}}printf("\n");}int main(){int t,n,i,maxlen;scanf("%d",&t);while(t--){/*1<=n<=1000*/scanf("%d",&n);for(i=0;i<n;i++){scanf("%d",&a[i]);}init(n);maxlen=lis(n);printf("%d\n",maxlen);//显示最长升序列showlis(n,maxlen);}return 0;}2.3.完全背包问题#include<iostream>#include<cstring>#include<cstdio>using namespace std;int type[]={150,200,350};//种类int dp[10001];int max(int a,int b){return a>b?a:b;}int main(){int t,n,i,j;scanf("%d",&t);while(t--){scanf("%d",&n);memset(dp,0,sizeof(dp));for(i=0;i<3;i++){for(j=type[i];j<=n;j++){//剩余容量为j时装的东西量最大dp[j]=max(dp[j],dp[j-type[i]]+type[i]);}}printf("%d\n",n-dp[n]);}return 0;}2.4.0-1背包问题#include<iostream>#include<cstdio>#include<cstring>#define M 1002using namespace std;int val[M],wei[M],dp[M][M];int cmax(int a,int b){return a>b?a:b;}int main(){int t,n,w,i,j;scanf("%d",&t);while(t--){scanf("%d%d",&n,&w);for(i=1;i<=n;i++){scanf("%d",&val[i]);}for(i=1;i<=n;i++){scanf("%d",&wei[i]);}memset(dp,0,sizeof(dp));for(i=1;i<=n;i++){for(j=0;j<=w;j++){if(j>=wei[i])dp[i][j]=cmax(dp[i-1][j-wei[i]]+val[i],dp[i-1][j]);else dp[i][j]=dp[i-1][j];}}printf("%d\n",dp[n][w]);}return 0;}2.5.母函数DP算法求组合数2.5.1.求母函数各系数值DP#include <iostream>#define M 17#define MAX 305using namespace std;int c1[MAX],c2[MAX],add[M+1];//add[]保存M种类void init(){int i;for(i=1;i<=M;i++){add[i]=i*i;}}int solve(int n){int i,j,k;//c1[k],c2[k]表示展开式中x^k的系数memset(c1,0,sizeof(c1));memset(c2,0,sizeof(c2));c1[0]=c2[0]=1;//使用前i种币时的情况,也即母函数展开前i个多项式的乘积 for(i=1;i<=M;i++){//求新的多项式中的系数for(j=0;j<n;j++){for(k=1;j+k*add[i]<=n;k++){c2[j+k*add[i]]+=c1[j];}}for(k=0;k<=n;k++){//滚动数组c1[k]=c2[k];}}return c1[n];}int main(){int n;init();while(scanf("%d",&n)&&n){printf("%d\n",solve(n));}return 0;}2.5.2.状态继承类DP求某个和是否存在#include<cstdio>#include<iostream>#include<cstring>using namespace std;bool dp[250002];int val[101],num[101];//对应的值和数量int main(){int n,i,j,sum,k;while(scanf("%d",&n)&&n>0){sum=0;for(i=0;i<n;i++){scanf("%d%d",&val[i],&num[i]);sum+=val[i]*num[i];}//dp中保存所有可能的组合memset(dp,0,sizeof(dp));dp[0]=1;//遍历n种物品for(i=0;i<n;i++){//对区间求for(j=sum/2;j>=0;j--){if(!dp[j]){for(k=1;k<=num[i]&&k*val[i]<=j;k++){dp[j]|=dp[j-k*val[i]];}}}}for(i=sum/2;i>=0;i--){if(dp[i]){printf("%d %d\n",sum-i,i);break;}}}return 0;}/*in:210 120 1320 230 1-1out:20 1040 40*/2.6.滚动数组求回文串问题#include<cstdio>#include<iostream>#include<cstring>#define M 5001using namespace std;char str[M],rstr[M];int dp[2][M];//滚动DPint cmax(int x,int y){return x>y?x:y;}int main(){int n,i,j,s1,s2;while(scanf("%d",&n)!=EOF){scanf(" %s",str);//反转字符数组for(i=0;i<n;i++){rstr[n-i-1]=str[i];}rstr[n]='\0';memset(dp,0,sizeof(dp));for(i=0;i<n;i++){for(j=0;j<n;j++){s1=i%2;s2=(i+1)%2;if(str[i]==rstr[j]){dp[s1][j+1]=dp[s2][j]+1;}else{dp[s1][j+1]=cmax(dp[s2][j+1],dp[s1][j]);}}}printf("%d\n",n-dp[(n-1)%2][n]);return 0;}/*/showproblem.php?pid=1513 in:5Ab3bdout:2*/三、贪心3.1.时间安排问题#include<iostream>#include<cstdio>#include<algorithm>#define M 101using namespace std;int n;struct Point{int s,e;}p[M];int cmp(Point a,Point b){if(a.s==b.s)return a.e<b.e;else return a.s<b.s;}int arrange(){int start,end,i,count=1;start=p[0].s;end=p[0].e;for(i=1;i<n;i++){if(p[i].s>=start&&p[i].e<=end){start=p[i].s;end=p[i].e;}else if(p[i].s>=end){count++;end=p[i].e;}}return count;}int main(){int i;while(scanf("%d",&n)&&n){for(i=0;i<n;i++){scanf("%d%d",&p[i].s,&p[i].e);}sort(p,p+n,cmp);printf("%d\n",arrange());}return 0;}3.2.求最大子段和#include<iostream>using namespace std;int main(){int t,n,i,a[100002];int beg,end,x,y,cursum,maxsum;cin>>t;while(t--){cin>>n;for(i=0;i<n;i++){cin>>a[i];}beg=end=1;cursum=maxsum=a[0];x=y=1;for(i=1;i<n;i++){if(a[i]+cursum<a[i]){cursum=a[i];x=i+1;}else{cursum+=a[i];}if(cursum>maxsum){maxsum=cursum;beg=x;end=i+1;}}cout<<maxsum<<" "<<beg<<" "<<end<<endl;}return 0;}/*in:25 6 -1 5 4 -77 0 6 -1 1 -6 7 -5out:14 1 47 1 6*/3.3.贪心求最少非递减序列数#include<iostream>#include<cstdio>#include<cstring>using namespace std;int a[1001];int main(){int n,i,j,len,count,high;while(scanf("%d",&n)!=EOF){for(i=0;i<n;i++){scanf("%d",&a[i]);}count=0;len=n;while(len){count++;high=30005;//最高值for(i=0;i<n;i++){if(a[i]&&a[i]<high){high=a[i];a[i]=0;//标记已用值len--;}}}printf("%d\n",count);}return 0;}/*in:8 389 207 155 300 299 170 158 65out:2*/四、数论4.1.简单求Cnk问题#include<iostream>using namespace std;int main(){int n,k,i;double sum;while(cin>>n>>k){if(n==0&&k==0)break;if(k>n-k)k=n-k;sum=1;for(i=1;i<=k;i++){sum*=(double)(n-k+i)/i*1.000000000001;//必需要乘 }cout<<(int)sum<<endl;}return 0;}4.2.巧求阶乘位数#include<iostream>#include<cmath>using namespace std;const double pi=acos(-1.0);//NOTES:piconst double e=2.71828182845904523536028747135266249775724709369995957; int main(){long long n,tt;cin>>tt;while (tt--){cin>>n;long long ans=(long long)((double)log10(sqrt(2*pi*n))+n*log10(n/e))+1;cout<<ans<<endl;}return 0;}4.3.线性算法求素数const int MAX=10000000;//求[2,MAX]间的素数bool isprime[MAX+1];int prime[MAX];//保存素数//返回素数表元素总数int getprime(){int i,j,pnum=0;//memset(isprime,0,sizeof(isprime));for(i=2;i<=MAX;i++){if(!isprime[i])prime[pnum++]=i;for(j=0;j<pnum&&prime[j]*i<=MAX;j++){isprime[prime[j]*i]=1;if(i%prime[j]==0)break;}}return pnum;}五、其他5.1.采用位操作递归求解示例#include<iostream>#include<cstdio>using namespace std;unsigned short in[50001],ste;/*用16位的ste保存16种状态*/ unsigned short power[]={1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384,32768}; int n,m,maxnum,i,j;void dfs(int s,int count){if(count>maxnum)maxnum=count;for(i=s;i<m;i++){if(!(ste&in[i])){/*如果相与为0,说明材料未被使用*/ ste=ste|in[i];dfs(i+1,count+1);ste=ste&(~in[i]);}}}int main(){int tn,t;while(scanf("%d%d",&n,&m)!=EOF){if(n==0||m==0){printf("0\n");continue;}for(i=0;i<m;i++){scanf("%d",&tn);in[i]=0;for(j=1;j<=tn;j++){scanf("%d",&t);/*材料编号降为从0开始,防止益处*/in[i]=in[i]|power[t-1];}}ste=0;maxnum=0;dfs(0,0);printf("%d\n",maxnum);}return 0;}5.2.Stack和Queue用法#include<iostream>#include<stack>#include<queue>using namespace std;int main(){stack<int> s;queue<int> q;int a[]={1,2,3,4};/*加入*/for(int i=0;i<4;i++){s.push(a[i]);q.push(a[i]);}/*读取stack*/cout<<"stack-size:"<<s.size()<<endl;for(int i=0;i<4;i++){cout<<s.top()<<" ";s.pop();}cout<<endl<<"queue-size:"<<q.size()<<endl;/*读取queue*/cout<<"front:"<<q.front()<<"back:"<<q.back()<<endl;for(int i=0;i<4;i++){cout<<q.front()<<" ";q.pop();}cout<<endl;return 0;}5.3.map使用详解#include<iostream>#include<map>#include<string>#include<iterator>using namespace std;int main(){map<string,int>m;map<string,int>::iterator p;map<string,int>::reverse_iterator q;m["bd"]=2;m["ba"]=1;m["aa"]=3;m["bd"]=4;//按从小到大遍历for(p=m.begin();p!=m.end();p++){//注意不能使用p<m.end() cout<<p->first<<" "<<p->second<<endl;}//按从大到小遍历for(q=m.rbegin();q!=m.rend();q++){cout<<q->first<<" "<<q->second<<endl;}m.erase(m.begin());cout<<m.size()<<endl;//清楚全部m.clear();cout<<m.empty()<<endl;return 0;}5.4.字典树建立与查找#include<iostream>#include<cstring>#include<cstdio>#define M 26using namespace std;int ii;//只在Tree中使用struct Tree{Tree* next[M];int val;Tree(){for(ii=0;ii<M;ii++){next[ii]=0;}val=0;}~Tree(){for(ii=0;ii<M;ii++){delete(next[ii]);}}};int main(){char word[20];int len,i,j,count;Tree* root=new Tree;Tree* p;//建立字典树过程while(gets(word)){if(strcmp(word,"")==0)break;len=strlen(word);p=root;for(i=0;i<len;i++){j=word[i]-'a';if(p->next[j]==0){p->next[j]=new Tree;}p=p->next[j];(p->val)++;}word[0]='\0';}while(scanf("%s",word)!=EOF){len=strlen(word);p=root;for(i=0;i<len;i++){j=word[i]-'a';if(p->next[j]!=0){p=p->next[j];}else break;}if(i==len)printf("%d\n",p->val);else printf("0\n");}return 0;}/*In:bananabandbeeabsoluteacmbabbandabcout:231*/5.5.KMP匹配算法#include<iostream>#include<cstdio>#include<cstring>#define M 10001using namespace std;int s[M*100],t[M],next[M];//得到next数组,下标均从1开始void getnext(int m){int i=1,j=0;next[1]=0;while(i<=m){if(j==0||t[i]==t[j]){++i;++j;next[i]=j;}else j=next[j];}}//找不到则返回-1int kmp(int n,int m){int i=0,j=1;getnext(m);while(i<=n&&j<=m){if(!j||s[i]==t[j]){++i;++j;}elsej=next[j];}if(j>m)return i-m;else return -1;}int main(){int test,m,n,i;scanf("%d",&test);while(test--){scanf("%d %d",&n,&m);//主串s,长度为nfor(i=1;i<=n;i++)scanf("%d",&s[i]);//横式串t,长度为mfor(i=1;i<=m;i++)scanf("%d",&t[i]);printf("%d\n",kmp(n,m));}return 0;}5.6.后缀数组求最长连续公共子序列长度#include<iostream>#include<cstdio>#include<algorithm>#define M 100001using namespace std;char message[M*2];/*后缀数组*/int height[M*2];int _array[2][M*2];int _rank[2][M*2];int cnt[M*2];int *array, *rank, *narray, *nrank;/*得到最长连续公共子序列长度*/int suffix(int len1,int len2,int len){int i,k;memset(cnt,0,1024);for(i=0;i<len;++i){++cnt[message[i]];}for(i=1;i<= 'z';++i){cnt[i]+=cnt[i-1];}array = _array[0];rank = _rank[0];for(i=len-1;i>=0;--i){array[--cnt[message[i]]]=i;}rank[array[0]] = 0;for(i=1;i<len;i++){rank[array[i]]=rank[array[i-1]];if(message[array[i]]!=message[array[i-1]]){ rank[array[i]]++;}}narray = _array[1];nrank = _rank[1];for(k=1;k<len&&rank[array[len-1]]<len-1;k<<=1){for(i=0;i<len;++i){cnt[rank[array[i]]]=i+1;}for(i=len-1;i>=0;--i){if(array[i] >= k){// array[i]是当前的最大值,所以array[i] - k//是其相同前缀中(rank相同)的最大值narray[--cnt[rank[array[i]-k]]]=array[i]-k;}}for(i=len-k;i<len;++i){//这些没有k后缀,所以他们是最后面的k个,他的位置已经比较出来narray[--cnt[rank[i]]]=i;}nrank[narray[0]] = 0;for (i=1;i<len;++i){nrank[narray[i]]=nrank[narray[i-1]];if(rank[narray[i]]!= rank[narray[i-1]] ||rank[narray[i]+k]!=rank[narray[i-1]+k]){//如果前缀的排名不同,则++;如果前缀相同,但是后缀不同,也++ nrank[narray[i]]++;}}swap(nrank, rank);swap(narray, array);}int ret=0,hei;for(i=1;i<len;++i){if(((array[i]<len1&&array[i-1]>=len1) ||(array[i]>=len1&&array[i-1]<len1))){hei = 0;while(message[array[i]+ hei]==message[array[i-1]+hei]){hei++;}ret = max(ret, hei);}}return ret;}int main(){int len,len1,len2;while(gets(message)!=NULL){len1 = strlen(message);gets(message + len1);len2 = strlen(message+len1);len = len1 + len2;printf("%d\n",suffix(len1,len2,len));}return 0;}5.7.循环字符串最小位置表示及同构判断#include<cstdio>#include<iostream>#include<cstring>#include<string>using namespace std;//返回两个字符串是否同构//len为s1或S2的长度,s1与s2等长//pos1与pos2为字符循环最小表示位置,从0开始bool CircularMatch(string s1, string s2, int len, int& pos1, int& pos2) {int p1 = 0, p2 = 0, k, t1, t2;pos1 = pos2 = -1;while (1) {k = 0;while (1) {t1 = (p1+k)%len; t2 = (p2+k)%len;if(s1[t1] > s2[t2]) {p1 = p1+k+1;if (p1 >= len) return false;break;}else if (s1[t1] < s2[t2]) {p2 = p2+k+1;if (p2 >= len) return false;break;}else k++;if (k == len) {pos1 = p1; pos2 = p2;return true;}}}}//返回字符串循环最小表示的位置,从0开始int MinCircularDenote(string s, int len) {int p1 = 0, p2 = 1, k, t1, t2;while (1) {k = 0;while (1) {t1 = (p1+k)%len; t2 = (p2+k)%len;if(s[t1] > s[t2]) {if (p1+k+1 <= p2) p1 = p2+1;else p1 = p1+k+1;if (p1 >= len) return p2;break;}else if (s[t1] < s[t2]) {if (p2+k+1 <= p1) p2 = p1+1;else p2 = p2+k+1;if (p2 >= len) return p1;break;}else k++;if (k == len)return (p1<p2 ? p1 : p2);}}}//返回字符串循环最大表示的位置,从0开始int MaxCircularDenote(string str,int len) {int p1 = 0, p2 = 1, k, t1, t2;while (1) {k = 0;while (1) {t1 = (p1+k)%len; t2 = (p2+k)%len;if(str[t1] < str[t2]) {if (p1+k+1 <= p2) p1 = p2+1; else p1 = p1+k+1;if (p1 >= len) return p2;break;}else if (str[t1] > str[t2]) {if (p2+k+1 <= p1) p2 = p1+1;else p2 = p2+k+1;if (p2 >= len) return p1;break;}else k++;if (k == len)return (p1<p2 ? p1 : p2);}}}int main(){string s1,s2;int pos1,pos2,len;while(cin>>s1>>s2){len=s1.length();cout<<MinCircularDenote(s1,len)<<endl;cout<<MaxCircularDenote(s1,len)<<endl;s1+=s1;//字符串加倍s2+=s2;cout<<CircularMatch(s1,s2,len, pos1,pos2)<<endl;cout<<pos1<<endl<<pos2<<endl;}return 0;}5.8.求哈夫曼树编码长度#include<cstdio>#include<iostream>#include<cstring>#include<algorithm>#define M 27using namespace std;char line[100001];int tree[M],tmp[M];//保存权值int cmp(int a,int b){return a>b;}//对序号为index统计长度int huffman(int n,int index){if(n==1)return 1;//一个点时返回1int i,j,count,max,len,t;for(i=0;i<n;i++){tmp[i]=tree[i];}count=max=n-1;len=0;while(count--){if(index==max||index==max-1){len++;index=max-1;}tmp[max-1]+=tmp[max];j=--max;while(j>0&&tmp[j]>tmp[j-1]){t=tmp[j];tmp[j]=tmp[j-1];tmp[j-1]=t;if(index==j){index--;}else if(index==j-1){index++;}j--;}}return len;}int main(){int i,j,len,sum,n;int ch[M];while(gets(line)!=NULL){if(strcmp(line,"END")==0)break;len=strlen(line);memset(ch,0,sizeof(ch));for(i=0;i<len;i++){if(line[i]=='_'){ch[0]++;}else ch[line[i]-'A'+1]++;}//权值压缩到tree[]数组中for(j=0,i=0;i<M;i++){if(ch[i]){tree[j++]=ch[i];}}n=j;sort(tree,tree+n,cmp);for(sum=0,i=0;i<n;i++){sum+=tree[i]*huffman(n,i);}printf("%d %d %.1lf\n",len*8,sum,len*8.0/(sum*1.0));}return 0;}/*/showproblem.php?pid=1053in:AAAAABCDTHE_CAT_IN_THE_HATENDout:64 13 4.9144 51 2.8*/5.9.堆排序算法#include<cstdio>#include<cstdlib>using namespace std;void adjust(int a[],int s,int len){int t,i;t=a[s];for(i=s*2;i<len;i*=2){if(i<(len-1)&&a[i]<a[i+1])i++;if(t>=a[i])break;a[s]=a[i];s=i;}a[s]=t;}void sort(int a[],int len){int i,t;for(i=(len-1)/2;i>=0;i--){adjust(a,i,len);}for(i=len-1;i>1;i--){a[i]=a[0];a[0]=t;adjust(a,0,i-1);}if(a[0]>a[1]){t=a[0];a[0]=a[1];a[1]=t;}}int main(){int a[1000],i,n;scanf("%d",&n);//for(i=0;i<n;i++)// scanf("%d",a+i);for(i=0;i<n;i++)a[i]=rand()%10000;sort(a,n);for(i=0;i<n;i++)printf("%d ",a[i]);printf("\n");return 0;}//2 38 4 99 10 2 22 1 -43 22 33 91 78 335.10.线段树着色问题#include <iostream>#define N 8003#define NoCol -1#define MulCol -2using namespace std;struct SegTree{int l,r,c;}st[N*4];//一般大小开成节点数的4倍,不需要担心空间问题int seg[N],col[N];int n,sat,end;//创建线段树void segTreeCre(int l,int r,int i=1){int mid;st[i].l=l;。
ACM解题模版 密码破译

Each charactor are changed to a corresponding charactor. If the keyword is "Angel", the rule will be:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ANGELZYXWVUTSRQPOMKJIHFDCB
难点在于密码破译字母表的制作算法思想?数据结构?数组题目代码?includestdiohincludestringhcharch27bch27sch27
解题队伍:
JSU_10
题目类型:
解密
题目来源:
/1591
题目编号:
1591
题目描述:
Encoded Love-letter
temp[h]=1;
}
for(i=25,j=0;i>=len;i--,j++)
{
while(temp[j]==1)
j++;
Bch[i]=j+65;
}
for(i=0;i<26;i++)
Sch[i]=Bch[i]+32;
while(gets(ch1))
{
i=0;
while(ch1[i]!='\0')
我的ACM算法模板

ACM模板[王克纯2020年9月21日最大子串int maxSum(int * a,int n){int sum = a[0],b = 0;for(int i=0;i<n;++i){if(b>0) b += a[i];else b = a[i];if(b > sum) sum = b;}return sum;}int Kadane(const int array[], size_t length, unsigned int& left, unsigned int& right){unsigned int i, cur_left, cur_right;int cur_max, max;cur_max = max = left = right = cur_left = cur_right = 0;for(i = 0; i < length; ++i){cur_max += array[i];if(cur_max > 0){cur_right = i;if(max < cur_max){max = cur_max;left = cur_left;right = cur_right;}}else{cur_max = 0;cur_left = cur_right = i + 1;}}return max;} 快速幂void js(int &a,int &b,int num) {b=1;while(num){if(num&1) b*=a;num>>=1;a*=a;}}矩阵乘法struct mat{int n,m;//n行m列int data[MAX][MAX];};void mul(const mat& a,const mat& b,mat& c) //c=a*b{int i,j,k;if (a.m!=b.n); //报错c.n=a.n,c.m=b.m;for (i=0;i<c.n;i++){for (j=0;j<c.m;j++){for (c.data[i][j]=k=0;k<a.m;k++) {c.data[i][j]+=a.data[i][k]*b.dat a[k][j]%m;//m为余数}c.data[i][j]%=m;}}}Bit位操作(宏定义,内联函数,stl)} #define bitwrite(a,i,n)(n)?(a)[(i)/8]|=1<<(i)%8:(a)[(i)/8]&=~(1<<(i)%8)//数组a的第i位写入n;#define bitread(a,i)((a)[(i)/8]>>((i)%8))&1//读取数组a的第i位inline void write(int i,int n){n?a[i/8]|=1<<i%8:a[i/8]&=~(1<<i% 8);}inline int read(int i){return (a[i/8]>>(i%8))&1;}#include<bitset>bitset<MAX> b;错排公式为M(n)=n!(1/2!-1/3!+…..+(-1)^n/n!)M(n)=n!-n!/1!+n!/2!-n!/3!+…+(-1)^n*n!/n!=sigma(k=2~n) (-1)^k*n!/k!Dn=[n!/e+0.5]容斥原理M(n)=n![1/0!-1/1!+1/2!-1/3!+1/4! +..+(-1)^n/n!]二分模板LL findr(LL array, LL low, LL high,LL target){while(low <= high){LL mid = (low + high)/2;if (array[mid] > target) high = mid - 1;else if (array[mid] < target) low = mid + 1;else return mid;}return -1;复用代码#include<stdio.h>#include<stdlib.h>#include<string.h>#define MAX 10void print(mat t){printf("*****************\n") ;for(int i=0;i<t.n;i++){for(int j=0;j<t.m;j++){printf("%d",t.data[i][j]);}putchar('\n');}}一些常量和函数:最大Long long __int64 INF = ~(((__int64)0x1)<<63);ceil()向上取整(math.h)floor()向下取整c字符串处理函数1)提取子串--strstr函数原型:char* strstr(char*src,char*find)函数说明:从字符串src中寻找find第一次出现的位置(不比较结束符NULL)返回值:返回指向第一次出现find位置的指针,如果没有找到则返回NULL2)接尾连接--strcat函数原型:char* strcat(char*dest,char*src)函数说明:把src所指字符串添加到dest结尾处(覆盖dest结尾处的'\0')并添加'\0'3)部分连接--strncat函数原型:char* strncat(char*dest,char*src,int n);函数说明:把src所指字符串的前n个字符添加到dest结尾处(覆盖dest结尾处的’\0’)并添加’’\0’.返回值:返回指向dest的指针。
ACM程序竞赛计算几何超全模板

/*计算几何目录㈠点的基本运算1. 平面上两点之间距离12. 判断两点是否重合13. 矢量叉乘14. 矢量点乘25. 判断点是否在线段上26. 求一点饶某点旋转后的坐标27. 求矢量夹角2㈡线段及直线的基本运算1. 点与线段的关系32. 求点到线段所在直线垂线的垂足43. 点到线段的最近点44. 点到线段所在直线的距离45. 点到折线集的最近距离46. 判断圆是否在多边形内57. 求矢量夹角余弦58. 求线段之间的夹角59. 判断线段是否相交610.判断线段是否相交但不交在端点处611.求线段所在直线的方程612.求直线的斜率713.求直线的倾斜角714.求点关于某直线的对称点715.判断两条直线是否相交及求直线交点716.判断线段是否相交,如果相交返回交点7㈢多边形常用算法模块1. 判断多边形是否简单多边形82. 检查多边形顶点的凸凹性93. 判断多边形是否凸多边形94. 求多边形面积95. 判断多边形顶点的排列方向,方法一106. 判断多边形顶点的排列方向,方法二107. 射线法判断点是否在多边形内108. 判断点是否在凸多边形内119. 寻找点集的graham算法1210.寻找点集凸包的卷包裹法1311.判断线段是否在多边形内1412.求简单多边形的重心1513.求凸多边形的重心1714.求肯定在给定多边形内的一个点1715.求从多边形外一点出发到该多边形的切线1816.判断多边形的核是否存在19㈣圆的基本运算1 .点是否在圆内202 .求不共线的三点所确定的圆21㈤矩形的基本运算1.已知矩形三点坐标,求第4点坐标22㈥常用算法的描述22㈦补充1.两圆关系:242.判断圆是否在矩形内:243.点到平面的距离:254.点是否在直线同侧:255.镜面反射线:256.矩形包含:267.两圆交点:278.两圆公共面积:289. 圆和直线关系:2910. 内切圆:3011. 求切点:3112. 线段的左右旋:3113.公式:32*//* 需要包含的头文件*/#include <cmath >/* 常用的常量定义*/const double INF = 1E200const double EP = 1E-10const int MAXV = 300const double PI = 3.14159265/* 基本几何结构*/struct POINT{double x;double y;POINT(double a=0, double b=0) { x=a; y=b;} //constructor};struct LINESEG{POINT s;POINT e;LINESEG(POINT a, POINT b) { s=a; e=b;}LINESEG() { }};struct LINE // 直线的解析方程a*x+b*y+c=0 为统一表示,约定a >= 0{double a;double b;double c;LINE(double d1=1, double d2=-1, double d3=0) {a=d1; b=d2; c=d3;}};/*********************** ** 点的基本运算** ***********************/double dist(POINT p1,POINT p2) // 返回两点之间欧氏距离{return( sqrt( (p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y) ) );}bool equal_point(POINT p1,POINT p2) // 判断两个点是否重合{return ( (abs(p1.x-p2.x)<EP)&&(abs(p1.y-p2.y)<EP) );}/****************************************************************************** r=multiply(sp,ep,op),得到(sp-op)和(ep-op)的叉积r>0:ep在矢量opsp的逆时针方向;r=0:opspep三点共线;r<0:ep在矢量opsp的顺时针方向******************************************************************************* /double multiply(POINT sp,POINT ep,POINT op){return((sp.x-op.x)*(ep.y-op.y)-(ep.x-op.x)*(sp.y-op.y));}/*r=dotmultiply(p1,p2,op),得到矢量(p1-op)和(p2-op)的点积,如果两个矢量都非零矢量r<0:两矢量夹角为锐角;r=0:两矢量夹角为直角;r>0:两矢量夹角为钝角******************************************************************************* /double dotmultiply(POINT p1,POINT p2,POINT p0){return ((p1.x-p0.x)*(p2.x-p0.x)+(p1.y-p0.y)*(p2.y-p0.y));}/****************************************************************************** 判断点p是否在线段l上条件:(p在线段l所在的直线上) && (点p在以线段l为对角线的矩形内)******************************************************************************* /bool online(LINESEG l,POINT p){return( (multiply(l.e,p,l.s)==0) &&( ( (p.x-l.s.x)*(p.x-l.e.x)<=0 )&&( (p.y-l.s.y)*(p.y-l.e.y)<=0 ) ) ); }// 返回点p以点o为圆心逆时针旋转alpha(单位:弧度)后所在的位置POINT rotate(POINT o,double alpha,POINT p){POINT tp;p.x-=o.x;p.y-=o.y;tp.x=p.x*cos(alpha)-p.y*sin(alpha)+o.x;tp.y=p.y*cos(alpha)+p.x*sin(alpha)+o.y;return tp;}/* 返回顶角在o点,起始边为os,终止边为oe的夹角(单位:弧度)角度小于pi,返回正值角度大于pi,返回负值可以用于求线段之间的夹角原理:r = dotmultiply(s,e,o) / (dist(o,s)*dist(o,e))r'= multiply(s,e,o)r >= 1 angle = 0;r <= -1 angle = -PI-1<r<1 && r'>0 angle = arccos(r)-1<r<1 && r'<=0 angle = -arccos(r)*/double angle(POINT o,POINT s,POINT e){double cosfi,fi,norm;double dsx = s.x - o.x;double dsy = s.y - o.y;double dex = e.x - o.x;double dey = e.y - o.y;cosfi=dsx*dex+dsy*dey;norm=(dsx*dsx+dsy*dsy)*(dex*dex+dey*dey);cosfi /= sqrt( norm );if (cosfi >= 1.0 ) return 0;if (cosfi <= -1.0 ) return -3.1415926;fi=acos(cosfi);if (dsx*dey-dsy*dex>0) return fi; // 说明矢量os 在矢量oe的顺时针方向return -fi;}/*****************************\* ** 线段及直线的基本运算** *\*****************************//* 判断点与线段的关系,用途很广泛本函数是根据下面的公式写的,P是点C到线段AB所在直线的垂足AC dot ABr = ---------||AB||^2(Cx-Ax)(Bx-Ax) + (Cy-Ay)(By-Ay)= -------------------------------L^2r has the following meaning:r=0 P = Ar=1 P = Br<0 P is on the backward extension of ABr>1 P is on the forward extension of AB0<r<1 P is interior to AB*/double relation(POINT p,LINESEG l){LINESEG tl;tl.s=l.s;tl.e=p;return dotmultiply(tl.e,l.e,l.s)/(dist(l.s,l.e)*dist(l.s,l.e));}// 求点C到线段AB所在直线的垂足PPOINT perpendicular(POINT p,LINESEG l){double r=relation(p,l);POINT tp;tp.x=l.s.x+r*(l.e.x-l.s.x);tp.y=l.s.y+r*(l.e.y-l.s.y);return tp;}/* 求点p到线段l的最短距离,并返回线段上距该点最近的点np注意:np是线段l上到点p最近的点,不一定是垂足*/double ptolinesegdist(POINT p,LINESEG l,POINT &np){double r=relation(p,l);if(r<0){np=l.s;return dist(p,l.s);}if(r>1){np=l.e;return dist(p,l.e);}np=perpendicular(p,l);return dist(p,np);}// 求点p到线段l所在直线的距离,请注意本函数与上个函数的区别double ptoldist(POINT p,LINESEG l){return abs(multiply(p,l.e,l.s))/dist(l.s,l.e);}/* 计算点到折线集的最近距离,并返回最近点.注意:调用的是ptolineseg()函数*/double ptopointset(int vcount,POINT pointset[],POINT p,POINT &q) {int i;double cd=double(INF),td;LINESEG l;POINT tq,cq;for(i=0;i<vcount-1;i++)l.s=pointset[i];l.e=pointset[i+1];td=ptolinesegdist(p,l,tq);if(td<cd){cd=td;cq=tq;}}q=cq;return cd;}/* 判断圆是否在多边形内.ptolineseg()函数的应用2 */bool CircleInsidePolygon(int vcount,POINT center,double radius,POINT polygon[]){POINT q;double d;q.x=0;q.y=0;d=ptopointset(vcount,polygon,center,q);if(d<radius||fabs(d-radius)<EP)return true;elsereturn false;}/* 返回两个矢量l1和l2的夹角的余弦(-1 --- 1)注意:如果想从余弦求夹角的话,注意反余弦函数的定义域是从0到pi */double cosine(LINESEG l1,LINESEG l2){return (((l1.e.x-l1.s.x)*(l2.e.x-l2.s.x) +(l1.e.y-l1.s.y)*(l2.e.y-l2.s.y))/(dist(l1.e,l1.s)*dist(l2.e,l2.s))) );}// 返回线段l1与l2之间的夹角单位:弧度范围(-pi,pi)double lsangle(LINESEG l1,LINESEG l2){POINT o,s,e;o.x=o.y=0;s.x=l1.e.x-l1.s.x;s.y=l1.e.y-l1.s.y;e.x=l2.e.x-l2.s.x;e.y=l2.e.y-l2.s.y;return angle(o,s,e);// 如果线段u和v相交(包括相交在端点处)时,返回true////判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) ×( Q2 - Q1 ) * ( Q2 - Q1 ) ×( P2 - Q1 ) >= 0。
ACM算法模板(吉林大学)

目录目录 (1)Graph 图论 (3)|DAG的深度优先搜索标记 (3)|无向图找桥 (3)|无向图连通度(割) (3)|最大团问题DP+DFS (3)|欧拉路径O(E) (3)|D IJKSTRA数组实现O(N^2) (3)|D IJKSTRA O(E* LOG E) (4)|B ELLMAN F ORD单源最短路O(VE) (4)|SPFA(S HORTEST P ATH F ASTER A LGORITHM) (4)|第K短路(D IJKSTRA) (5)|第K短路(A*) (5)|P RIM求MST (6)|次小生成树O(V^2) (6)|最小生成森林问题(K颗树)O(MLOGM) (6)|有向图最小树形图 (6)|M INIMAL S TEINER T REE (6)|T ARJAN强连通分量 (7)|弦图判断 (7)|弦图的PERFECT ELIMINATION点排列 (7)|稳定婚姻问题O(N^2) (7)|拓扑排序 (8)|无向图连通分支(DFS/BFS邻接阵) (8)|有向图强连通分支(DFS/BFS邻接阵)O(N^2) (8)|有向图最小点基(邻接阵)O(N^2) (9)|F LOYD求最小环 (9)|2-SAT问题 (9)Network 网络流 (11)|二分图匹配(匈牙利算法DFS实现) (11)|二分图匹配(匈牙利算法BFS实现) (11)|二分图匹配(H OPCROFT-C ARP的算法) (11)|二分图最佳匹配(KUHN MUNKRAS算法O(M*M*N))..11 |无向图最小割O(N^3) (12)|有上下界的最小(最大)流 (12)|D INIC最大流O(V^2*E) (12)|HLPP最大流O(V^3) (13)|最小费用流O(V*E* F).......................................13|最小费用流O(V^2* F). (14)|最佳边割集 (15)|最佳点割集 (15)|最小边割集 (15)|最小点割集(点连通度) (16)|最小路径覆盖O(N^3) (16)|最小点集覆盖 (16)Structure 数据结构 (17)|求某天是星期几 (17)|左偏树合并复杂度O(LOG N) (17)|树状数组 (17)|二维树状数组 (17)|T RIE树(K叉) (17)|T RIE树(左儿子又兄弟) (18)|后缀数组O(N* LOG N) (18)|后缀数组O(N) (18)|RMQ离线算法O(N*LOG N)+O(1) (19)|RMQ(R ANGE M INIMUM/M AXIMUM Q UERY)-ST算法(O(NLOGN +Q)) (19)|RMQ离线算法O(N*LOG N)+O(1)求解LCA (19)|LCA离线算法O(E)+O(1) (20)|带权值的并查集 (20)|快速排序 (20)|2台机器工作调度 (20)|比较高效的大数 (20)|普通的大数运算 (21)|最长公共递增子序列O(N^2) (22)|0-1分数规划 (22)|最长有序子序列(递增/递减/非递增/非递减) (22)|最长公共子序列 (23)|最少找硬币问题(贪心策略-深搜实现) (23)|棋盘分割 (23)|汉诺塔 (23)|STL中的PRIORITY_QUEUE (24)|堆栈 (24)|区间最大频率 (24)|取第K个元素 (25)|归并排序求逆序数 (25)|逆序数推排列数 (25)|二分查找 (25)|二分查找(大于等于V的第一个值) (25)|所有数位相加 (25)Number 数论 (26)|递推求欧拉函数PHI(I) (26)|单独求欧拉函数PHI(X) (26)|GCD最大公约数 (26)|快速GCD (26)|扩展GCD (26)|模线性方程 A * X = B (% N) (26)|模线性方程组 (26)|筛素数[1..N] (26)|高效求小范围素数[1..N] (26)|随机素数测试(伪素数原理) (26)|组合数学相关 (26)|P OLYA计数 (27)|组合数C(N, R) (27)|最大1矩阵 (27)|约瑟夫环问题(数学方法) (27)|约瑟夫环问题(数组模拟) (27)|取石子游戏1 (27)|集合划分问题 (27)|大数平方根(字符串数组表示) (28)|大数取模的二进制方法 (28)|线性方程组A[][]X[]=B[] (28)|追赶法解周期性方程 (28)|阶乘最后非零位,复杂度O(NLOGN) (29)递归方法求解排列组合问题 (30)|类循环排列 (30)|全排列 (30)|不重复排列 (30)|全组合 (31)|不重复组合 (31)|应用 (31)模式串匹配问题总结 (32)|字符串H ASH (32)|KMP匹配算法O(M+N) (32)|K ARP-R ABIN字符串匹配 (32)|基于K ARP-R ABIN的字符块匹配 (32)|函数名: STRSTR (32)|BM算法的改进的算法S UNDAY A LGORITHM (32)|最短公共祖先(两个长字符串) (33)|最短公共祖先(多个短字符串)...............................33Geometry 计算几何.. (34)|G RAHAM求凸包O(N* LOG N) (34)|判断线段相交 (34)|求多边形重心 (34)|三角形几个重要的点 (34)|平面最近点对O(N* LOG N) (34)|L IUCTIC的计算几何库 (35)|求平面上两点之间的距离 (35)|(P1-P0)*(P2-P0)的叉积 (35)|确定两条线段是否相交 (35)|判断点P是否在线段L上 (35)|判断两个点是否相等 (35)|线段相交判断函数 (35)|判断点Q是否在多边形内 (35)|计算多边形的面积 (35)|解二次方程A X^2+B X+C=0 (36)|计算直线的一般式A X+B Y+C=0 (36)|点到直线距离 (36)|直线与圆的交点,已知直线与圆相交 (36)|点是否在射线的正向 (36)|射线与圆的第一个交点 (36)|求点P1关于直线LN的对称点P2 (36)|两直线夹角(弧度) (36)ACM/ICPC竞赛之STL (37)ACM/ICPC竞赛之STL简介 (37)ACM/ICPC竞赛之STL--PAIR (37)ACM/ICPC竞赛之STL--VECTOR (37)ACM/ICPC竞赛之STL--ITERATOR简介 (38)ACM/ICPC竞赛之STL--STRING (38)ACM/ICPC竞赛之STL--STACK/QUEUE (38)ACM/ICPC竞赛之STL--MAP (40)ACM/ICPC竞赛之STL--ALGORITHM (40)STL IN ACM (41)头文件 (42)线段树 (43)求矩形并的面积(线段树+离散化+扫描线) (43)求矩形并的周长(线段树+离散化+扫描线) (44)Graph 图论/*==================================================*\| DAG的深度优先搜索标记| INIT: edge[][]邻接矩阵; pre[], post[], tag全置0;| CALL: dfstag(i, n); pre/post:开始/结束时间\*==================================================*/int edge[V][V], pre[V], post[V], tag;void dfstag(int cur, int n){ // vertex: 0 ~ n-1pre[cur] = ++tag;for (int i=0; i<n; ++i) if (edge[cur][i]) {if (0 == pre[i]) {printf("Tree Edge!\n");dfstag(i,n);} else {if (0 == post[i]) printf("Back Edge!\n");else if (pre[i] > pre[cur])printf("Down Edge!\n");else printf("Cross Edge!\n");}}post[cur] = ++tag;}/*==================================================*\| 无向图找桥| INIT: edge[][]邻接矩阵;vis[],pre[],anc[],bridge 置0;| CALL: dfs(0, -1, 1, n);\*==================================================*/int bridge, edge[V][V], anc[V], pre[V], vis[V];void dfs(int cur, int father, int dep, int n){ // vertex: 0 ~ n-1if (bridge) return;vis[cur] = 1; pre[cur] = anc[cur] = dep;for (int i=0; i<n; ++i) if (edge[cur][i]) {if (i != father && 1 == vis[i]) {if (pre[i] < anc[cur])anc[cur] = pre[i];//back edge}if (0 == vis[i]) { //tree edgedfs(i,cur,dep+1,n);if (bridge) return;if (anc[i] < anc[cur]) anc[cur] = anc[i];if (anc[i] > pre[cur]) { bridge = 1; return; } }}vis[cur] = 2;}/*==================================================*\| 无向图连通度(割)| INIT: edge[][]邻接矩阵;vis[],pre[],anc[],deg[]置为0;| CALL: dfs(0, -1, 1, n);| k=deg[0], deg[i]+1(i=1…n-1)为删除该节点后得到的连通图个数| 注意:0作为根比较特殊!\*==================================================*/int edge[V][V], anc[V], pre[V], vis[V], deg[V];void dfs(int cur, int father, int dep, int n){// vertex: 0 ~ n-1int cnt = 0;vis[cur] = 1; pre[cur] = anc[cur] = dep;for (int i=0; i<n; ++i) if (edge[cur][i]) {if (i != father && 1 == vis[i]) {if (pre[i] < anc[cur])anc[cur] = pre[i];//back edge}if (0 == vis[i]) { //tree edgedfs(i,cur,dep+1,n);++cnt; // 分支个数if (anc[i] < anc[cur]) anc[cur] = anc[i];if ((cur==0 && cnt>1) ||(cnt!=0 && anc[i]>=pre[cur]))++deg[cur];// link degree of a vertex }}vis[cur] = 2;} /*==================================================*\| 最大团问题 DP + DFS| INIT: g[][]邻接矩阵;| CALL: res = clique(n);\*==================================================*/int g[V][V], dp[V], stk[V][V], mx;int dfs(int n, int ns, int dep){if (0 == ns) {if (dep > mx) mx = dep;return 1;}int i, j, k, p, cnt;for (i = 0; i < ns; i++) {k = stk[dep][i]; cnt = 0;if (dep + n - k <= mx) return 0;if (dep + dp[k] <= mx) return 0;for (j = i + 1; j < ns; j++) {p=stk[dep][j];if (g[k][p]) stk[dep + 1][cnt++] = p;}dfs(n, cnt, dep + 1);}return 1;}int clique(int n){int i, j, ns;for (mx = 0, i = n - 1; i >= 0; i--) {// vertex: 0 ~ n-1for (ns = 0, j = i + 1; j < n; j++)if (g[i][j]) stk[1][ ns++ ] = j;dfs(n, ns, 1); dp[i] = mx;}return mx;}/*==================================================*\| 欧拉路径O(E)| INIT: adj[][]置为图的邻接表; cnt[a]为a点的邻接点个数;| CALL: elpath(0); 注意:不要有自向边\*==================================================*/int adj[V][V], idx[V][V], cnt[V], stk[V], top;int path(int v){for (int w ; cnt[v] > 0; v = w) {stk[ top++ ] = v;w = adj[v][ --cnt[v] ];adj[w][ idx[w][v] ] = adj[w][ --cnt[w] ];// 处理的是无向图—-边是双向的,删除v->w后,还要处理删除w->v}return v;}void elpath (int b, int n){ // begin from b int i, j;for (i = 0; i < n; ++i) // vertex: 0 ~ n-1 for (j = 0; j < cnt[i]; ++j)idx[i][ adj[i][j] ] = j;printf("%d", b);for (top = 0; path(b) == b && top != 0; ) {b = stk[ --top ];printf("-%d", b);}printf("\n");}/*==================================================*\| Dijkstra数组实现O(N^2)| Dijkstra --- 数组实现(在此基础上可直接改为STL的Queue实现)| lowcost[] --- beg到其他点的最近距离| path[] -- beg为根展开的树,记录父亲结点\*==================================================*/#define INF 0x03F3F3F3Fconst int N;int path[N], vis[N];void Dijkstra(int cost[][N], int lowcost[N], int n, int beg){ int i, j, min;memset(vis, 0, sizeof(vis));vis[beg] = 1;for (i=0; i<n; i++){lowcost[i] = cost[beg][i]; path[i] = beg;}lowcost[beg] = 0;path[beg] = -1; // 树根的标记int pre = beg;for (i=1; i<n; i++){min = INF;dist[v] = dist[u] + c;for (j=0; j<n; j++)// 下面的加法可能导致溢出,INF 不能取太大if (vis[j]==0 &&lowcost[pre]+cost[pre][j]<lowcost[j]){lowcost[j] =lowcost[pre] + cost[pre][j]; path[j] = pre; } for (j=0; j<n; j++) if (vis[j] == 0 && lowcost[j] < min){ min = lowcost[j]; pre = j; } vis[pre] = 1; } } /*==================================================*\ | Dijkstra O(E * log E) | INIT: 调用init(nv, ne)读入边并初始化; | CALL: dijkstra(n, src); dist[i]为src 到i 的最短距离 \*==================================================*/ #define typec int // type of cost const typec inf = 0x3f3f3f3f; // max of cost typec cost[E], dist[V]; int e, pnt[E], nxt[E], head[V], prev[V], vis[V]; struct qnode { int v; typec c; qnode (int vv = 0, typec cc = 0) : v(vv), c(cc) {} bool operator < (const qnode& r) const { return c>r.c; } }; void dijkstra(int n, const int src){ qnode mv; int i, j, k, pre; priority_queue<qnode> que; vis[src] = 1; dist[src] = 0; que.push(qnode(src, 0)); for (pre = src, i=1; i<n; i++) { for (j = head[pre]; j != -1; j = nxt[j]) { k = pnt[j]; if (vis[k] == 0 && dist[pre] + cost[j] < dist[k]){ dist[k] =dist[pre] + cost[j]; que.push(qnode(pnt[j], dist[k])); prev[k] = pre; } } while (!que.empty() && vis[que.top().v] == 1) que.pop(); if (que.empty()) break ; mv = que.top(); que.pop(); vis[pre = mv.v] = 1; } } inline void addedge(int u, int v, typec c){ pnt[e] = v; cost[e] = c; nxt[e] = head[u]; head[u] = e++; } void init(int nv, int ne){ int i, u, v; typec c; e = 0;memset(head, -1, sizeof (head));memset(vis, 0, sizeof (vis));memset(prev, -1, sizeof (prev));for (i = 0; i < nv; i++) dist[i] = inf;for (i = 0; i < ne; ++i) {scanf("%d%d%d", &u, &v, &c);// %d: type of cost addedge(u, v, c); // vertex: 0 ~ n-1, 单向边 }}/*==================================================*\| BellmanFord 单源最短路O(VE)| 能在一般情况下,包括存在负权边的情况下,解决单源最短路径问题| INIT: edge[E][3]为边表| CALL: bellman(src);有负环返回0;dist[i]为src 到i 的最短距| 可以解决差分约束系统: 需要首先构造约束图,构造不等式时>=表示求最小值, 作为最长路,<=表示求最大值, 作为最短路 (v-u <= c:a[u][v] = c )\*==================================================*/#define typec int // type of costconst typec inf=0x3f3f3f3f; // max of costint n, m, pre[V], edge[E][3];typec dist[V];int relax (int u, int v, typec c){if (dist[v] > dist[u] + c) {pre[v] = u; return 1; } return 0; } int bellman (int src){ int i, j;for (i=0; i<n; ++i) { dist[i] = inf; pre[i] = -1; } dist[src] = 0; bool flag; for (i=1; i<n; ++i){ flag = false; // 优化 for (j=0; j<m; ++j) { if( 1 == relax(edge[j][0], edge[j][1], edge[j][2]) ) flag = true; } if( !flag ) break; } for (j=0; j<m; ++j) { if (1 == relax(edge[j][0], edge[j][1], edge[j][2])) return 0; // 有负圈 } return 1; } /*==================================================*\ | SPFA(Shortest Path Faster Algorithm) Bellman-Ford 算法的一种队列实现,减少了不必要的冗余计算。
ACM常用算法模板
专用模板目录:一、图论1.最大团2.拓扑排序3.最短路和次短路4.SAP模板5.已知各点度,问能否组成一个简单图6.KRUSKAL7. Prim算法求最小生成树8. Dijkstra9 . Bellman-ford10. SPFA11. Kosaraju 模板12. tarjan 模板二、数学1. 剩余定理2. N!中质因子P的个数3.拓展欧几里得4.三角形的各中心到顶点的距离和5.三角形外接圆半径周长6.归并排序求逆序数7. 求N!的位数8.欧拉函数9. Miller-Rabin,大整数分解,求欧拉函数10. 第一类斯特林数11.计算表达式12.约瑟夫问题13.高斯消元法14. Baby-step,giant-step n是素数.n任意15. a^b%c=a ^(b%eular(c)+eular(c)) % c16.判断第二类斯特林数的奇偶性17.求组合数C(n,r)18.进制转换19.Ronberg算法计算积分20.行列式计算21. 返回x 的二进制表示中从低到高的第i位22.高精度运算 +-*/23.超级素数筛选三、数据结构1.树状数组2.线段树求区间的最大、小值3.线段树求区间和4.单调队列5.KMP模板6. 划分树,求区间第k小数7.最大堆,最小堆模板8. RMQ模板求区间最大、最小值9.快速排序,归并排序求逆序数.10.拓展KMP四、计算几何1.凸包面积2.Pick公式求三角形内部有多少点3.多边形边上内部各多少点以及面积pick4.平面最远点对5.判断矩形是否在矩形内6.判断点是否在多边形内7.判断4个点(三维)是否共面8.凸包周长9.等周定理变形一直两端点和周长求最大面积10.平面最近点对11.单位圆最多覆盖多少点(包括边上)12.多边形费马点求点到多边形各个点的最短距离13.矩形并周长14.zoj 2500 求两球体积并一、图论1.最大团#include<iostream>#include<algorithm>using namespace std;int n,m;int cn;//当前顶点数int best;//当前最大顶点数int vis[50];//当前解int bestn[50];//最优解int map[50][50];//临界表void dfs(int i){if(i>n){for(int j=1;j<=n;j++) bestn[j]=vis[j];best=cn;return ;}int ok=1;for(int j=1;j<i;j++){if(vis[j]==1&&map[i][j]==0){ok=0;break;}}if(ok){//进入左子树vis[i]=1;cn++;dfs(i+1);cn--;}if(cn+n-i>best){//进入右子树vis[i]=0;dfs(i+1);}}int main(){while(scanf("%d%d",&n,&m)==2){memset(vis,0,sizeof(vis));memset(map,0,sizeof(map));while(m--){int p,q;scanf("%d%d",&p,&q);map[p][q]=map[q][p]=1;//无向图}cn=0;best=0;dfs(1);printf("%d\n",best);}return 0;}2.拓扑排序#include<iostream>#include<cstring>using namespace std;int map[105][105],in[105],vis[105],ans[105],n;int flag;void dfs(int step){if(flag) return ;if(step==n+1) {flag=1; printf("%d",ans[1]);for(int i=2;i<=n;i++) printf(" %d",ans[i]);printf("\n");return ;}for(int i=1;i<=n;i++){if(vis[i]==0&&in[i]==0){vis[i]=1;for(int j=1;j<=n;j++){if(map[i][j]>0){map[i][j]=-map[i][j];in[j]--;}}ans[step]=i;dfs(step+1);vis[i]=0;for(int j=1;j<=n;j++){if(map[i][j]<0){map[i][j]=-map[i][j];in[j]++;}}}}}int main(){while(scanf("%d",&n)==1){flag=0;memset(map,0,sizeof(map));memset(vis,0,sizeof(vis));memset(in,0,sizeof(in));for(int i=1;i<=n;i++){int t;while(scanf("%d",&t),t){map[i][t]=1;in[t]++;}}dfs(1);}return 0;}3.最短路和次短路#include<iostream>#include<cstdio>#include<vector>#include<cstring>using namespace std;class Node{public:int e,w;//表示终点和边权};const int inf=(1<<25);int main(){int ci;cin>>ci;while(ci--){vector<Node> G[1005];//用邻接表存边int n,m;cin>>n>>m;for(int i=1;i<=m;i++){Node q;int u;cin>>u>>q.e>>q.w;G[u].push_back(q);}int s,f;//起点和终点cin>>s>>f;//dijkstra 求最短路和次短路int flag[1005][2];int dis[1005][2],cnt[1005][2];//0表示最短路,1表示次短路memset(flag,0,sizeof(flag));for(int i=1;i<=n;i++) dis[i][0]=dis[i][1]=inf;dis[s][0]=0;cnt[s][0]=1;//初始化for(int c=0;c<2*n;c++) //找最短路和次短路,故要进行2*n次循环也可以改成while(1){int temp=inf,u=-1,k;//找s-S'集合中的最短路径,u记录点的序号,k记录是最短路或者是次短路for(int j=1;j<=n;j++){if(flag[j][0]==0&&temp>dis[j][0]) temp=dis[j][0],u=j,k=0;else if(flag[j][1]==0&&temp>dis[j][1]) temp=dis[j][1],u=j,k=1;}if(temp==inf) break;//S'集合为空或者不联通,算法结束//更新路径flag[u][k]=1;for(int l=0;l<G[u].size();l++){int d=dis[u][k]+G[u][l].w,j=G[u][l].e;//important//4种情况if(d<dis[j][0]){dis[j][1]=dis[j][0];cnt[j][1]=cnt[j][0];dis[j][0]=d;cnt[j][0]=cnt[u][k];}else if(d==dis[j][0]){cnt[j][0]+=cnt[u][k];}else if(d<dis[j][1]){dis[j][1]=d;cnt[j][1]=cnt[u][k];}else if(d==dis[j][1]){cnt[j][1]+=cnt[u][k];}}}int num=cnt[f][0];//最短路int cc=cnt[f][1];//次短路}return 0;}4.SAP模板#include<iostream>#include<cstdio>#include<cstring>using namespace std;const int inf=(1<<31)-1;const int point_num=300;int cap[point_num][point_num],dist[point_num],gap[point_num];//初始化见main里面int s0,t0,n;//源,汇和点数int find_path(int p,int limit=0x3f3f3f3f){if(p==t0) return limit;for(int i=0;i<n;i++)if(dist[p]==dist[i]+1 && cap[p][i]>0){int t=find_path(i,min(cap[p][i],limit));if(t<0) return t;if(t>0){cap[p][i]-=t;cap[i][p]+=t;return t;}}int label=n;for(int i=0;i<n;i++) if(cap[p][i]>0) label=min(label,dist[i]+1);if(--gap[dist[p]]==0 || dist[s0]>=n ) return -1;++gap[dist[p]=label];return 0;}int sap(){//初始化s,ts0=0,t0=n-1;int t=0,maxflow=0;gap[0]=n;while((t=find_path(s0))>=0) maxflow+=t;return maxflow;}int main(){int ci;while(cin>>ci>>n){//初始化memset(cap,0,sizeof(cap));memset(dist,0,sizeof(dist));memset(gap,0,sizeof(gap));//初始化capwhile(ci--){int x,y,c;cin>>x>>y>>c;x--;y--;cap[x][y]+=c;//因题而异}int ans=sap();cout<<ans<<endl;}return 0;}5.已知各点度,问能否组成一个简单图#include<iostream>#include<cstdio>#include<algorithm>using namespace std;const int inf=(1<<30);int d[1100];bool cmp(int x,int y){return x>y;}int main(){int ci;scanf("%d",&ci);while(ci--){int n,flag=1,cnt=0;scanf("%d",&n); for(int i=0;i<n;i++){scanf("%d",&d[i]);if(d[i]>n-1||d[i]<=0) flag=0; cnt+=d[i];}if(flag==0||cnt%2){printf("no\n");continue;}sort(d,d+n,cmp);for(int l=n;l>0;l--){for(int i=1;i<l&&d[0];i++){d[0]--,d[i]--;if(d[i]<0){flag=0;break;}}if(d[0]) flag=0;if(flag==0) break;d[0]=-inf;sort(d,d+l,cmp);}if(flag) printf("yes\n");else printf("no\n");}return 0;}6.KRUSKAL#include<iostream>#include<algorithm>using namespace std;int u[15005],v[15005],w[15005],fath[15005],r[15005];int ans1[15005],ans2[15005];bool cmp(int i,int j){return w[i]<w[j];}int find(int x){return fath[x]==x?x:fath[x]=find(fath[x]);}int main(){int n,m;cin>>n>>m;for(int i=1;i<=n;i++) fath[i]=i;for(int i=1;i<=m;i++) r[i]=i;for(int i=1;i<=m;i++){cin>>u[i]>>v[i]>>w[i];}sort(r+1,r+m+1,cmp);int maxn=0,ans=0,k=0;for(int i=1;i<=m;i++){int e=r[i];int x=find(u[e]),y=find(v[e]);if(x!=y){ans+=w[e];fath[x]=y;if(w[e]>maxn) maxn=w[e];ans1[k]=u[e];ans2[k++]=v[e];}}return 0;}7.prime求最小生成树语法:prim(Graph G,int vcount,int father[]);参数:G:图,用邻接矩阵表示vcount:表示图的顶点个数father[]:用来记录每个节点的父节点返回值:null注意:常数max_vertexes 为图最大节点数常数infinity为无穷大源程序:#define infinity 1000000#define max_vertexes 5typedef int Graph[max_vertexes][max_vertexes];void prim(Graph G,int vcount,int father[]){int i,j,k;intlowcost[max_vertexes],closeset[max_vertexes],used[max_vertexes]; for (i=0;i<vcount;i++){lowcost[i]=G[0][i];closeset[i]=0;used[i]=0;father[i]=-1;}used[0]=1;for (i=1;i<vcount;i++){j=0;while (used[j]) j++;for (k=0;k<vcount;k++)if ((!used[k])&&(lowcost[k]<lowcost[j])) j=k;father[j]=closeset[j];used[j]=1;for (k=0;k<vcount;k++)if (!used[k]&&(G[j][k]<lowcost[k])){ lowcost[k]=G[j][k];closeset[k]=j; }}}8.Dijkstra语法:result=Dijkstra(Graph G,int n,int s,int t, int path[]); 参数:G:图,用邻接矩阵表示n:图的顶点个数s:开始节点t:目标节点path[]:用于返回由开始节点到目标节点的路径返回值:最短路径长度注意:输入的图的权必须非负顶点标号从0 开始用如下方法打印路径:i=t;while (i!=s){printf("%d<--",i+1);i=path[i];}printf("%d\n",s+1);源程序:int Dijkstra(Graph G,int n,int s,int t, int path[]){int i,j,w,minc,d[max_vertexes],mark[max_vertexes];for (i=0;i<n;i++) mark[i]=0;for (i=0;i<n;i++){ d[i]=G[s][i];path[i]=s; }mark[s]=1;path[s]=0;d[s]=0;for (i=1;i<n;i++){minc=infinity;w=0;for (j=0;j<n;j++)if ((mark[j]==0)&&(minc>=d[j])) {minc=d[j];w=j;}mark[w]=1;for (j=0;j<n;j++)if((mark[j]==0)&&(G[w][j]!=infinity)&&(d[j]>d[w]+G[w][j])){ d[j]=d[w]+G[w][j];path[j]=w; }}return d[t];}9.Bellman-ford语法:result=Bellman_ford(Graph G,int n,int s,int t,int path[],int success);参数:G:图,用邻接矩阵表示n:图的顶点个数s:开始节点t:目标节点path[]:用于返回由开始节点到目标节点的路径success:函数是否执行成功返回值:最短路径长度注意:输入的图的权可以为负,如果存在一个从源点可达的权为负的回路则success=0顶点标号从0 开始用如下方法打印路径:i=t;while (i!=s){printf("%d<--",i+1);i=path[i];}printf("%d\n",s+1);源程序:int Bellman_ford(Graph G,int n,int s,int t,int path[],int success){int i,j,k,d[max_vertexes];for (i=0;i<n;i++) {d[i]=infinity;path[i]=0;}d[s]=0;for (k=1;k<n;k++)for (i=0;i<n;i++)for (j=0;j<n;j++)if (d[j]>d[i]+G[i][j]){d[j]=d[i]+G[i][j];path[j]=i;}success=0;for (i=0;i<n;i++)for (j=0;j<n;j++)if (d[j]>d[i]+G[i][j]) return 0;success=1;return d[t];}10. SPFA#include<iostream>#include<cstdio>#include<cstring>#include<vector>using namespace std;const __int64 maxn=1001000;const __int64 inf=1000100000;struct edge//邻接表{__int64 t,w;//s->t=w;__int64 next;//数组模拟指针};__int64 p[maxn],pf[maxn];//邻接表头节点edge G[maxn],Gf[maxn];//邻接表__int64 V,E;//点数[1-n] 边数__int64 dis[maxn];__int64 que[maxn],fro,rear;//模拟队列__int64 vis[maxn];__int64 inque[maxn];//入队次数bool spfa(__int64 s0){fro=rear=0;for(__int64 i=1;i<=V;i++) dis[i]=inf;dis[s0]=0;memset(vis,0,sizeof(vis));memset(inque,0,sizeof(inque));que[rear++]=s0;vis[s0]=1;inque[s0]++;while(fro!=rear){__int64 u=que[fro];fro++;if(fro==maxn) fro=0;vis[u]=0;for(__int64 i=p[u];i!=-1;i=G[i].next){__int64 s=u,t=G[i].t,w=G[i].w;if(dis[t]>dis[s]+w){dis[t]=dis[s]+w;if(vis[t]==0){que[rear++]=t,vis[t]=1;inque[t]++;if(inque[t]>V) return false;if(rear==maxn) rear=0;}}}}return true;}int main(){__int64 ci;scanf("%I64d",&ci);while(ci--){scanf("%I64d%I64d",&V,&E);memset(p,-1,sizeof(p));memset(pf,-1,sizeof(pf)); for(__int64 i=0;i<E;i++){__int64 u,v,w;scanf("%I64d%I64d%I64d",&u,&v,&w);G[i].t=v;G[i].w=w;G[i].next=p[u];p[u]=i;Gf[i].t=u;Gf[i].w=w;Gf[i].next=pf[v];pf[v]=i;}__int64 ans=0;spfa(1);//求第一个点到其他点的最短距离和for(__int64 i=1;i<=V;i++) ans+=dis[i];//反方向再来一次spfa 求其他点到第一个点的最短距离和 for(__int64 i=1;i<=V;i++) p[i]=pf[i];for(__int64 i=0;i<E;i++) G[i]=Gf[i];spfa(1);for(__int64 i=1;i<=V;i++) ans+=dis[i];printf("%I64d\n",ans);}return 0;}11.Kosaraju模板#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int maxn=100000;struct edge{int t,w;//u->t=w;int next;};int V,E;//点数(从1开始),边数int p[maxn],pf[maxn];//邻接表原图,逆图edge G[maxn],Gf[maxn];//邻接表原图,逆图int l,lf;void init(){memset(p,-1,sizeof(p));memset(pf,-1,sizeof(pf));l=lf=0;}void addedge(int u,int t,int w,int l){G[l].w=w;G[l].t=t;G[l].next=p[u];p[u]=l;}void addedgef(int u,int t,int w,int lf){Gf[l].w=w;Gf[l].t=t;Gf[l].next=pf[u];pf[u]=l;}///Kosaraju算法,返回为强连通分量个数bool flag[maxn]; //访问标志数组int belg[maxn]; //存储强连通分量,其中belg[i]表示顶点i属于第belg[i]个强连通分量int numb[maxn]; //结束时间(出栈顺序)标记,其中numb[i]表示离开时间为i的顶点//用于第一次深搜,求得numb[1..n]的值void VisitOne(int cur, int &sig){flag[cur] = true;for (int i=p[cur];i!=-1;i=G[i].next){if (!flag[G[i].t]){VisitOne(G[i].t,sig);}}numb[++sig] = cur;}//用于第二次深搜,求得belg[1..n]的值void VisitTwo(int cur, int sig){flag[cur] = true;belg[cur] = sig;for (int i=pf[cur];i!=-1;i=Gf[i].next){if (!flag[Gf[i].t]){VisitTwo(Gf[i].t,sig);}}//Kosaraju算法,返回为强连通分量个数int Kosaraju_StronglyConnectedComponent(){int i, sig;//第一次深搜memset(flag,0,sizeof(flag));for ( sig=0,i=1; i<=V; ++i ){if ( false==flag[i] ){VisitOne(i,sig);}}//第二次深搜memset(flag,0,sizeof(flag));for ( sig=0,i=V; i>0; --i ){if ( false==flag[numb[i]] ){VisitTwo(numb[i],++sig);}}return sig;}int main(){while(scanf("%d",&V)==1){init();for(int i=1;i<=V;i++){int u=i,t,w=1;while(scanf("%d",&t)==1&&t){E++;addedge(u,t,w,l++);addedgef(t,u,w,lf++);}}int ans=Kosaraju_StronglyConnectedComponent(); printf("%d\n",ans);}return 0;12.tarjan模板//自己模板#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int maxn=100000;int V,E;//点数(1) 边数struct edge//邻接表{int t,w;//u->t=w;int next;};int p[maxn];//表头节点edge G[maxn];int l;void init(){memset(p,-1,sizeof(p));l=0;}//添加边void addedge(int u,int t,int w,int l)//u->t=w;{G[l].w=w;G[l].t=t;G[l].next=p[u];p[u]=l;}//tarjan算法求有向图强联通分量int dfn[maxn],lowc[maxn];//dfn[u]节点u搜索的次序编号,lowc[u]u或者u的子树能够追溯到的栈中的最早的节点int belg[maxn];//第i个节点属于belg[i]个强连通分量int stck[maxn],stop;//stck栈int instck[maxn];//第i个节点是否在栈中int scnt;//强联通分量int index;void dfs(int i){dfn[i]=lowc[i]=++index;instck[i]=1;//节点i入栈stck[++stop]=i;for(int j=p[i];j!=-1;j=G[j].next){int t=G[j].t;//更新lowc数组if(!dfn[t])//t没有遍历过{dfs(t);if(lowc[i]>lowc[t]) lowc[i]=lowc[t];}//t是i的祖先节点else if(instck[t]&&lowc[i]>dfn[t]) lowc[i]=dfn[t];}//是强连通分量的根节点if(dfn[i]==lowc[i]){scnt++;int t;do{t=stck[stop--];instck[t]=0;belg[t]=scnt;}while(t!=i);}}int tarjan(){stop=scnt=index=0;memset(dfn,0,sizeof(dfn));memset(instck,0,sizeof(instck));for(int i=1;i<=V;i++){if(!dfn[i]) dfs(i);}return scnt;}int main(){while(scanf("%d",&V)==1){init();for(int i=1;i<=V;i++){int x;while(scanf("%d",&x)==1&&x){E++;addedge(i,x,1,l++);}}int ans=tarjan();printf("%d\n",ans);}return 0;}//吉大模板邻接表版#include<iostream>#include<cstdio>#include<cstring>#include<algorithm>using namespace std;const int maxn=100000;int V,E;//点数(1) 边数struct edge//邻接表{int t,w;//u->t=w;int next;};int p[maxn];//表头节点edge G[maxn];int l;void init(){memset(p,-1,sizeof(p));l=0;}//添加边void addedge(int u,int t,int w,int l)//u->t=w;{G[l].w=w;G[l].t=t;G[l].next=p[u];p[u]=l;}//tarjan算法求有向图强联通分量int dfn[maxn],lowc[maxn];//dfn[u]节点u搜索的次序编号,lowc[u]u或者u的子树能够追溯到的栈中的最早的节点int stck[maxn],stop;//stck栈int pre[maxn];//int scnt;//强联通分量int cnt;//void dfs(int v)//1-V{int t,minc=lowc[v]=pre[v]=cnt++;stck[stop++]=v;for(int i=p[v];i!=-1;i=G[i].next){int pv=G[i].t;if(pre[pv]==-1) dfs(pv);if(lowc[pv]<minc) minc=lowc[pv]; }if(minc<lowc[v]){lowc[v]=minc;return ;}do{dfn[t=stck[--stop]]=scnt;lowc[t]=V;}while(t!=v);++scnt;}int tarjan(){stop=cnt=scnt=0;memset(pre,-1,sizeof(pre));for(int i=1;i<=V;i++){if(pre[i]==-1) dfs(i);}return scnt;}int main(){while(scanf("%d",&V)==1){init();for(int i=1;i<=V;i++){int x;while(scanf("%d",&x)==1&&x){E++;addedge(i,x,1,l++);}}int ans=tarjan();printf("%d\n",ans);}return 0;}二、数学1.剩余定理int mod(int c[],int b[],int n){int all_multy=1,sum=0;int i,j,x[5];for(i=0;i<n;i++)all_multy*=c[i];for(i=0;i<n;i++)x[i]=all_multy/c[i];for(i=0;i<n;i++){j=1;while((x[i]*j)%c[i]!=1)j++;x[i]*=j;}for(i=0;i<n;i++)sum+=(b[i]*x[i]);return sum%all_multy;}2.N!中质因子P的个数//对于任意质数p,n!中有(n/p+n/p^2+n/p^3+...)个质因子p。
核心算法——ACM模板
核心算法——ACM模板一、贪心算法 (2)1、区间选点 (2)2、区间覆盖 (2)3、不相交区间 (2)4、哈夫曼编码 (2)5、最小值最大化、最大值最小化(二分查找) (2)二、动态规划 (5)1、最长公共子序列(LCS) (5)2、最长上升公共子序列(LIS) (7)3、子段和 (9)4、DAG上的动态规划 (13)5、区间DP (17)6、状态压缩DP (24)7、双线DP (30)8、背包问题(见背包九讲) (32)三、数据结构 (32)1、并查集 (32)2、树状数组 (34)3、(字符串)KMP匹配 (37)四、最小生成树算法 (41)Prime核心算法 (41)Kruskal算法 (44)五、单源最短路径 (50)Dijkstra核心算法 (50)Bellman_Ford算法 (54)SPFA算法(Bellman_Ford的队列实现) (58)六、二分图匹配 (61)1、匈牙利算法 (61)七、网络流 (63)1、SAP算法 (64)2、Dinic算法 (68)一、贪心算法1、区间问题区间选点选取尽量少的点覆盖所有的区间,是每个区间至少包含一个点。
对区间右端点进行排序。
区间覆盖选取尽量少的区间覆盖整个区域。
对左端点进行排序。
不相交区间选取尽量多的不相交区间。
对区间右端点进行排序。
2、哈夫曼编码3、最小值最大化、最大值最小化(二分查找)NYOJ 疯牛问题(最小值最大化)农夫John 建造了一座很长的畜栏,它包括N (2 <= N <= 100,000)个隔间,这些小隔间依次编号为x1,...,xN (0 <= xi <= 1,000,000,000).但是,John的C (2 <= C <= N)头牛们并不喜欢这种布局,而且几头牛放在一个隔间里,他们就要发生争斗。
为了不让牛互相伤害。
John决定自己给牛分配隔间,使任意两头牛之间的最小距离尽可能的大,那么,这个最大的最小距离是什么呢?#include#include#includeusing namespace std;int n, c;int pos[100005];bool judge(int k){int cnt = 1;int st = pos[0];for(int i = 1; i < n; ++i){if(pos[i] - st >= k){++cnt;if(cnt >= c)return true;st = pos[i];}}return false;}int Binary_search(int left, int right) /// 二分枚举满足条件的最大距离{while(left <= right){int mid = (left + right) >> 1;if(judge(mid)) /// 所求距离 >= mid,可以继续增大试探left = mid+1;else /// 所求距离 < mid,所以必须减小来试探right = mid-1;}return left-1;}int main(){while(~scanf("%d%d", &n, &c)){for(int i = 0; i < n; ++i)scanf("%d", &pos[i]);sort(pos, pos+n);printf("%d\n", Binary_search(0, pos[n-1] - pos[0]));}return 0;}NYOJ 摘枇杷(最大值最小化)理工学院的枇杷快熟了,ok,大家都懂得。
-【精品资料】ACM大赛必备_常用函数整理_ACM模板(整理版)
目录一、数学问题 (4)1.精度计算——大数阶乘 (4)2.精度计算——乘法(大数乘小数) (4)3.精度计算——乘法(大数乘大数) (5)4.精度计算——加法 (6)5.精度计算——减法 (7)6.任意进制转换 (8)7.最大公约数、最小公倍数 (9)8.组合序列 (10)9.快速傅立叶变换(FFT) (10)10.Ronberg 算法计算积分 (12)11.行列式计算 (14)12.求排列组合数 (15)13.求某一天星期几 (15)14.卡特兰(Catalan) 数列原理 (16)15.杨辉三角 (16)16.全排列 (17)17.匈牙利算法----最大匹配问题 (18)18.最佳匹配KM 算法 (20)二、字符串处理 (22)1.字符串替换 (22)2.字符串查找 (23)3.字符串截取 (24)4.LCS-最大公共子串长度 (24)5.LCS-最大公共子串长度 (25)6.数字转换为字符 (26)三、计算几何 (27)1.叉乘法求任意多边形面积 (27)2.求三角形面积 (27)3.两矢量间角度 (28)4.两点距离(2D、3D) (28)5.射向法判断点是否在多边形内部 (29)6.判断点是否在线段上 (30)7.判断两线段是否相交 (31)8.判断线段与直线是否相交 (32)9.点到线段最短距离 (32)10.求两直线的交点 (33)11.判断一个封闭图形是凹集还是凸集 (34)12.Graham 扫描法寻找凸包 (35)13.求两条线段的交点 (36)四、数论 (37)1.x 的二进制长度 (37)2.返回x 的二进制表示中从低到高的第i 位 (38)3.模取幂运算 (38)4.求解模线性方程 (39)5.求解模线性方程组(中国余数定理) (39)6.筛法素数产生器 (40)7.判断一个数是否素数 (41)8.求距阵最大和 (42)8.求一个数每一位相加之和 (43)10.质因数分解 (43)11.高斯消元法解线性方程组 (44)五、图论 (45)1.Prim 算法求最小生成树................................................. 45 2.Dijkstra 算法求单源最短路径.. (46)3.Bellman-ford 算法求单源最短路径 (47)4.Floyd-Warshall 算法求每对节点间最短路径 (48)5.解欧拉图 (49)六、排序/查找 (50)1.快速排序 (50)2.希尔排序 (51)3.选择法排序 (52)4.二分查找 (52)七、数据结构 (53)1.顺序队列 (53)2.顺序栈 (56)3.链表 (59)4.链栈 (63)5.二叉树 (66)八、高精度运算专题 (68)1.专题函数说明 (68)2.高精度数比较 (69)3.高精度数加法 (69)4.高精度数减法 (70)5.高精度乘10 (71)6.高精度乘单精度 (71)7.高精度乘高精度 (72)8.高精度除单精度 (72)9.高精度除高精度 (73)九、标准模板库的使用 (74)1.计算求和 (74)2.求数组中的最大值 (76)3. sort 和qsort (76)十、其他 (78)1.运行时间计算 (78)DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD一、数学问题1.精度计算——大数阶乘语法:int result=factorial(int n);参数:n:n 的阶乘返回值:阶乘结果的位数注意:本程序直接输出n!的结果,需要返回结果请保留long a[] 需要math.h源程序:int factorial(int n){long a[10000];int i,j,l,c,m=0,w;a[0]=1;for(i=1;i<=n;i++){c=0;for(j=0;j<=m;j++){a[j]=a[j]*i+c;c=a[j]/10000;a[j]=a[j]%10000;}if(c>0) {m++;a[m]=c;}}w=m*4+log10(a[m])+1;printf("\n%ld",a[m]);for(i=m-1;i>=0;i--) printf("%4.4ld",a[i]);return w;}我也可以做到..5 / 782.精度计算——乘法(大数乘小数)语法:mult(char c[],char t[],int m);参数:c[]:被乘数,用字符串表示,位数不限t[]:结果,用字符串表示m:乘数,限定10 以内返回值:null注意:需要string.h源程序:void mult(char c[],char t[],int m){int i,l,k,flag,add=0;char s[100];l=strlen(c);for (i=0;i<l;i++)s[l-i-1]=c[i]-'0';for (i=0;i<l;i++){k=s[i]*m+add;if (k>=10) {s[i]=k%10;add=k/10;flag=1;} else{s[i]=k;flag=0;add=0;}}if (flag) {l=i+1;s[i]=add;} else l=i;for (i=0;i<l;i++)t[l-1-i]=s[i]+'0'; t[l]='\0';}3.精度计算——乘法(大数乘大数)语法:mult(char a[],char b[],char s[]);参数:a[]:被乘数,用字符串表示,位数不限b[]:乘数,用字符串表示,位数不限t[]:结果,用字符串表示返回值:null注意:空间复杂度为o(n^2)需要string.h源程序:void mult(char a[],char b[],char s[]){我也可以做到..6 / 78int i,j,k=0,alen,blen,sum=0,res[65][65]={0},flag=0; char result[65];alen=strlen(a);blen=strlen(b);for (i=0;i<alen;i++)for (j=0;j<blen;j++) res[i][j]=(a[i]-'0')*(b[j]-'0');for (i=alen-1;i>=0;i--){for (j=blen-1;j>=0;j--) sum=sum+res[i+blen-j-1][j]; result[k]=sum%10;k=k+1;sum=sum/10;}for (i=blen-2;i>=0;i--){for (j=0;j<=i;j++) sum=sum+res[i-j][j];result[k]=sum%10;k=k+1;sum=sum/10;}if (sum!=0) {result[k]=sum;k=k+1;}for (i=0;i<k;i++) result[i]+='0';for (i=k-1;i>=0;i--) s[i]=result[k-1-i];s[k]='\0';while(1){if (strlen(s)!=strlen(a)&&s[0]=='0')strcpy(s,s+1);elsebreak;}}4.精度计算——加法语法:add(char a[],char b[],char s[]);参数:a[]:被加数,用字符串表示,位数不限b[]:加数,用字符串表示,位数不限s[]:结果,用字符串表示返回值:null注意:空间复杂度为o(n^2)我也可以做到..7 / 78需要string.hDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD源程序:void add(char a[],char b[],char back[]){int i,j,k,up,x,y,z,l;char *c;if (strlen(a)>strlen(b)) l=strlen(a)+2; else l=strlen(b)+2; c=(char *) malloc(l*sizeof(char));i=strlen(a)-1;j=strlen(b)-1;k=0;up=0;while(i>=0||j>=0){if(i<0) x='0'; else x=a[i];if(j<0) y='0'; else y=b[j];z=x-'0'+y-'0';if(up) z+=1;if(z>9) {up=1;z%=10;} else up=0;c[k++]=z+'0';i--;j--;}if(up) c[k++]='1';i=0;c[k]='\0';for(k-=1;k>=0;k--)back[i++]=c[k];back[i]='\0';}5.精度计算——减法语法:sub(char s1[],char s2[],char t[]);参数:s1[]:被减数,用字符串表示,位数不限s2[]:减数,用字符串表示,位数不限t[]:结果,用字符串表示返回值:null注意:默认s1>=s2,程序未处理负数情况需要string.h源程序:void sub(char s1[],char s2[],char t[])我也可以做到..8 / 78{int i,l2,l1,k;l2=strlen(s2);l1=strlen(s1);t[l1]='\0';l1--;for (i=l2-1;i>=0;i--,l1--){if (s1[l1]-s2[i]>=0)t[l1]=s1[l1]-s2[i]+'0';else{t[l1]=10+s1[l1]-s2[i]+'0';s1[l1-1]=s1[l1-1]-1;}}k=l1;while(s1[k]<0) {s1[k]+=10;s1[k-1]-=1;k--;}while(l1>=0) {t[l1]=s1[l1];l1--;}loop:if (t[0]=='0') {l1=strlen(s1);for (i=0;i<l1-1;i++) t[i]=t[i+1];t[l1-1]='\0';goto loop;}if (strlen(t)==0) {t[0]='0';t[1]='\0';}}6.任意进制转换语法:conversion(char s1[],char s2[],char t[]);参数:s[]:转换前的数字s2[]:转换后的数字d1:原进制数d2:需要转换到的进制数返回值:null注意:高于9 的位数用大写'A'~'Z'表示,2~16 位进制通过验证源程序:void conversion(char s[],char s2[],long d1,long d2){我也可以做到..9 / 78long i,j,t,num;char c;num=0;for (i=0;s[i]!='\0';i++){if (s[i]<='9'&&s[i]>='0') t=s[i]-'0'; else t=s[i]-'A'+10;num=num*d1+t;}i=0;while(1){t=num%d2;if (t<=9) s2[i]=t+'0'; else s2[i]=t+'A'-10;num/=d2;if (num==0) break;i++;}for (j=0;j<i/2;j++){c=s2[j];s2[j]=s[i-j];s2[i-j]=c;}s2[i+1]='\0';}7.最大公约数、最小公倍数语法:resulet=hcf(int a,int b)、result=lcd(int a,int b)参数:a:int a,求最大公约数或最小公倍数b:int b,求最大公约数或最小公倍数返回值:返回最大公约数(hcf)或最小公倍数(lcd)注意:lcd 需要连同hcf 使用源程序:int hcf(int a,int b){int r=0;while(b!=0){r=a%b;a=b;DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDb=r;}return(a);我也可以做到..10 / 78}lcd(int u,int v,int h){return(u*v/h);}8.组合序列语法:m_of_n(int m, int n1, int m1, int* a, int head)参数:m:组合数C 的上参数n1:组合数C 的下参数m1:组合数C 的上参数,递归之用*a:1~n 的整数序列数组head:头指针返回值:null注意:*a 需要自行产生初始调用时,m=m1、head=0调用例子:求C(m,n)序列:m_of_n(m,n,m,a,0);源程序:void m_of_n(int m, int n1, int m1, int* a, int head){int i,t;if(m1<0 || m1>n1) return;if(m1==n1){return;}m_of_n(m,n1-1,m1,a,head); // 递归调用t=a[head];a[head]=a[n1-1+head];a[n1-1+head]=t;m_of_n(m,n1-1,m1-1,a,head+1); // 再次递归调用t=a[head];a[head]=a[n1-1+head];a[n1-1+head]=t;}9.快速傅立叶变换(FFT)语法:kkfft(double pr[],double pi[],int n,int k,double fr[],double fi[],intl,int il);参数:我也可以做到..11 / 78pr[n]:输入的实部pi[n]:数入的虚部n,k:满足n=2^kfr[n]:输出的实部fi[n]:输出的虚部l:逻辑开关,0 FFT,1 ifFTil:逻辑开关,0 输出按实部/虚部;1 输出按模/幅角返回值:null注意:需要math.h源程序:void kkfft(pr,pi,n,k,fr,fi,l,il)int n,k,l,il;double pr[],pi[],fr[],fi[];{int it,m,is,i,j,nv,l0; double p,q,s,vr,vi,poddr,poddi;for (it=0; it<=n-1; it++){m=it; is=0;for (i=0; i<=k-1; i++){j=m/2; is=2*is+(m-2*j); m=j;}fr[it]=pr[is]; fi[it]=pi[is];}pr[0]=1.0; pi[0]=0.0;p=6.283185306/(1.0*n);pr[1]=cos(p); pi[1]=-sin(p);if (l!=0) pi[1]=-pi[1];for (i=2; i<=n-1; i++){p=pr[i-1]*pr[1];q=pi[i-1]*pi[1];s=(pr[i-1]+pi[i-1])*(pr[1]+pi[1]);pr[i]=p-q; pi[i]=s-p-q;}for (it=0; it<=n-2; it=it+2){vr=fr[it]; vi=fi[it];fr[it]=vr+fr[it+1]; fi[it]=vi+fi[it+1];fr[it+1]=vr-fr[it+1]; fi[it+1]=vi-fi[it+1]; }m=n/2; nv=2;for (l0=k-2; l0>=0; l0--){我也可以做到..12 / 78m=m/2; nv=2*nv;for (it=0; it<=(m-1)*nv; it=it+nv)for (j=0; j<=(nv/2)-1; j++){p=pr[m*j]*fr[it+j+nv/2];q=pi[m*j]*fi[it+j+nv/2];s=pr[m*j]+pi[m*j];s=s*(fr[it+j+nv/2]+fi[it+j+nv/2]); poddr=p-q; poddi=s-p-q;fr[it+j+nv/2]=fr[it+j]-poddr;fi[it+j+nv/2]=fi[it+j]-poddi;fr[it+j]=fr[it+j]+poddr;fi[it+j]=fi[it+j]+poddi;}}if (l!=0)for (i=0; i<=n-1; i++){fr[i]=fr[i]/(1.0*n);fi[i]=fi[i]/(1.0*n);}if (il!=0)for (i=0; i<=n-1; i++){pr[i]=sqrt(fr[i]*fr[i]+fi[i]*fi[i]);if (fabs(fr[i])<0.000001*fabs(fi[i])) {if ((fi[i]*fr[i])>0) pi[i]=90.0;else pi[i]=-90.0;}DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDelsepi[i]=atan(fi[i]/fr[i])*360.0/6.283185306;}return;}10.Ronberg 算法计算积分语法:result=integral(double a,double b);参数:a:积分上限b:积分下限我也可以做到..13 / 78function f:积分函数返回值:f 在(a,b)之间的积分值注意:function f(x)需要自行修改,程序中用的是sina(x)/x 需要math.h默认精度要求是1e-5源程序:double f(double x){return sin(x)/x; //在这里插入被积函数}double integral(double a,double b){double h=b-a;double t1=(1+f(b))*h/2.0;int k=1;double r1,r2,s1,s2,c1,c2,t2;loop:double s=0.0;double x=a+h/2.0;while(x<b){s+=f(x);x+=h;}t2=(t1+h*s)/2.0;s2=t2+(t2-t1)/3.0;if(k==1){k++;h/=2.0;t1=t2;s1=s2;goto loop;}c2=s2+(s2-s1)/15.0;if(k==2){c1=c2;k++;h/=2.0;t1=t2;s1=s2;goto loop;}r2=c2+(c2-c1)/63.0;if(k==3){r1=r2; c1=c2;k++;h/=2.0;t1=t2;s1=s2;我也可以做到..14 / 78goto loop;}while(fabs(1-r1/r2)>1e-5){ r1=r2;c1=c2;k++;h/=2.0;t1=t2;s1=s2;goto loop;}return r2;}11.行列式计算语法:result=js(int s[][],int n)参数:s[][]:行列式存储数组n:行列式维数,递归用返回值:行列式值注意:函数中常数N 为行列式维度,需自行定义源程序:int js(s,n)int s[][N],n;{int z,j,k,r,total=0;int b[N][N];/*b[N][N]用于存放,在矩阵s[N][N]中元素s[0]的余子式*/if(n>2){for(z=0;z<n;z++){for(j=0;j<n-1;j++)for(k=0;k<n-1;k++)if(k>=z) b[j][k]=s[j+1][k+1]; elseb[j][k]=s[j+1][k];if(z%2==0) r=s[0][z]*js(b,n-1); /*递归调用*/else r=(-1)*s[0][z]*js(b,n-1);total=total+r;}}else if(n==2)total=s[0][0]*s[1][1]-s[0][1]*s[1][0];return total;我也可以做到..15 / 78}12.求排列组合数语法:result=P(long n,long m); / result=long C(long n,long m);参数:m:排列组合的上系数n:排列组合的下系数返回值:排列组合数注意:符合数学规则:m<=n源程序:long P(long n,long m){long p=1;while(m!=0){p*=n;n--;m--;}return p;}long C(long n,long m){long i,c=1;DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDi=m;while(i!=0){c*=n;n--;i--;}while(m!=0){c/=m;m--;}return c;}13.求某一天星期几语法:result=weekday(int N,int M,int d)参数:N,M,d:年月日,例如:2003,11,4返回值:0:星期天,1 星期一……注意:需要math.h适用于1582 年10 月15 日之后, 因为罗马教皇格里高利十三世在这一天启用新历法.源程序:我也可以做到..16 / 78int weekday(int N,int M,int d){int m,n,c,y,w;m=(M-2)%12;if (M>=3) n=N;else n=N-1;c=n/100;y=n%100;w=(int)(d+floor(13*m/5)+y+floor(y/4)+floor(c/4)-2*c)%7;while(w<0) w+=7;return w;}14.卡特兰(Catalan) 数列原理令h(1)=1,catalan 数满足递归式:h(n)= h(1)*h(n-1) + h(2)*h(n-2) + ... + h(n-1)h(1) (其中n>=2)该递推关系的解为:h(n)=c(2n-2,n-1)/n (n=1,2,3,...)1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440,9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420,24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, …1.括号化问题。
ACM数论模板
目录目录 (1)一.扩展的欧几里德和不定方程的解 (2)二.中国同余定理 (3)三.原根 (5)四.积性函数 (6)五.欧拉函数性质 (7)六.线性求1-max的欧拉函数值 (9)七.求单个欧拉函数,求最小的x(phi(n)%x==0),使得2^x =1(mod n) (10)一.扩展的欧几里德和不定方程的解解不定方程ax + by = n的步骤如下:(1)计算gcd(a, b). 若gcd(a, b)不能整除n,则方程无整数解;否则,在方程的两边同除以gcd(a, b),得到新的不定方程a'x + b'y = n',此时gcd(a', b') = 1(2)求出不定方程a'x + b'y = 1的一组整数解x0, y0,则n'x0,n'y0是方程a'x + b'y = n'的一组整数解。
(3)根据扩展欧几里德定理,可得方程a'x + b'y = n'的所有整数解为:x = n'x0 + b'ty = n'y0 - a't(t为整数)这也就是方程ax + by = n的所有整数解利用扩展的欧几里德算法,计算(a, b)和满足gcd = (a, b) = ax0 + by0的x0和y0,也就是求出了满足a'x0 + b'y0 = 1的一组整数解。
因此可得:x = n/gcd * x0 + b/gcd * ty = n/gcd * y0 - a/gcd * t(t是整数)int extend_Euclid(int a, int b, int &x, int &y){if (b == 0){x = 1;y = 0;return a;}int gcd= extend_Euclid ( b, a % b, x, y );int temp = x;x = y;y = temp - (a / b) * y;return gcd;}二.中国同余定理Poj 2891#include<stdio.h>#include<iostream>using namespace std;__int64 GCD(__int64 i,__int64 j){if(j==0)return i;elsereturn GCD(j,i%j);}__int64 extend_Euclid(__int64 a, __int64 b, __int64 &x, __int64 &y) {if (b == 0){x = 1;y = 0;return a;}__int64 gcd= extend_Euclid ( b, a % b, x, y );__int64 temp = x;x = y;y = temp - (a / b) * y;return gcd;}//只有两个式子的中国同余定理,return z=a*xx+x=b*yy+y;__int64 CRT_2(__int64 a,__int64 x,__int64 b,__int64 y){__int64 xx,yy,gcd;gcd=extend_Euclid(a,b,xx,yy);__int64 c=y-x;while(c<0)c+=a;if(c%gcd!=0)return -1;xx*=c/gcd;yy*=c/gcd;__int64 t=yy/(a/gcd);while(yy-t*(a/gcd)>0)t++;while(yy-(t-1)*(a/gcd)<=0)t--;return (t*(a/gcd)-yy)*b+y;}//chinese remainder theorem//crt[i][0]存的是除数,crt[i][1]存的是余数,0<=i<n,n>1,返回结果,-1表示无解__int64 CRT(__int64 crt[][2],int n){__int64 m=crt[0][0]/GCD(crt[0][0],crt[1][0])*crt[1][0]; //最大公约数__int64 ans=CRT_2(crt[0][0],crt[0][1],crt[1][0],crt[1][1])%m;for(int i=2;i<n&&ans!=-1;i++){ans=CRT_2(m,ans,crt[i][0],crt[i][1]);m*=crt[i][0]/GCD(m,crt[i][0]);ans%=m;}return ans;}int main(void){int n;__int64 a[10000][2];while(scanf("%d",&n)==1){for(int i=0;i<n;i++)scanf("%I64d%I64d",&a[i][0],&a[i][1]);if(n==1)printf("%I64d\n",a[0][1]);elseprintf("%I64d\n",CRT(a,n));}return 0;}三.原根Poj 1284 ans=φ(p-1);//p是素数设h为一整数,n为一正整数,(h,n)=k,适合h^k=1(mod n)的最小正整数k叫做h对n的次数。