2018年广西梧州市中考数学试卷(含答案解析版)

合集下载

初中数学2018年广西梧州市中考数学试卷

初中数学2018年广西梧州市中考数学试卷

2018年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。

)1.(3分)﹣8的相反数是()A.﹣8 B.8 C. D.2.(3分)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学记数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣63.(3分)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2 B.3 C.4 D.64.(3分)已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°5.(3分)下列各式计算正确的是()A.a+2a=3a B.x4•x3=x12C.()﹣1=﹣D.(x2)3=x56.(3分)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)7.(3分)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°8.(3分)一组数据:3,4,5,x,8的众数是5,则这组数据的方差是()A.2 B.2.4 C.2.8 D.39.(3分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.B.C.D.10.(3分)九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人11.(3分)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2 B.4:3 C.6:5 D.8:512.(3分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999 B.10000 C.10001 D.10002二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)式子在实数范围内有意义,则x的取值范围是.14.(3分)如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE 的长度是cm.15.(3分)已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是.16.(3分)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB 交于点C,则∠ACO= 度.17.(3分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.18.(3分)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.三、解答题(本大题共8小题,满分66分)19.(6分)计算:﹣25÷23+|﹣1|×5﹣(π﹣3.14)020.(6分)解方程:2x2﹣4x﹣30=0.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.(8分)解不等式组,并求出它的整数解,再化简代数式•22.(﹣),从上述整数解中选择一个合适的数,求此代数式的值.23.(8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)24.(10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?25.(10分)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.26.(12分)如图,抛物线y=ax2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.(1)求此抛物线的解析式;(2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为=,求出点E的坐标;(3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.2018年广西梧州市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。

2018年广西梧州市中考数学试卷

2018年广西梧州市中考数学试卷

2018年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。

)1. 的相反数是()A.B.C.D.2. 研究发现,银原子的半径约是微米,把这个数字用科学记数法表示应是()A. B.C. D.3. 如图,已知是的平分线,于点,于点,,则的长度是()A. B. C. D.4. 已知,则它的余角是()A. B. C. D.5. 下列各式计算正确的是()A.B.C.D.6. 如图,在正方形中,、、三点的坐标分别是、、,将正方形向右平移个单位,则平移后点的坐标是()A. B.C. D.7. 如图,在中,,,与关于直线对称,,连接,则的度数是()A. B. C. D.8. 一组数据:,,,,的众数是,则这组数据的方差是()A. B. C. D.9. 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各个,这些球除颜色外无其他差别,从箱子中随机摸出个球,然后放回箱子中,轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A. B. C. D.10. 九年级一班同学根据兴趣分成、、、、五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则小组的人数是()A.人B.人C.人D.人11. 如图,,,则的值是()A. B. C. D.12. 按一定规律排列的一列数依次为:,,,,,,…,按此规律排列下去,则这列数中的第个数是()A. B.C. D.二、填空题(本大题共6小题,每小题3分,共18分)13. 式子在实数范围内有意义,则的取值范围是________.14. 如图,已知在中,、分别是、的中点,,则的长度是________.15. 已知直线与反比例函数的图象一个交点坐标为,则它们另一个交点的坐标是________.16. 如图,已知在中,半径,弦,,与交于点,则________度.17. 如图,圆锥侧面展开得到扇形,此扇形半径,圆心角,则此圆锥高的长度是________.18. 如图,点为与的公共点,,连接、,过点作于点,延长交于点.若,,,则的值为________.三、解答题(本大题共8小题,满分66分)19. 计算:20. 解方程:.21. 如图,在中,对角线,相交于点,过点的一条直线分别交,于点,.求证:.22. 解不等式组,并求出它的整数解,再化简代数式,从上述整数解中选择一个合适的数,求此代数式的值.23. 随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上点处测得瀑布顶端点的仰角是,测得瀑布底端点的俯角是,与水平面垂直.又在瀑布下的水平面测得,(注:、、三点在同一直线上,于点).斜坡,坡角.求瀑布的高度.(参考数据:,,,,,,)24. 我市从年月日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入万元购进、两种型号的电动自行车共辆,其中每辆型电动自行车比每辆型电动自行车多元.用万元购进的型电动自行车与用万元购进的型电动自行车数量一样.(1)求、两种型号电动自行车的进货单价;(2)若型电动自行车每辆售价为元,型电动自行车每辆售价为元,设该商店计划购进型电动自行车辆,两种型号的电动自行车全部销售后可获利润元.写出与之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?25. 如图,是的直径,是的切线,切点为,是上(除点外)的任意一点,连接交于点,过点作交的延长线于点,连接并延长交于点.(1)求证:;(2)若,求的长度.26. 如图,抛物线与轴交于、两点,是轴上一点,连接,延长交抛物线于点.(1)求此抛物线的解析式;(2)若点在第一象限,过点作轴于点,与的面积比为,求出点的坐标;(3)若是轴上的动点,过点作与轴平行的直线交抛物线于、两点,是否存在点,使?若存在,请求出点的坐标;若不存在,请说明理由.参考答案与试题解析2018年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。

【精品】广西梧州市2018年中考数学试题含解析答案

【精品】广西梧州市2018年中考数学试题含解析答案

2018 年广西梧州市中考数学试卷一、选择题(本大题共12 小题,每小题3 分,共36 分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3 分,选错、不选或多选均得零分。

)1.(3 分)﹣8 的相反数是()A.﹣8 B.8 C.18D.18【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8 的相反数是﹣(﹣8)=8.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(3 分)研究发现,银原子的半径约是0.00015 微米,把0.00015 这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6【分析】绝对值小于1 的正数也可以利用科学计数法表示,一般形式为a×10﹣n,与较大数的科学计数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解:0.00015=1.5×10﹣4,故选:A.【点评】本题考查用科学计数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.3.(3 分)如图,已知BG 是∠ABC 的平分线,DE⊥AB 于点E,DF⊥BC 于点F,DE=6,则DF 的长度是()A.2 B.3 C.4 D.6【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG 是∠ABC 的平分线,DE ⊥AB ,DF ⊥BC , ∴DE=DF=6, 故选:D .【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到 角的两边的距离相等.4.(3 分)已知∠A=55°,则它的余角是( )A .25°B .35°C .45°D .55°【分析】由余角定义得∠A 的余角为 90°减去 55°即可. 【解答】解:∵∠A=55°,∴它的余角是 90°﹣∠A=90°﹣55°=35°, 故选:B . 【点评】本题考查了角的余角,由其定义很容易解得.5.(3 分)下列各式计算正确的是( )A .a +2a=3aB .x 4•x 3=x 12C .(1x)﹣1=﹣1xD .(x 2)3=x 5【分析】根据同底数幂的乘法、幂的乘方、负指数幂和合并同类项法则逐个判断 即可. 【解答】解:A 、a +2a=3a ,正确; B 、x 4•x 3=x 7,错误; C 、(1x)-1=x ,错误; D 、(x 2)3=x 6,错误; 故选:A .【点评】此题考查同底数幂的乘法、幂的乘方、负指数幂和合并同类项,关键是 根据法则计算.6.(3 分)如图,在正方形 ABCD 中,A 、B 、C 三点的坐标分别是(﹣1,2)、(﹣ 1,0)、(﹣3,0),将正方形 ABCD 向右平移 3 个单位,则平移后点 D 的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)【分析】首先根据正方形的性质求出D 点坐标,再将D 点横坐标加上3,纵坐标不变即可.【解答】解:∵在正方形ABCD 中,A、B、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D(﹣3,2),∴将正方形ABCD 向右平移3 个单位,则平移后点D 的坐标是(0,2),故选:B.【点评】本题考查了正方形的性质,坐标与图形变化﹣平移,是基础题,比较简单.7.(3 分)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30° B.35°C.40°D.45°【分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案.【解答】解:连接BB′∵△AB′C′与△ABC 关于直线EF 对称,∴△BAC≌△B′AC′,∵AB=AC,∠C=70°,∴∠ABC=∠AC′B′=∠AB′C′=70°,∴∠BAC=∠B′AC′=40°,∵∠CAF=10°,∴∠C′AF=10°,∴∠BAB′=40°+10°+10°+40°=100°,∴∠ABB′=∠AB′B=40°.故选:C.【点评】此题主要考查了轴对称图形的性质以及等腰三角形的性质,正确得出∠BAC 度数是解题关键.8.(3 分)一组数据:3,4,5,x,8 的众数是5,则这组数据的方差是()A.2 B.2.4 C.2.8 D.3【分析】根据数据的众数确定出x 的值,进而求出方差即可.【解答】解:∵一组数据3,4,5,x,8 的众数是5,∴x=5,∴这组数据的平均数为15×(3+4+5+5+8)=5,则这组数据的方差为15×[(3﹣5)2+(4﹣5)2+2×(5﹣4)2+(8﹣5)2]=2.8.故选:C.【点评】此题考查了方差,众数,熟练掌握各自的定义是解本题的关键.9.(3 分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1 个,这些球除颜色外无其他差别,从箱子中随机摸出1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.127B.13C.19D.29【分析】画出树状图,利用概率公式计算即可.【解答】解:如图,一共有27 种可能,三人摸到球的颜色都不相同有6 种可能,∴P(三人摸到球的颜色都不相同)=627=29.故选:D.【点评】本题考查列表法与树状图,解题的关键是学会利用树状图解决概率问题.10.(3 分)九年级一班同学根据兴趣分成A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D 小组的人数是()A.10 人B.l1 人C.12 人D.15 人【分析】从条形统计图可看出A 的具体人数,从扇形图找到所占的百分比,可求出总人数.然后结合D 所占的百分比求得D 小组的人数.【解答】解:总人数=510%=50(人) D 小组的人数=50×86.4360=12(人).故选:C.【点评】本题考查了条形统计图和扇形统计图,从上面可得到具体的值,以及用样本估计总体和扇形统计图,扇形统计图表示部分占整体的百分比.11.(3 分)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC 的值是()A.3:2 B.4:3 C.6:5 D.8:5【分析】过点D 作DF∥CA 交BE 于F,如图,利用平行线分线段成比例定理,由DF∥CE 得到DFCE=BDDC=25,则CE=52DF,由DF∥AE 得到DFAE=DGAG=14,则AE=4DF,然后计算AECE的值.【解答】解:过点D 作DF∥CA 交BE 于F,如图,∵DF∥CE,∴DFCE=BDDC,而BD:DC=2:3,∴DFCE=25,则CE=52DF,∵DF∥AE,∴DFAE=DGAG,∵AG:GD=4:1,∴DFAE=14,则AE=4DF,∴AECE=48552DFDF=故选:D.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例12.(3 分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100 个数是()A.9999 B.10000 C.10001 D.10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可.【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,25=62﹣1,…,∴第100 个数是1002﹣1=9999,故选:A.【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.二、填空题(本大题共6 小题,每小题3 分,共18 分)13.(3在实数范围内有意义,则x 的取值范围是 x≥3 .【分析】直接利用二次根式的有意义的条件得出x 的取值范围,进而得出答案.【解答】解:由题意可得:x﹣3≥0,解得:x≥3.故答案为:x≥3.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.14.(3 分)如图,已知在△ABC 中,D、E 分别是AB、AC 的中点,BC=6cm,则DE 的长度是 3 c m.【分析】根据三角形中位线定理解答.【解答】解:∵D、E 分别是AB、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=3cm,故答案为:3.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.(3 分)已知直线y=ax(a≠0)与反比例函数y=kx(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此进行解答.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.(3 分)如图,已知在⊙O 中,半径,弦AB=2,∠BAD=18°,OD 与AB 交于点C,则∠ACO= 81 度.【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.【解答】解:∵OA=2,OB=2,AB=2,2+OB2=AB2,OA=OB,∴OA∴△AOB 是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(3 分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是42.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴1206180lπ⨯==2πr,∴r=2,即:OA=2,在Rt△AOC 中,OA=2,AC=6,根据勾股定理得,,故答案为:.【点评】此题主要考查了扇形的弧长公式,勾股定理,求出OA 是解本题的关键.18.(3 分)如图,点C 为Rt△ACB 与Rt△DCE 的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C 作CF⊥AD 于点F,延长FC 交BE 于点G.若AC=BC=25,CE=15,DC=20,则EGBG的值为34.【分析】过 E 作EH⊥GF 于H,过 B 作BP⊥GF 于P,依据△EHG∽△BPG,可得EGBG=EHBP,再根据△DCF∽△CEH,△ACF∽△CBP,即可得到EH=34CF,BP=CF,进而得出EGBG=34.【解答】解:如图,过E 作EH⊥GF 于H,过B 作BP⊥GF 于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴EGBG=EHBP,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴,1EH CE BP BCCF DC CF CA=== ∴EH= 34CF ,BP=CF ,∴EH BP =34, ∴EG BG =34, 故答案为:34.【点评】本题主要考查了相似三角形的判定与性质,解决问题的关键是作辅助线 构造相似三角形,利用相似三角形的对应边成比例进行推算.三、解答题(本大题共 8 小题,满分 66 分,)19.(6 25÷23+|﹣1|×5﹣(π﹣3.14)0【分析】依据算术平方根的定义、有理数的乘方法则、绝对值的性质、有理数的 乘法法则、零指数幂的性质进行计算,最后,再进行加减计算即可.【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3. 【点评】本题主要考查的是实数的运算,熟练掌握运算法则是解题的关键.20.(6 分)解方程:2x 2﹣4x ﹣30=0. 【分析】利用因式分解法解方程即可;【解答】解:∵2x 2﹣4x ﹣30=0, ∴x 2﹣2x ﹣15=0, ∴(x ﹣5)(x +3)=0, ∴x 1=5,x 2=﹣3.【点评】本题考查一元二次方程的解法﹣因式分解法,解题的关键是熟练掌握解 一元二次方程的解法,属于中考基础题.21.(6 分)如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .【分析】利用平行四边形的性质得出 AO=CO ,AD ∥BC ,进而得出∠EAC=∠FCO , 再利用 ASA 求出△AOE ≌△COF ,即可得出答案. 【解答】证明:∵▱ABCD 的对角线 AC ,BD 交于点 O ,∴AO=CO ,AD ∥BC ,∴∠EAC=∠FCO , 在△AOE 和△COF 中EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴AE=CF .【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练 掌握全等三角形的判定方法是解题关键.22 8 分)解不等式组36451102x x x x -≤⎧⎪++⎨⎪⎩p ,并求出它的整数解,再化简代数式2321x x x +-+• (3x x +﹣239x x --),从上述整数解中选择一个合适的数,求此代数式的值. 【分析】先解不等式组求得 x 的整数解,再根据分式混合运算顺序和运算法则化 简原式,最后选取使分式有意义的 x 的值代入计算可得.【解答】解:解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3,原式=23(1)x x +-•[23(3)(3)x x x x --+-3(3)(3)x x x -+-] =23(1)x x +-•(1)(3)(3)(3)x x x x --+- =11x -∵x≠±3、1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.23.(8 分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D 点处测得瀑布顶端A 点的仰角是30°,测得瀑布底端 B 点的俯角是10°,AB 与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB 的高度.1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,在Rt△CMD 中,通过解直角三角形可求出CM 的长度,进而可得出MF、DN 的长度,再在Rt△BDN、Rt△ADN 中,利用解直角三角形求出BN、AN 的长度,结合AB=AN+BN 即可求出瀑布AB 的高度.【解答】解:过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,如图所示.在Rt△CMD 中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•si n40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN 中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN 中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB 的高度约为45.4 米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN 的长度是解题的关键.24.(10 分)我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A、B 两种型号电动自行车的进货单价分别为x 元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A 型两人+B 型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A、B 两种型号电动自行车的进货单价分别为x 元(x+500)元.由题意:50000x=60000+500x,解得x=2500,经检验:x=2500 是分式方程的解.答:A、B 两种型号电动自行车的进货单价分别为2500 元3000 元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20 时,y 有最大值,最大值为11000 元.【点评】本题考查一次函数的应用、分式方程的应用等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,属于中考常考题型.25.(10 分)如图,AB 是⊙M 的直径,BC 是⊙M 的切线,切点为B,C 是BC 上(除B 点外)的任意一点,连接CM 交⊙M 于点G,过点C 作DC⊥BC 交BG 的延长线于点D,连接AG 并延长交BC 于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD 的长度.【分析】(1)根据直径所对圆周角和切线性质,证明三角形相似;(2)利用勾股定理和面积法得到AG、GE,根据三角形相似求得GH,得到MB、GH 和CD 的数量关系,求得CD.【解答】(1)证明:∵BC 为⊙M 切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB 是⊙M 的直径∴∠AGB=90°即:BG⊥AE∴∠CBD=∠A∴△ABE∽△BCD(2)解:过点 G 作 GH ⊥BC 于 H∵MB=BE=1∴AB=2∴=由(1)根据面积法 AB •BE=B G •AE∴由勾股定理:∵GH ∥AB ∴GH GE AB AE =∴2GH =∴GH=25 又∵GH ∥ABHC GH BC MB =① 同理:BH GH BC DC=② ①+②,得HC BH GH BC MB +=+GH DC∴+GH MB =1GH DC∴CD=23【点评】本题是几何综合题,综合考察了圆周角定理、切线性质和三角形相似.解 答时,注意根据条件构造相似三角形.26.(12 分)如图,抛物线 y=a x 2+bx ﹣92与 x 轴交于 A (1,0)、B (6,0)两点, D 是 y 轴上一点,连接 DA ,延长 DA 交抛物线于点 E .(1)求此抛物线的解析式;(2)若 E 点在第一象限,过点 E 作 EF ⊥x 轴于点 F ,△ADO 与△AEF 的面积比为ADO AEF S S ∆∆=19,求出点 E 的坐标;(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M 、N 两点, 是否存在点 D ,使DA 2=DM •DN ?若存在,请求出点 D 的坐标;若不存在,请说 明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得 AF 的长,根据自变量与函数值的对应 关系,可得答案;(3)根据两点间距离,可得 AD 的长,根据根与系数的关系,可得 x 1•x 2,根据DA 2=DM •DN ,可得关于 n 的方程,根据解方程,可得答案.【解答】解:(1)将 A (1,0),B (6,0)代入函数解析式,得902936602a b a b ⎧+-=⎪⎪⎨⎪+-=⎪⎩ 解得3=421=4a b ⎧-⎪⎪⎨⎪-⎪⎩,抛物线的解析式为 y=﹣34x 2+214x ﹣92; (2)∵EF ⊥x 轴于点 F ,∴∠AFE=90°.∵∠AOD=∠AFE=90°,∠OAD=∠FAE ,∴△AOD ∽△AFE . ∵ADO AEF S S ∆∆=AO AF =19∵AO=1,∴AF=3,OF=3+1=4,当 x=4 时,y=﹣34×42+214×4﹣92=92, ∴E 点坐标是(4,92),(3)存在点 D ,使 DA 2=DM •DN ,理由如下:设 D 点坐标为(0,n ),AD 2=1+n 2,当 y=n 时,﹣34x 2+214x ﹣92=n 化简,得﹣3x 2+21x ﹣18﹣4n=0, 设方程的两根为 x 1,x 2, x 1•x 2=1843n + DM=x 1,DN=x 2,DA 2=DM •DN ,即 1+n 2=1843n +, 化简,得3n 2﹣4n ﹣15=0, 解得 n 1=53,n 2=3, ∴D 点坐标为(0,﹣53)或(0,3).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的 关键是利用相似三角形的判定与性质得出 AF 的长;解(3)的关键是利用根与系 数的关系得出 x 1•x 2,又利用了解方程.。

2018广西中考数学试卷及答案解析

2018广西中考数学试卷及答案解析

2018广西中考数学试卷及答案解析2018年广西的中考试卷大家都做了吗?数学试卷难吗?想不想要校对数学试卷的答案呢?下面由店铺为大家提供关于2018广西中考数学试卷及答案解析,希望对大家有帮助!2018广西中考数学试卷一、选择题本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是( )A.7B.﹣7C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是( )A.2,3B.4,2C.3,2D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是( )A. B. C. D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是( )A. B. C. D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是( )A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B .2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是( )A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( )A. B. C. D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)= = ,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M 是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=2(x﹣1)2+1D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )A.4B.3C.2D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′ B′=AB=4,∴A′P=PB′,∴PC= A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M 是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2= MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是( )A.2B.3C.4D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积= x(2﹣x)=﹣ x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣ = ,故⑤正确;综上所述,正确结论的个数是5个,故选:D.2018广西中考数学试卷二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a |<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE= ∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′= = = .故答案为 .17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2 .(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD= = π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)= ﹣﹣( π﹣×2×2 )= π﹣π﹣π+2= π+2 .故答案为π+2 .18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y= (x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9.【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y= 得:﹣x+6= ,x2﹣6x +k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y= 的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.2018广西中考数学试卷三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+( +π)0﹣(﹣ )﹣2﹣2cos60°;(2)先化简,在求值:( ﹣ )+ ,其中a=﹣2+ .【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2× =4﹣4﹣1=﹣1(2)当a=﹣2+原式= +===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作 OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y= 的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y= 得k=6,则反比例函数的解析式是y= ;(2)根据题意得2x﹣4= ,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时) 频数(人) 频率1≤x<2 18 0.122≤x<3 a m3≤x<4 45 0.34≤x<5 36 n5≤x<6 21 0.14合计 b 1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC= ,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,t an∠DAC= ,得到DF=2 ,根据勾股定理得到AD= =2 ,求得AE= ,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC= ,∴AF=4,tan∠DAC= = ,∴DF=2 ,∴AD= =2 ,∴AE= ,在Rt△PAE中,tan∠1= = ,∴PE= ,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣ )2+( )2,∴R= ,即⊙O的半径为 .25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a 的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD= ×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x= ,∴E( ,0),∴BE=3﹣ =∴S△BCD=S△BEC+S△BED= × ×(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣ (舍去)或a= ,此时抛物线解析式为y= x2﹣2 x+ ;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y= x2﹣2 x+ .26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC 边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x= ,推出DN= = ,由△BDN∽△BAM,可得 = ,由此求出AM,由△ADM∽△APE,可得= ,由此求出AE= ,可得EC=AC﹣AE=4﹣= 由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB= =2 ,∵AD=CD=2,∴BD= =2 ,由翻折可知,BP=BA=2 .②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x= ,∵DB=DA,DN⊥AB,∴BN=AN= ,在Rt△BDN中,DN= = ,由△BDN∽△BAM,可得 = ,∴ = ,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得 = ,∴ = ,∴AE= ,∴EC=AC﹣AE=4﹣ = ,易证四边形PECH是矩形,∴PH=EC= .。

广西梧州市2018年中考数学试题含解析答案含答案

广西梧州市2018年中考数学试题含解析答案含答案

2018年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。

)1.(3分)﹣8的相反数是()A.﹣8B.8C.D.【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(3分)研究发现,银原子的半径约是0.00015微米,把0.00015这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6【分析】绝对值小于1的正数也可以利用科学计数法表示,一般形式为a×10﹣n,与较大数的科学计数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00015=1.5×10﹣4,故选:A.【点评】本题考查用科学计数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,已知BG是∠ABC的平分线,DE⊥AB于点E,DF⊥BC于点F,DE=6,则DF的长度是()A.2B.3C.4D.6【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG是∠ABC的平分线,DE⊥AB,DF⊥BC,∴DE=DF=6,故选:D.【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.4.(3分)已知∠A=55°,则它的余角是()A.25°B.35°C.45°D.55°【分析】由余角定义得∠A的余角为90°减去55°即可.【解答】解:∵∠A=55°,∴它的余角是90°﹣∠A=90°﹣55°=35°,故选:B.【点评】本题考查了角的余角,由其定义很容易解得.5.(3分)下列各式计算正确的是()A.a+2a=3a B.x4•x3=x12C.()﹣1=﹣D.(x2)3=x5【分析】根据同底数幂的乘法、幂的乘方、负指数幂和合并同类项法则逐个判断即可.4•x3=x7,错【解答】解:A、a+2a=3a,正确;B、x误;C、()-1=x,错误;D、(x2)3=x6,错误;故选:A.【点评】此题考查同底数幂的乘法、幂的乘方、负指数幂和合并同类项,关键是根据法则计算.6.(3分)如图,在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)【分析】首先根据正方形的性质求出D点坐标,再将D点横坐标加上3,纵坐标不变即可.【解答】解:∵在正方形ABCD中,A、B、C三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D(﹣3,2),∴将正方形ABCD向右平移3个单位,则平移后点D的坐标是(0,2),故选:B.【点评】本题考查了正方形的性质,坐标与图形变化﹣平移,是基础题,比较简单.7.(3分)如图,在△ABC中,AB=AC,∠C=70°,△AB′C′与△ABC关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30°B.35°C.40°D.45°【分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案.【解答】解:连接BB′∵△AB′C′与△ABC关于直线EF对称,∴△BAC≌△B′AC′,∵AB=AC,∠C=70°,∴∠ABC=∠AC′B′=∠AB′C′=70°,∴∠BAC=∠B′AC′=40°,∵∠CAF=10°,∴∠C′AF=10°,∴∠BAB′=40°+10°+10°+40°=100°,∴∠ABB′=∠AB′B=40°.故选:C.【点评】此题主要考查了轴对称图形的性质以及等腰三角形的性质,正确得出∠BAC度数是解题关键.8.(3分)一组数据:3,4,5,x,8的众数是5,则这组数据的方差是()A.2B.2.4C.2.8D.3【分析】根据数据的众数确定出x的值,进而求出方差即可.【解答】解:∵一组数据3,4,5,x,8的众数是5,∴x=5,2+(4﹣5)2+2×(5∴这组数据的平均数为×(3+4+5+5+8)=5,则这组数据的方差为×[(3﹣5)2+(8﹣5)2]=2.8.故选:C.﹣4)【点评】此题考查了方差,众数,熟练掌握各自的定义是解本题的关键.9.(3分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.B.C.D.【分析】画出树状图,利用概率公式计算即可.【解答】解:如图,一共有27种可能,三人摸到球的颜色都不相同有6种可能,∴P(三人摸到球的颜色都不相同)==.故选:D.【点评】本题考查列表法与树状图,解题的关键是学会利用树状图解决概率问题.10.(3分)九年级一班同学根据兴趣分成A、B、C、D、E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.l1人C.12人D.15人【分析】从条形统计图可看出A的具体人数,从扇形图找到所占的百分比,可求出总人数.然后结合D 所占的百分比求得D小组的人数.【解答】解:总人数==50(人)D小组的人数=50×=12(人).故选:C.【点评】本题考查了条形统计图和扇形统计图,从上面可得到具体的值,以及用样本估计总体和扇形统计图,扇形统计图表示部分占整体的百分比.11.(3分)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC的值是()A.3:2B.4:3C.6:5D.8:5【分析】过点D作DF∥CA交BE于F,如图,利用平行线分线段成比例定理,由DF∥CE得到==,则CE=DF,由DF∥AE得到==,则AE=4DF,然后计算的值.【解答】解:过点D作DF∥CA交BE于F,如图,∵DF∥CE,∴=,而BD:DC=2:3,∴=,则CE=DF,∵DF∥AE,∴=,∵AG:GD=4:1,∴=,则AE=4DF,∴=故选:D.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例12.(3分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是()A.9999B.10000C.10001D.10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可.2+1,【解答】解:∵第奇数个数2=110=32+1,26=52+1,…,2﹣1,第偶数个数3=215=42﹣1,25=62﹣1,…,2﹣1=9999,故选:A.∴第100个数是100【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)式子在实数范围内有意义,则x的取值范围是x≥3.【分析】直接利用二次根式的有意义的条件得出x的取值范围,进而得出答案.【解答】解:由题意可得:x﹣3≥0,解得:x≥3.故答案为:x≥3.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.14.(3分)如图,已知在△ABC中,D、E分别是AB、AC的中点,BC=6cm,则DE的长度是3cm.【分析】根据三角形中位线定理解答.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=BC=3cm,故答案为:3.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.(3分)已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此进行解答.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.(3分)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO=81度.【分析】根据勾股定理的逆定理可以判断△AOB的形状,由圆周角定理可以求得∠BOD的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.【解答】解:∵OA=,OB=,AB=2,2+OB2=AB2,OA=OB,∴OA∴△AOB是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(3分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是4.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.【点评】此题主要考查了扇形的弧长公式,勾股定理,求出OA是解本题的关键.18.(3分)如图,点C为Rt△ACB与Rt△DCE的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C作CF⊥AD于点F,延长FC交BE于点G.若AC=BC=25,CE=15,DC=20,则的值为.【分析】过E作EH⊥GF于H,过B作BP⊥GF于P,依据△EHG∽△BPG,可得=,再根据△DCF∽△CEH,△ACF∽△CBP,即可得到EH=CF,BP=CF,进而得出=.【解答】解:如图,过E作EH⊥GF于H,过B作BP⊥GF于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴=,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴∴EH=CF,BP=CF,∴=,∴=,故答案为:.【点评】本题主要考查了相似三角形的判定与性质,解决问题的关键是作辅助线构造相似三角形,利用相似三角形的对应边成比例进行推算.三、解答题(本大题共8小题,满分66分,)19.(6分)计算:﹣25÷23+|﹣1|×5﹣(π﹣3.14)0【分析】依据算术平方根的定义、有理数的乘方法则、绝对值的性质、有理数的乘法法则、零指数幂的性质进行计算,最后,再进行加减计算即可.【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3.【点评】本题主要考查的是实数的运算,熟练掌握运算法则是解题的关键.20.(6分)解方程:2x2﹣4x﹣30=0.【分析】利用因式分解法解方程即可;2﹣4x﹣30=0,【解答】解:∵2x2﹣2x﹣15=0,∴x∴(x﹣5)(x+3)=0,∴x1=5,x2=﹣3.【点评】本题考查一元二次方程的解法﹣因式分解法,解题的关键是熟练掌握解一元二次方程的解法,属于中考基础题.21.(6分)如图,在▱ABCD中,对角线AC,BD相交于点O,过点O的一条直线分别交AD,BC于点E,F.求证:AE=CF.【分析】利用平行四边形的性质得出AO=CO,AD∥BC,进而得出∠EAC=∠FCO,再利用ASA求出△AOE≌△COF,即可得出答案.【解答】证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中∴△AOE≌△COF(ASA),∴AE=CF.【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.228分)解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.【分析】先解不等式组求得x的整数解,再根据分式混合运算顺序和运算法则化简原式,最后选取使分式有意义的x的值代入计算可得.【解答】解:解不等式3x﹣6≤x,得:x≤3,解不等式<,得:x>0,则不等式组的解集为0<x≤3,所以不等式组的整数解为1、2、3,原式=•[]=•=∵x≠±3、1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.23.(8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,在Rt△CMD中,通过解直角三角形可求出CM的长度,进而可得出MF、DN的长度,再在Rt△BDN、Rt△ADN中,利用解直角三角形求出BN、AN的长度,结合AB=AN+BN即可求出瀑布AB的高度.【解答】解:过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,如图所示.在Rt△CMD中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•sin40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB的高度约为45.4米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN的长度是解题的关键.24.(10分)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A、B两种型号电动自行车的进货单价分别为x元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A型两人+B型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A、B两种型号电动自行车的进货单价分别为x元(x+500)元.由题意:=,解得x=2500,经检验:x=2500是分式方程的解.答:A、B两种型号电动自行车的进货单价分别为2500元3000元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20时,y有最大值,最大值为11000元.【点评】本题考查一次函数的应用、分式方程的应用等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,属于中考常考题型.25.(10分)如图,AB是⊙M的直径,BC是⊙M的切线,切点为B,C是BC上(除B点外)的任意一点,连接CM交⊙M于点G,过点C作DC⊥BC交BG的延长线于点D,连接AG并延长交BC于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD的长度.【分析】(1)根据直径所对圆周角和切线性质,证明三角形相似;(2)利用勾股定理和面积法得到AG、GE,根据三角形相似求得GH,得到MB、GH和CD的数量关系,求得CD.【解答】(1)证明:∵BC为⊙M切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB是⊙M的直径∴∠AGB=90°即:BG⊥AE∴∠CBD=∠A∴△ABE∽△BCD(2)解:过点G作GH⊥BC于H∵MB=BE=1∴AB=2∴AE=由(1)根据面积法AB•BE=BG•AE∴BG=由勾股定理:AG=,GE=∵GH∥AB∴∴∴GH=又∵GH∥AB①同理:②①+②,得∴∴CD=【点评】本题是几何综合题,综合考察了圆周角定理、切线性质和三角形相似.解答时,注意根据条件构造相似三角形.26.(12分)如图,抛物线y=a x2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.(1)求此抛物线的解析式;(2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为=,求出点E的坐标;(3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得AF的长,根据自变量与函数值的对应关系,可得答案;(3)根据两点间距离,可得AD的长,根据根与系数的关系,可得x1•x2,根据DA2=DM•DN,可得关于n的方程,根据解方程,可得答案.【解答】解:(1)将A(1,0),B(6,0)代入函数解析式,得解得,2+x﹣;抛物线的解析式为y=﹣x(2)∵EF⊥x轴于点F,∴∠AFE=90°.∵∠AOD=∠AFE=90°,∠OAD=∠FAE,∴△AOD∽△AFE.∵==∵AO=1,∴AF=3,OF=3+1=4,2+×4﹣=,当x=4时,y=﹣×4∴E点坐标是(4,),2=DM•DN,理由如下:(3)存在点D,使DA设D点坐标为(0,n),AD2=1+n2,2+x﹣=n当y=n时,﹣x化简,得2+21x﹣18﹣4n=0,设方程的两根为﹣3xx1,x2,x1•x2=DM=x1,DN=x2,DA2=DM•DN,即1+n2=,化简,得3n2﹣4n﹣15=0,解得n1=,n2=3,∴D点坐标为(0,﹣)或(0,3).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出AF的长;解(3)的关键是利用根与系数的关系得出x1•x2,又利用了解方程.。

最新-2018年广西省中考数学试卷及答案 精品

最新-2018年广西省中考数学试卷及答案 精品

2018年广西普通高中毕业会考试卷数学(全卷满分100分,考试时间120分钟)一、选择题(每小题3分,共36分)1、方程24x =的解的集合是(A )2 (B )2,2- (C ){}2 (D ){}2,2- 2、函数2y x =的单调递增区间是(A )R (B )(,0)-∞ (C )(0,)+∞ (D )(1,1)- 3、计算:324(A )16 (B )8 (C (D )2 4、直线2y x =+的斜率是(A )1 (B )2 (C )30 (D )45 5、若三点(1,1),(2,4),(,9)P A B x --共线,则x = (A )2 (B )2- (C )3- (D )36、3cos()5πα+=-,则cos α=(A )35- (B )35 (C )45- (D )457、函数sin cos y x x =•是(A )奇函数 (B )偶函数(C )非奇非偶函数 (D )既是奇函数又是偶函数8、从5台“长虹”和4台“创维”彩电中,任选2台,其中两种品牌彩电都齐全的不同选法共有(A )9种 (B )10种 (C )20种 (D )36种 9、下列命题中一定正确的是(A )三个点确定一个平面 (B )三条平行直线必共面 (C )三条相交直线必共面 (D )梯形一定是平面图形10、已知2,2,2,x y x y ≤⎧⎪≤⎨⎪+≥⎩目标函数的取值范围是(A )[]2,6 (B )[]2,5 (C )[]3,6 (D )[]3,511、已知实数,,a b c 满足c b a <<,且0ac <,下列不等式中不一定成立.....的是 (A )ab ac > (B )()0c b a -> (C )22cb ab > (D )()0ac a c -<12、已知2:12,:56p x q x x +><-,则p ⌝是q ⌝的(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )既不充分也不必要条件二、填空题(每小题4分,共16分)13、5(1)x +的展开式中,含3x 项的系数是 ▲ 。

最新广西梧州市中考数学试卷(含答案解析版)

2018年广西梧州市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分。

)1. (3分)(2018?梧州)-8的相反数是()A. - 8B. 8C. -D.-2. (3分)(2018?梧州)研究发现,银原子的半径约是0.00015微米,把0.00015 这个数字用科学计数法表示应是()—4 —5 —5 - 6A. 1.5X 10 4B. 1.5X 10 5C. 15X 10 5D. 15X 10 63. (3分)(2018?梧州)如图,已知BG是/ ABC的平分线,DE± AB于点E, DF 丄BC于点F,DE=6,贝U DF的长度是()A. 2B. 3C. 4D. 64. (3分)(2018?梧州)已知/ A=55°,则它的余角是()A. 25,B. 35,C. 45,D. 55,5. (3分)(2018?梧州)下列各式计算正确的是()A. a+2a=3a B x4?x3=x12C.(-)一D. (x2)3=f6. (3分)(2018?梧州)如图,在正方形ABCD中,A、B、C三点的坐标分别是(-1, 2)、(- 1, 0)、(- 3, 0),将正方形ABCD向右平移3个单位,则平移后点D的坐标是()11 -1 (-6, 2) B. (0, 2) C. (2, 0) D. (2, 2) (3 分)(2018?梧州)如图,在△ ABC 中,AB=AC / C=70°, △ AB' 与^ABC 连接BB ,则/ ABB 的度数是( ) (2018?梧州)一组数据:3, 4,5, x , 8的众数是5,则这组数据的 方差是( (2018?吾州)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖 机会:在一个不透明的箱子中装有红、黄、白三种球各 1个,这些球除颜色外无 其他差别,从箱子中随机摸出1个球,然后放回箱子中轮到下一个人摸球, 三人 摸到球的颜色都不相同的概率是( A . 一 B. 一 C. - D . 10. (3分)(2018?梧州)九年级一班同学根据兴趣分成 A 、B 、C 、D 、E 五个小 组,A . A . 2 B. 2.4 C. 2.8 D . 3 9.(3 分) D 「・B -3 7o 8. (3 分)1把各小组人数分布绘制成如图所示的不完整统计图. 则D小组的人数是()A. 10 人B. 11 人C. 12 人D. 15 人11. (3 分)(2018?梧州)如图,AG: GD=4: 1, BD: DC=2 3,则AE: EC的值是()A. 3: 2B. 4: 3C. 6: 5D. 8: 512. (3分)(2018?梧州)按一定规律排列的一列数依次为:2, 3, 10, 15, 26,35,…,按此规律排列下去,则这列数中的第100个数是()A. 9999B. 10000C. 10001D. 10002二、填空题(本大题共6小题,每小题3分,共18分)13. (3分)(2018?梧州)式子在实数范围内有意义,则x的取值范围是_______ .14. (3分)(2018?梧州)如图,已知在厶ABC中,D、E分别是AB AC的中点,BC=6cm贝U DE的长度是_____ cm.15. (3分)(2018?梧州)已知直线y=ax (a^0)与反比例函数yh (k^0)的图象一个交点坐标为(2, 4),则它们另一个交点的坐标是_________ .16. (3分)(2018?梧州)如图,已知在O O中,半径OA二—,弦AB=2, / BAD=18, OD与AB交于点C,则/ ACO= _______ 度.17. (3分)(2018?梧州)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角/ACB=120,则此圆锥高0C 的长度是 __________18. (3分)(2018?吾州)如图,点 C 为Rt A ACB 与Rt A DCE 的公共点,/ ACB= / DCE=90,连接AD BE,过点C 作CF 丄AD 于点F ,延长FC 交BE 于点G .若AC=BC=25 CE=15 DC=20 则一的值为 ___________三、解答题(本大题共8小题,满分66分,)19.(6 分)(2018?吾州)计算: 25-23+| - 1|X 5-( n- 3.14) 0 20. (6 分)(2018?吾州)解方程:2x 2- 4x - 30=0.21. (6分)(2018?梧州)如图,在?ABCD 中,对角线AC, BD 相交于点O ,过点代数式 -------- ?(— --- ----- ))从上述整数解中选择一个合适的数,求此代 数式的值.AE=CF22. (8分)(2018?吾州)解不等式组 ,并求出它的整数解,再化简 BC 于点E, F.求证:23. (8分)(2018?梧州)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚•为开发新的旅游项目,我市对某山区进行调查,发现一瀑布•为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30° 测得瀑布底端B点的俯角是10° AB与水平面垂直•又在瀑布下的水平面测得CG=27m GF=17.6m(注:C G、F三点在同一直线上,CF丄AB于点F).斜坡CD=20m,坡角/ ECD=40.求瀑布AB的高度.(参考数据:一心 1.73, sin40 沁0.64, cos40°~0.77, tan40 °0.84, sin10 °0.17,24. (10分)(2018?梧州)我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样. (1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500 元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.写出y与m之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?25. (10分)(2018?梧州)如图,AB是。

广西壮族自治区梧州市2018年中考数学试题(原卷版)

2018 年广西梧州市中考数学试卷一、选择题(本大题共12 小题,每小题3 分,共36 分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3 分,选错、不选或多选均得零分。

)1. ﹣8 的相反数是()A. ﹣8B. 8C.D.2. 研究发现,银原子的半径约是0.00015 微米,把0.00015 这个数字用科学计数法表示应是()A. 1.5×10﹣4B. 1.5×10﹣5C. 15×10﹣5D. 15×10﹣63. 如图,已知BG 是∠ABC 的平分线,DE⊥AB 于点E,DF⊥BC 于点F,DE=6,则DF 的长度是()学%科%网...学%科%网...A. 2B. 3C. 4D. 64. 已知∠A=55°,则它的余角是()A. 25°B. 35°C. 45°D. 55°5. 下列各式计算正确的是()A. a+2a=3aB. x4•x3=x12C. ()﹣1=﹣D. (x2)3=x56. 如图,在正方形ABCD 中,A、B、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形ABCD 向右平移3 个单位,则平移后点D 的坐标是()A. (﹣6,2)B. (0,2)C. (2,0)D. (2,2)7. 如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A. 30°B. 35°C. 40°D. 45°8. 一组数据:3,4,5,x,8 的众数是5,则这组数据的方差是()A. 2B. 2.4C. 2.8D. 39. 小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1 个,这些球除颜色外无其他差别,从箱子中随机摸出1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A. B. C. D.10. 九年级一班同学根据兴趣分成A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D 小组的人数是()A. 10 人B. l1 人C. 12 人D. 15 人11. 如图,AG:GD=4:1,BD:DC=2:3,则AE:EC 的值是()A. 3:2B. 4:3C. 6:5D. 8:512. 按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100 个数是()A. 9999B. 10000C. 10001D. 10002二、填空题(本大题共6 小题,每小题3 分,共18 分)13. 式子在实数范围内有意义,则x 的取值范围是_______ .14. 如图,已知在△ABC 中,D、E 分别是AB、AC 的中点,BC=6cm,则DE 的长度是_____ cm.15. 已知直线y=ax(a≠0)与反比例函数y=(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是_____.16. 如图,已知在⊙O 中,半径OA=,弦AB=2,∠BAD=18°,OD 与AB 交于点C,则∠ACO=______ 度.17. .如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.18. 如图,点C 为Rt△ACB 与Rt△DCE 的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C 作CF⊥AD 于点F,延长FC 交BE 于点G.若AC=BC=25,CE=15, DC=20,则的值为___________.三、解答题(本大题共8 小题,满分66 分,)19. 计算:﹣25÷23+|﹣1|×5﹣(π﹣3.14)020. 解方程:2x2﹣4x﹣30=0.21. 如图,在▱ABCD 中,对角线AC,BD 相交于点O,过点O 的一条直线分别交AD,BC 于点E,F.求证:AE=CF.22. 解不等式组,并求出它的整数解,再化简代数式•(﹣),从上述整数解中选择一个合适的数,求此代数式的值.23. 随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D 点处测得瀑布顶端A 点的仰角是30°,测得瀑布底端B 点的俯角是10°,AB 与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB 的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)24. 我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?25. 如图,AB 是⊙M 的直径,BC 是⊙M 的切线,切点为B,C 是BC 上(除B 点外)的任意一点,连接CM 交⊙M 于点G,过点C 作DC⊥BC 交BG 的延长线于点D,连接AG 并延长交BC 于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD 的长度.26. 如图,抛物线y=ax2+bx﹣与x 轴交于A(1,0)、B(6,0)两点,D 是y 轴上一点,连接DA,延长DA 交抛物线于点E.(1)求此抛物线的解析式;(2)若E 点在第一象限,过点E 作EF⊥x 轴于点F,△ADO 与△AEF 的面积比为=,求出点E 的坐标;(3)若D 是y 轴上的动点,过D 点作与x 轴平行的直线交抛物线于M、N 两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D 的坐标;若不存在,请说明理由.。

广西自治区梧州市2018年中考数学试题及解析答案

2018 年广西梧州市中考数学试卷一、选择题(本大题共12 小题,每小题3 分,共36 分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3 分,选错、不选或多选均得零分。

)1.(3 分)﹣8 的相反数是()A.﹣8 B.8 C.18D.18【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8 的相反数是﹣(﹣8)=8.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(3 分)研究发现,银原子的半径约是0.00015 微米,把0.00015 这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6【分析】绝对值小于1 的正数也可以利用科学计数法表示,一般形式为a×10﹣n,与较大数的科学计数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解:0.00015=1.5×10﹣4,故选:A.【点评】本题考查用科学计数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.3.(3 分)如图,已知BG 是∠ABC 的平分线,DE⊥AB 于点E,DF⊥BC 于点F,DE=6,则DF 的长度是()A.2 B.3 C.4 D.6【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG 是∠ABC 的平分线,DE ⊥AB ,DF ⊥BC ,∴DE=DF=6, 故选:D .【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到 角的两边的距离相等.4.(3 分)已知∠A=55°,则它的余角是() A .25° B .35° C .45° D .55°【分析】由余角定义得∠A 的余角为 90°减去 55°即可.【解答】解:∵∠A=55°,∴它的余角是 90°﹣∠A=90°﹣55°=35°, 故选:B .【点评】本题考查了角的余角,由其定义很容易解得.5.(3 分)下列各式计算正确的是( )A .a +2a=3aB .x 4•x 3=x 12C .(1x )﹣1=﹣1xD .(x 2)3=x 5【分析】根据同底数幂的乘法、幂的乘方、负指数幂和合并同类项法则逐个判断 即可.【解答】解:A 、a +2a=3a ,正确; B 、x 4•x 3=x 7,错误;C 、(1x)-1=x ,错误; D 、(x 2)3=x 6,错误;故选:A .【点评】此题考查同底数幂的乘法、幂的乘方、负指数幂和合并同类项,关键是 根据法则计算.6.(3 分)如图,在正方形 ABCD 中,A 、B 、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),将正方形 ABCD 向右平移 3 个单位,则平移后点 D 的坐标是( )A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)【分析】首先根据正方形的性质求出D 点坐标,再将D 点横坐标加上3,纵坐标不变即可.【解答】解:∵在正方形ABCD 中,A、B、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D(﹣3,2),∴将正方形ABCD 向右平移3 个单位,则平移后点D 的坐标是(0,2),故选:B.【点评】本题考查了正方形的性质,坐标与图形变化﹣平移,是基础题,比较简单.7.(3 分)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30° B.35°C.40°D.45°【分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案.【解答】解:连接BB′∵△AB′C′与△ABC 关于直线EF 对称,∴△BAC≌△B′AC′,∵AB=AC,∠C=70°,∴∠ABC=∠AC′B′=∠AB′C′=70°,∴∠BAC=∠B′AC′=40°,∵∠CAF=10°,∴∠C′AF=10°,∴∠BAB′=40°+10°+10°+40°=100°,∴∠ABB′=∠AB′B=40°.故选:C.【点评】此题主要考查了轴对称图形的性质以及等腰三角形的性质,正确得出∠BAC 度数是解题关键.8.(3 分)一组数据:3,4,5,x,8 的众数是5,则这组数据的方差是()A.2 B.2.4 C.2.8 D.3【分析】根据数据的众数确定出x 的值,进而求出方差即可.【解答】解:∵一组数据3,4,5,x,8 的众数是5,∴x=5,∴这组数据的平均数为15×(3+4+5+5+8)=5,则这组数据的方差为15×[(3﹣5)2+(4﹣5)2+2×(5﹣4)2+(8﹣5)2]=2.8.故选:C.【点评】此题考查了方差,众数,熟练掌握各自的定义是解本题的关键.9.(3 分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1 个,这些球除颜色外无其他差别,从箱子中随机摸出1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.127B.13C.19D.29【分析】画出树状图,利用概率公式计算即可.【解答】解:如图,一共有27 种可能,三人摸到球的颜色都不相同有6 种可能,∴P(三人摸到球的颜色都不相同)=627=29.故选:D.【点评】本题考查列表法与树状图,解题的关键是学会利用树状图解决概率问题.10.(3 分)九年级一班同学根据兴趣分成A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D 小组的人数是()A.10 人B.l1 人C.12 人D.15 人【分析】从条形统计图可看出A 的具体人数,从扇形图找到所占的百分比,可求出总人数.然后结合D 所占的百分比求得D 小组的人数.【解答】解:总人数=510%=50(人) D 小组的人数=50×86.4360=12(人).故选:C.【点评】本题考查了条形统计图和扇形统计图,从上面可得到具体的值,以及用样本估计总体和扇形统计图,扇形统计图表示部分占整体的百分比.11.(3 分)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC 的值是()A.3:2 B.4:3 C.6:5 D.8:5【分析】过点 D 作DF∥CA 交BE 于F,如图,利用平行线分线段成比例定理,由DF∥CE 得到DF CE =BDDC=25,则CE=52DF,由DF∥AE 得到DFAE=DGAG=14,则AE=4DF,然后计算AECE的值.【解答】解:过点D 作DF∥CA 交BE 于F,如图,∵DF∥CE,∴DFCE=BDDC,而BD:DC=2:3,∴DFCE=25,则CE=52DF,∵DF∥AE,∴DFAE=DGAG,∵AG:GD=4:1,∴DFAE=14,则AE=4DF,∴AECE=48552DFDF=故选:D.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例12.(3 分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100 个数是()A.9999 B.10000 C.10001 D.10002【分析】观察不难发现,第奇数是序数的平方加1,第偶数是序数的平方减1,据此规律得到正确答案即可.【解答】解:∵第奇数个数2=12+1,10=32+1,26=52+1,…,第偶数个数3=22﹣1,15=42﹣1,25=62﹣1,…,∴第100 个数是1002﹣1=9999,故选:A.【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.二、填空题(本大题共6 小题,每小题3 分,共18 分)13.(3在实数范围内有意义,则x 的取值范围是 x≥3 .【分析】直接利用二次根式的有意义的条件得出x 的取值范围,进而得出答案.【解答】解:由题意可得:x﹣3≥0,解得:x≥3.故答案为:x≥3.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.14.(3 分)如图,已知在△ABC 中,D、E 分别是AB、AC 的中点,BC=6cm,则DE 的长度是 3 c m.【分析】根据三角形中位线定理解答.【解答】解:∵D、E 分别是AB、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=3cm,故答案为:3.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.(3 分)已知直线y=ax(a≠0)与反比例函数y=kx(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此进行解答.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.(3 分)如图,已知在⊙O 中,半径,弦AB=2,∠BAD=18°,OD 与AB 交于点C,则∠ACO= 81 度.【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.【解答】解:∵,,AB=2,2+OB2=AB2,OA=OB,∴OA∴△AOB 是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(3 分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是4.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴1206180l π⨯==2πr , ∴r=2,即:OA=2,在 Rt △AOC 中,OA=2,AC=6,根据勾股定理得,, 故答案为:. 【点评】此题主要考查了扇形的弧长公式,勾股定理,求出 OA 是解本题的关键.18.(3 分)如图,点 C 为 Rt △ACB 与 Rt △DCE 的公共点,∠ACB=∠DCE=90°,连 接 AD 、BE ,过点 C 作 CF ⊥AD 于点 F ,延长 FC 交 BE 于点 G .若 AC=BC=25,CE=15, DC=20,则EG BG 的值为34.【分析】过 E 作 EH ⊥GF 于 H ,过 B 作 BP ⊥GF 于 P ,依据△EHG ∽△BPG ,可得EG BG =EH BP ,再根据△DCF ∽△CEH ,△ACF ∽△CBP ,即可得到 EH=34CF ,BP=CF ,进 而得出EG BG =34. 【解答】解:如图,过 E 作 EH ⊥GF 于 H ,过 B 作 BP ⊥GF 于 P ,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP ,∴△EHG ∽△BPG ,∴EG BG =EH BP, ∵CF ⊥AD ,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF ,∠AFC=∠CPB , 又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH ,∠FAC=∠PCB ,∴△DCF ∽△CEH ,△ACF ∽△CBP ,∴,1EH CE BP BC CF DC CF CA=== ∴EH= 34CF ,BP=CF ,∴EH BP =34, ∴EG BG =34, 故答案为:34.【点评】本题主要考查了相似三角形的判定与性质,解决问题的关键是作辅助线 构造相似三角形,利用相似三角形的对应边成比例进行推算.三、解答题(本大题共 8 小题,满分 66 分,)19.(6 25÷23+|﹣1|×5﹣(π﹣3.14)0【分析】依据算术平方根的定义、有理数的乘方法则、绝对值的性质、有理数的 乘法法则、零指数幂的性质进行计算,最后,再进行加减计算即可.【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3.【点评】本题主要考查的是实数的运算,熟练掌握运算法则是解题的关键.20.(6 分)解方程:2x 2﹣4x ﹣30=0.【分析】利用因式分解法解方程即可;【解答】解:∵2x 2﹣4x ﹣30=0,∴x 2﹣2x ﹣15=0,∴(x ﹣5)(x +3)=0,∴x 1=5,x 2=﹣3.【点评】本题考查一元二次方程的解法﹣因式分解法,解题的关键是熟练掌握解 一元二次方程的解法,属于中考基础题.21.(6 分)如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .【分析】利用平行四边形的性质得出 AO=CO ,AD ∥BC ,进而得出∠EAC=∠FCO , 再利用 ASA 求出△AOE ≌△COF ,即可得出答案.【解答】证明:∵▱ABCD 的对角线 AC ,BD 交于点 O ,∴AO=CO ,AD ∥BC ,∴∠EAC=∠FCO , 在△AOE 和△COF中EAO FCO AO OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴AE=CF .【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练 掌握全等三角形的判定方法是解题关键.22 8 分)解不等式组36451102x x x x -≤⎧⎪++⎨⎪⎩p ,并求出它的整数解,再化简代数式2321x x x +-+• (3x x +﹣239x x --),从上述整数解中选择一个合适的数,求此代数式的值. 【分析】先解不等式组求得 x 的整数解,再根据分式混合运算顺序和运算法则化 简原式,最后选取使分式有意义的 x 的值代入计算可得.【解答】解:解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3,原式=23(1)x x +-•[23(3)(3)x x x x --+-3(3)(3)x x x -+-] =23(1)x x +-•(1)(3)(3)(3)x x x x --+- =11x -∵x≠±3、1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.23.(8 分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D 点处测得瀑布顶端A 点的仰角是30°,测得瀑布底端 B 点的俯角是10°,AB 与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB 的高度.1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,在Rt△ CMD 中,通过解直角三角形可求出CM 的长度,进而可得出MF、DN 的长度,再在Rt△BDN、Rt△ADN 中,利用解直角三角形求出BN、AN 的长度,结合AB=AN+BN 即可求出瀑布AB 的高度.【解答】解:过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,如图所示.在Rt△CMD 中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•si n40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN 中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN 中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB 的高度约为45.4 米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN 的长度是解题的关键.24.(10 分)我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B 型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A、B 两种型号电动自行车的进货单价分别为x 元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A 型两人+B 型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A、B 两种型号电动自行车的进货单价分别为x 元(x+500)元.由题意:50000x=60000+500x,解得x=2500,经检验:x=2500 是分式方程的解.答:A、B 两种型号电动自行车的进货单价分别为2500 元3000 元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20 时,y 有最大值,最大值为11000 元.【点评】本题考查一次函数的应用、分式方程的应用等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,属于中考常考题型.25.(10 分)如图,AB 是⊙M 的直径,BC 是⊙M 的切线,切点为B,C 是BC 上(除B 点外)的任意一点,连接CM 交⊙M 于点G,过点C 作DC⊥BC 交BG 的延长线于点D,连接AG 并延长交BC 于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD 的长度.【分析】(1)根据直径所对圆周角和切线性质,证明三角形相似;(2)利用勾股定理和面积法得到AG、GE,根据三角形相似求得GH,得到MB、GH 和CD 的数量关系,求得CD.【解答】(1)证明:∵BC 为⊙M 切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB 是⊙M 的直径∴∠AGB=90°即:BG⊥AE∴∠CBD=∠A∴△ABE∽△BCD(2)解:过点 G 作 GH ⊥BC 于 H∵MB=BE=1∴AB=2∴=由(1)根据面积法 AB •BE=B G •AE∴由勾股定理:∵GH ∥AB ∴GH GE AB AE =∴2GH =∴GH=25 又∵GH ∥ABHC GH BC MB =① 同理:BH GH BC DC=② ①+②,得HC BH GH BC MB +=+GH DC∴+GH MB =1GH DC∴CD=23【点评】本题是几何综合题,综合考察了圆周角定理、切线性质和三角形相似.解 答时,注意根据条件构造相似三角形.26.(12 分)如图,抛物线 y=a x 2+bx ﹣92与 x 轴交于 A (1,0)、B (6,0)两点, D 是 y 轴上一点,连接 DA ,延长 DA 交抛物线于点 E .(1)求此抛物线的解析式;(2)若 E 点在第一象限,过点 E 作 EF ⊥x 轴于点 F ,△ADO 与△AEF 的面积比为ADO AEF S S ∆∆=19,求出点 E 的坐标;(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M 、N 两点, 是否存在点 D ,使 DA 2=DM •DN ?若存在,请求出点 D 的坐标;若不存在,请说 明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得 AF 的长,根据自变量与函数值的对应 关系,可得答案;(3)根据两点间距离,可得 AD 的长,根据根与系数的关系,可得 x 1•x 2,根据DA 2=DM •DN ,可得关于 n 的方程,根据解方程,可得答案.【解答】解:(1)将 A (1,0),B (6,0)代入函数解析式,得902936602a b a b ⎧+-=⎪⎪⎨⎪+-=⎪⎩解得3=421=4a b ⎧-⎪⎪⎨⎪-⎪⎩, 抛物线的解析式为 y=﹣34x 2+214x ﹣92; (2)∵EF ⊥x 轴于点 F ,∴∠AFE=90°.∵∠AOD=∠AFE=90°,∠OAD=∠FAE ,∴△AOD ∽△AFE . ∵ADO AEF S S ∆∆=AO AF =19∵AO=1,∴AF=3,OF=3+1=4,当x=4 时,y=﹣34×42+214×4﹣92=92,∴E 点坐标是(4,92),(3)存在点D,使DA2=DM•DN,理由如下:设D 点坐标为(0,n),AD2=1+n2,当y=n 时,﹣34x2+214x﹣92=n化简,得﹣3x2+21x﹣18﹣4n=0,设方程的两根为x1,x2,x1•x2=1843n+DM=x1,DN=x2,DA2=DM•DN,即1+n2=1843n+,化简,得3n2﹣4n﹣15=0,解得n1=53,n2=3,∴D 点坐标为(0,﹣53)或(0,3).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出AF 的长;解(3)的关键是利用根与系数的关系得出x1•x2,又利用了解方程.。

广西省梧州市2018年中考数学试题含答案解析(2)

2018 年广西梧州市中考数学试卷一、选择题(本大题共12 小题,每小题3 分,共36 分,在每小题给出的四个选项中,只有一项是正确的,每小题选对得3 分,选错、不选或多选均得零分。

)1.(3 分)﹣8 的相反数是()A.﹣8 B.8 C.18D.18【分析】直接根据相反数的定义进行解答即可.【解答】解:由相反数的定义可知,﹣8 的相反数是﹣(﹣8)=8.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.(3 分)研究发现,银原子的半径约是0.00015 微米,把0.00015 这个数字用科学计数法表示应是()A.1.5×10﹣4B.1.5×10﹣5C.15×10﹣5D.15×10﹣6【分析】绝对值小于1 的正数也可以利用科学计数法表示,一般形式为a×10﹣n,与较大数的科学计数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0 的个数所决定.【解答】解:0.00015=1.5×10﹣4,故选:A.【点评】本题考查用科学计数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.3.(3 分)如图,已知BG 是∠ABC 的平分线,DE⊥AB 于点E,DF⊥BC 于点F,DE=6,则DF 的长度是()A.2 B.3 C.4 D.6【分析】根据角的平分线上的点到角的两边的距离相等即可得.【解答】解:∵BG 是∠ABC 的平分线,DE ⊥AB ,DF ⊥BC , ∴DE=DF=6, 故选:D .【点评】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到 角的两边的距离相等.4.(3 分)已知∠A=55°,则它的余角是( )A .25°B .35°C .45°D .55°【分析】由余角定义得∠A 的余角为 90°减去 55°即可. 【解答】解:∵∠A=55°,∴它的余角是 90°﹣∠A=90°﹣55°=35°, 故选:B . 【点评】本题考查了角的余角,由其定义很容易解得.5.(3 分)下列各式计算正确的是( )A .a +2a=3aB .x 4•x 3=x 12C .(1x)﹣1=﹣1xD .(x 2)3=x 5【分析】根据同底数幂的乘法、幂的乘方、负指数幂和合并同类项法则逐个判断 即可. 【解答】解:A 、a +2a=3a ,正确; B 、x 4•x 3=x 7,错误; C 、(1x)-1=x ,错误; D 、(x 2)3=x 6,错误; 故选:A .【点评】此题考查同底数幂的乘法、幂的乘方、负指数幂和合并同类项,关键是 根据法则计算.6.(3 分)如图,在正方形 ABCD 中,A 、B 、C 三点的坐标分别是(﹣1,2)、(﹣ 1,0)、(﹣3,0),将正方形 ABCD 向右平移 3 个单位,则平移后点 D 的坐标是()A.(﹣6,2)B.(0,2)C.(2,0)D.(2,2)【分析】首先根据正方形的性质求出D 点坐标,再将D 点横坐标加上3,纵坐标不变即可.【解答】解:∵在正方形ABCD 中,A、B、C 三点的坐标分别是(﹣1,2)、(﹣1,0)、(﹣3,0),∴D(﹣3,2),∴将正方形ABCD 向右平移3 个单位,则平移后点D 的坐标是(0,2),故选:B.【点评】本题考查了正方形的性质,坐标与图形变化﹣平移,是基础题,比较简单.7.(3 分)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A.30° B.35°C.40°D.45°【分析】利用轴对称图形的性质得出△BAC≌△B′AC′,进而结合三角形内角和定理得出答案.【解答】解:连接BB′∵△AB′C′与△ABC 关于直线EF 对称,∴△BAC≌△B′AC′,∵AB=AC,∠C=70°,∴∠ABC=∠AC′B′=∠AB′C′=70°,∴∠BAC=∠B′AC′=40°,∵∠CAF=10°,∴∠C′AF=10°,∴∠BAB′=40°+10°+10°+40°=100°,∴∠ABB′=∠AB′B=40°.故选:C.【点评】此题主要考查了轴对称图形的性质以及等腰三角形的性质,正确得出∠BAC 度数是解题关键.8.(3 分)一组数据:3,4,5,x,8 的众数是5,则这组数据的方差是()A.2 B.2.4 C.2.8 D.3【分析】根据数据的众数确定出x 的值,进而求出方差即可.【解答】解:∵一组数据3,4,5,x,8 的众数是5,∴x=5,∴这组数据的平均数为15×(3+4+5+5+8)=5,则这组数据的方差为15×[(3﹣5)2+(4﹣5)2+2×(5﹣4)2+(8﹣5)2]=2.8.故选:C.【点评】此题考查了方差,众数,熟练掌握各自的定义是解本题的关键.9.(3 分)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1 个,这些球除颜色外无其他差别,从箱子中随机摸出1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是()A.127B.13C.19D.29【分析】画出树状图,利用概率公式计算即可.【解答】解:如图,一共有27 种可能,三人摸到球的颜色都不相同有6 种可能,∴P(三人摸到球的颜色都不相同)=627=29.故选:D.【点评】本题考查列表法与树状图,解题的关键是学会利用树状图解决概率问题.10.(3 分)九年级一班同学根据兴趣分成A、B、C、D、E 五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D 小组的人数是()A.10 人B.l1 人C.12 人D.15 人【分析】从条形统计图可看出A 的具体人数,从扇形图找到所占的百分比,可求出总人数.然后结合D 所占的百分比求得D 小组的人数.【解答】解:总人数=510%=50(人) D 小组的人数=50×86.4360=12(人).故选:C.【点评】本题考查了条形统计图和扇形统计图,从上面可得到具体的值,以及用样本估计总体和扇形统计图,扇形统计图表示部分占整体的百分比.11.(3 分)如图,AG:GD=4:1,BD:DC=2:3,则AE:EC 的值是()A.3:2 B.4:3 C.6:5 D.8:5【分析】过点D 作DF∥CA 交BE 于F,如图,利用平行线分线段成比例定理,由DF∥CE 得到DF CE=BD DC =25,则CE=52DF,由DF∥AE 得到DFAE=DGAG=14,则AE=4DF,然后计算AECE的值.【解答】解:过点D 作DF∥CA 交BE 于F,如图,∵DF∥CE,∴DFCE=BDDC,而BD:DC=2:3,∴DFCE=25,则CE=52DF,∵DF∥AE,∴DFAE=DGAG,∵AG:GD=4:1,∴DFAE=14,则AE=4DF,∴AECE=48552DF DF =故选:D .【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应 线段成比例.平行于三角形一边的直线截其他两边(或两边的延长线),所得的 对应线段成比例12.(3 分)按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此 规律排列下去,则这列数中的第 100 个数是( )A .9999B .10000C .10001D .10002【分析】观察不难发现,第奇数是序数的平方加 1,第偶数是序数的平方减 1, 据此规律得到正确答案即可.【解答】解:∵第奇数个数 2=12+1, 10=32+1, 26=52+1, …,第偶数个数 3=22﹣1, 15=42﹣1, 25=62﹣1, …,∴第 100 个数是 1002﹣1=9999, 故选:A .【点评】本题是对数字变化规律的考查,分数所在的序数为奇数和偶数两个方面 考虑求解是解题的关键,另外对平方数的熟练掌握也很关键.二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)13.(3在实数范围内有意义,则 x 的取值范围是 x ≥3 . 【分析】直接利用二次根式的有意义的条件得出 x 的取值范围,进而得出答案. 【解答】解:由题意可得:x ﹣3≥0, 解得:x ≥3. 故答案为:x ≥3.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解 题关键.14.(3 分)如图,已知在△ABC 中,D 、E 分别是 AB 、AC 的中点,BC=6cm ,则DE 的长度是 3 c m.【分析】根据三角形中位线定理解答.【解答】解:∵D、E 分别是AB、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=3cm,故答案为:3.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.(3 分)已知直线y=ax(a≠0)与反比例函数y=kx(k≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是(﹣2,﹣4).【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称,据此进行解答.【解答】解:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,4)关于原点对称,∴该点的坐标为(﹣2,﹣4).故答案为:(﹣2,﹣4).【点评】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握关于原点对称的两个点的坐标的横、纵坐标都互为相反数.16.(3 分)如图,已知在⊙O 中,半径2,弦AB=2,∠BAD=18°,OD 与AB 交于点C,则∠ACO= 81 度.【分析】根据勾股定理的逆定理可以判断△AOB 的形状,由圆周角定理可以求得∠BOD 的度数,再根据三角形的外角和不相邻的内角的关系,即可求得∠AOC的度数.【解答】解:∵,,AB=2,2+OB2=AB2,OA=OB,∴OA∴△AOB 是等腰直角三角形,∠AOB=90°,∴∠OBA=45°,∵∠BAD=18°,∴∠BOD=36°,∴∠ACO=∠OBA+∠BOD=45°+36°=81°,故答案为:81.【点评】本题考查圆周角定理、勾股定理的逆定理、等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(3 分)如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.【解答】解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴1206180lπ⨯==2πr,∴r=2,即:OA=2,在Rt△AOC 中,OA=2,AC=6,根据勾股定理得,,故答案为:4.【点评】此题主要考查了扇形的弧长公式,勾股定理,求出OA 是解本题的关键.18.(3 分)如图,点C 为Rt△ACB 与Rt△DCE 的公共点,∠ACB=∠DCE=90°,连接AD、BE,过点C 作CF⊥AD 于点F,延长FC 交BE 于点G.若AC=BC=25,CE=15,DC=20,则EGBG的值为34.【分析】过E 作EH⊥GF 于H,过B 作BP⊥GF 于P,依据△EHG∽△BPG,可得EGBG=EHBP,再根据△DCF∽△CEH,△ACF∽△CBP,即可得到EH=34CF,BP=CF,进而得出EGBG=34.【解答】解:如图,过E 作EH⊥GF 于H,过B 作BP⊥GF 于P,则∠EHG=∠BPG=90°,又∵∠EGH=∠BGP,∴△EHG∽△BPG,∴EGBG=EHBP,∵CF⊥AD,∴∠DFC=∠AFC=90°,∴∠DFC=∠CHF,∠AFC=∠CPB,又∵∠ACB=∠DCE=90°,∴∠CDF=∠ECH,∠FAC=∠PCB,∴△DCF∽△CEH,△ACF∽△CBP,∴,1EH CE BP BC CF DC CF CA=== ∴EH= 34CF ,BP=CF ,∴EH BP =34, ∴EG BG =34, 故答案为:34. 【点评】本题主要考查了相似三角形的判定与性质,解决问题的关键是作辅助线 构造相似三角形,利用相似三角形的对应边成比例进行推算.三、解答题(本大题共 8 小题,满分 66 分,)19.(6 25÷23+|﹣1|×5﹣(π﹣3.14)0【分析】依据算术平方根的定义、有理数的乘方法则、绝对值的性质、有理数的 乘法法则、零指数幂的性质进行计算,最后,再进行加减计算即可.【解答】解:原式=3﹣32÷8+5﹣1=3﹣4+5﹣1=3.【点评】本题主要考查的是实数的运算,熟练掌握运算法则是解题的关键.20.(6 分)解方程:2x 2﹣4x ﹣30=0.【分析】利用因式分解法解方程即可;【解答】解:∵2x 2﹣4x ﹣30=0,∴x 2﹣2x ﹣15=0,∴(x ﹣5)(x +3)=0,∴x 1=5,x 2=﹣3.【点评】本题考查一元二次方程的解法﹣因式分解法,解题的关键是熟练掌握解 一元二次方程的解法,属于中考基础题.21.(6 分)如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .【分析】利用平行四边形的性质得出 AO=CO ,AD ∥BC ,进而得出∠EAC=∠FCO , 再利用 ASA 求出△AOE ≌△COF ,即可得出答案.【解答】证明:∵▱ABCD 的对角线 AC ,BD 交于点 O ,∴AO=CO ,AD ∥BC ,∴∠EAC=∠FCO , 在△AOE 和△COF 中EAO FCO AO OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOE ≌△COF (ASA ),∴AE=CF .【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的性质,熟练 掌握全等三角形的判定方法是解题关键.22 8 分)解不等式组36451102x x x x -≤⎧⎪++⎨⎪⎩p ,并求出它的整数解,再化简代数式2321x x x +-+• (3x x +﹣239x x --),从上述整数解中选择一个合适的数,求此代数式的值. 【分析】先解不等式组求得 x 的整数解,再根据分式混合运算顺序和运算法则化 简原式,最后选取使分式有意义的 x 的值代入计算可得.【解答】解:解不等式 3x ﹣6≤x ,得:x ≤3, 解不等式4510x +<12x +,得:x >0, 则不等式组的解集为 0<x ≤3,所以不等式组的整数解为 1、2、3,原式=23(1)x x +-•[23(3)(3)x x x x --+-3(3)(3)x x x -+-] =23(1)x x +-•(1)(3)(3)(3)x x x x --+- =11x -∵x≠±3、1,∴x=2,则原式=1.【点评】此题主要考查了分式的化简求值以及不等式组的解法,正确进行分式的混合运算是解题关键.23.(8 分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D 点处测得瀑布顶端A 点的仰角是30°,测得瀑布底端B 点的俯角是10°,AB 与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB 的高度.≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,在Rt△ CMD 中,通过解直角三角形可求出CM 的长度,进而可得出MF、DN 的长度,再在Rt△BDN、Rt△ADN 中,利用解直角三角形求出BN、AN 的长度,结合AB=AN+BN 即可求出瀑布AB 的高度.【解答】解:过点D 作DM⊥CE,交CE 于点M,作DN⊥AB,交AB 于点N,如图所示.在Rt△CMD 中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•si n40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN 中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN 中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB 的高度约为45.4 米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN 的长度是解题的关键.24.(10 分)我市从2018 年1 月1 日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8 万元购进A、B 两种型号的电动自行车共30 辆,其中每辆B型电动自行车比每辆A 型电动自行车多500 元.用5 万元购进的A 型电动自行车与用6 万元购进的B 型电动自行车数量一样.(1)求A、B 两种型号电动自行车的进货单价;(2)若A 型电动自行车每辆售价为2800 元,B 型电动自行车每辆售价为3500 元,设该商店计划购进A 型电动自行车m 辆,两种型号的电动自行车全部销售后可获利润y 元.写出y 与m 之间的函数关系式;(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?【分析】(1)设A、B 两种型号电动自行车的进货单价分别为x 元(x+500)元,构建分式方程即可解决问题;(2)根据总利润=A 型两人+B 型的利润,列出函数关系式即可;(3)利用一次函数的性质即可解决问题;【解答】解:(1)设A、B 两种型号电动自行车的进货单价分别为x 元(x+500)元.由题意:50000x=60000+500x,解得x=2500,经检验:x=2500 是分式方程的解.答:A、B 两种型号电动自行车的进货单价分别为2500 元3000 元.(2)y=300m+500(30﹣m)=﹣200m+15000(20≤m≤30),(3)∵y=300m+500(30﹣m)=﹣200m+15000,∵﹣200<0,20≤m≤30,∴m=20 时,y 有最大值,最大值为11000 元.【点评】本题考查一次函数的应用、分式方程的应用等知识,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题,属于中考常考题型.25.(10 分)如图,AB 是⊙M 的直径,BC 是⊙M 的切线,切点为B,C 是BC 上(除B 点外)的任意一点,连接CM 交⊙M 于点G,过点C 作DC⊥BC 交BG 的延长线于点D,连接AG 并延长交BC 于点E.(1)求证:△ABE∽△BCD;(2)若MB=BE=1,求CD 的长度.【分析】(1)根据直径所对圆周角和切线性质,证明三角形相似;(2)利用勾股定理和面积法得到AG、GE,根据三角形相似求得GH,得到MB、GH 和CD 的数量关系,求得CD.【解答】(1)证明:∵BC 为⊙M 切线∴∠ABC=90°∵DC⊥BC∴∠BCD=90°∴∠ABC=∠BCD∵AB 是⊙M 的直径∴∠AGB=90°即:BG ⊥AE∴∠CBD=∠A∴△ABE ∽△BCD(2)解:过点 G 作 GH ⊥BC 于 H∵MB=BE=1∴AB=2∴=由(1)根据面积法AB •BE=B G •AE∴由勾股定理:∵GH ∥AB ∴GH GE AB AE =∴2GH =∴GH=25 又∵GH ∥ABHC GH BC MB =① 同理:BH GH BC DC=② ①+②,得HC BH GH BC MB +=+GH DC∴+GH MB =1GH DC∴CD=23【点评】本题是几何综合题,综合考察了圆周角定理、切线性质和三角形相似.解 答时,注意根据条件构造相似三角形.26.(12 分)如图,抛物线 y=a x 2+bx ﹣92与 x 轴交于 A (1,0)、B (6,0)两点, D 是 y 轴上一点,连接 DA ,延长 DA 交抛物线于点 E .(1)求此抛物线的解析式;(2)若 E 点在第一象限,过点 E 作 EF ⊥x 轴于点 F ,△ADO 与△AEF 的面积比为ADO AEF S S ∆∆=19,求出点 E 的坐标;(3)若 D 是 y 轴上的动点,过 D 点作与 x 轴平行的直线交抛物线于 M 、N 两点, 是否存在点 D ,使 DA 2=DM •DN ?若存在,请求出点 D 的坐标;若不存在,请说 明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得 AF 的长,根据自变量与函数值的对应 关系,可得答案;(3)根据两点间距离,可得 AD 的长,根据根与系数的关系,可得 x 1•x 2,根据DA 2=DM •DN ,可得关于 n 的方程,根据解方程,可得答案.【解答】解:(1)将 A (1,0),B (6,0)代入函数解析式,得902936602a b a b ⎧+-=⎪⎪⎨⎪+-=⎪⎩解得3=421=4a b ⎧-⎪⎪⎨⎪-⎪⎩, 抛物线的解析式为 y=﹣34x 2+214x ﹣92; (2)∵EF ⊥x 轴于点 F ,∴∠AFE=90°.∵∠AOD=∠AFE=90°,∠OAD=∠FAE ,∴△AOD ∽△AFE . ∵ADO AEF S S ∆∆=AO AF =19∵AO=1,∴AF=3,OF=3+1=4,当x=4 时,y=﹣34×42+214×4﹣92=92,∴E 点坐标是(4,92),(3)存在点D,使DA2=DM•DN,理由如下:设D 点坐标为(0,n),AD2=1+n2,当y=n 时,﹣34x2+214x﹣92=n化简,得﹣3x2+21x﹣18﹣4n=0,设方程的两根为x1,x2,x1•x2=1843n+DM=x1,DN=x2,DA2=DM•DN,即1+n2=1843n+,化简,得3n2﹣4n﹣15=0,解得n1=53,n2=3,∴D 点坐标为(0,﹣53)或(0,3).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出AF 的长;解(3)的关键是利用根与系数的关系得出x1•x2,又利用了解方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 年广西梧州市中考数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分,在每小题给出得四个选项中, 只有一项就是正确得,每小题选对得 3 分,选错、不选或多选均得零分。) 1.(3 分)(2018•梧州)﹣8 得相反数就是( )
A.﹣8 B.8 C.
D.
2.(3 分)(2018•梧州)研究发现,银原子得半径约就是 0、00015 微米,把 0、00015 这
个数字用科学计数法表示应就是( ) A.1、5×10﹣4 B.1、5×10﹣5 C.15×10﹣5 D.15×10﹣6
3.(3 分)(2018•梧州)如图,已知 BG 就是∠ABC 得平分线,DE⊥AB 于点 E,DF⊥BC 于
点 F,DE=6,则 DF 得长度就是( )
A.2 B.3 C.4 D.6 4.(3 分)(2018•梧州)已知∠A=55°,则它得余角就是( ) A.25° B.35° C.45° D.55° 5.(3 分)(2018•梧州)下列各式计算正确得就是( )
端 B 点 得 俯 角 就 是 10°,AB 与 水 平 面 垂 直 . 又 在 瀑 布 下 得 水 平 面 测 得
CG=27m,GF=17、6m(注:C、G、F 三点在同一直线上,CF⊥AB 于点 F).斜坡 CD=20m,
坡角∠ECD=40°.求瀑布 AB 得高度.
(参考数据: ≈1、73,sin40°≈0、64,cos40°≈0、77,tan40°≈0、84,sin10°≈0、 17,cos10°≈0、98,tan10°≈0、18)
A.
B. C. D.
10.(3 分)(2018•梧州)九年级一班同学根据兴趣分成 A、B、C、D、E 五个小组,把
各小组人数分布绘制成如图所示得不完整统计图.则 D 小组得人数就是( )
A.10 人 B.l1 人 C.12 人 D.15 人 11.(3 分)(2018•梧州)如图,AG:GD=4:1,BD:DC=2:3,则 AE:EC 得值就是( )
.
18.(3 分)(2018•梧州)如图,点 C 为 Rt△°, 连接 AD、BE,过点 C 作 CF⊥AD 于点 F,延长 FC 交 BE 于点 G.若 AC=BC=25,CE=15,DC=20,
则 得值为
.
三、解答题(本大题共 8 小题,满分 66 分,) 19.(6 分)(2018•梧州)计算: ﹣25÷23+|﹣1|×5﹣(π﹣3、14)0 20.(6 分)(2018•梧州)解方程:2x2﹣4x﹣30=0. 21.(6 分)(2018•梧州)如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 得一条直 线分别交 AD,BC 于点 E,F.求证:AE=CF.
13.(3 分 )(2018• 梧 州 ) 式 子
在实数范围内有意义,则 x 得取值范围就

.
14.(3 分)(2018•梧州)如图,已知在△ABC 中,D、E 分别就是 AB、AC 得中点,BC=6cm,
则 DE 得长度就是
cm.
15.(3 分)(2018•梧州)已知直线 y=ax(a≠0)与反比例函数 y= (k≠0)得图象一个交点
A.3:2 B.4:3 C.6:5 D.8:5 12.(3 分)(2018•梧州)按一定规律排列得一列数依次为:2,3,10,15,26,35,…,按此规律 排列下去,则这列数中得第 100 个数就是( ) A.9999 B.10000 C.10001 D.10002 二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)
A.30° B.35° C.40° D.45° 8.(3 分)(2018•梧州)一组数据:3,4,5,x,8 得众数就是 5,则这组数据得方差就是( ) A.2 B.2、4 C.2、8 D.3 9.(3 分)(2018•梧州)小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:
在一个不透明得箱子中装有红、黄、白三种球各 1 个,这些球除颜色外无其她差 别,从箱子中随机摸出 1 个球,然后放回箱子中轮到下一个人摸球,三人摸到球得颜 色都不相同得概率就是( )
A.a+2a=3a B.x4•x3=x12 C.( )﹣1=﹣ D.(x2)3=x5 6.(3 分)(2018•梧州)如图,在正方形 ABCD 中,A、B、C 三点得坐标分别就是(﹣1,2)、 (﹣1,0)、(﹣3,0),将正方形 ABCD 向右平移 3 个单位,则平移后点 D 得坐标就是( )
A.(﹣6,2) B.(0,2) C.(2,0) D.(2,2) 7.(3 分)(2018•梧州)如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF 对称,∠CAF=10°,连接 BB′,则∠ABB′得度数就是( )
坐标为(2,4),则它们另一个交点得坐标就是
.
16.(3 分)(2018•梧州)如图,已知在⊙O 中,半径 OA= ,弦 AB=2,∠BAD=18°,OD 与 AB
交于点 C,则∠ACO=
度.
17.(3 分)(2018•梧州)如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠
ACB=120°,则此圆锥高 OC 得长度就是
24.(10 分)(2018•梧州)我市从 2018 年 1 月 1 日开始,禁止燃油助力车上路,于就是 电动自行车得市场需求量日渐增多.某商店计划最多投入 8 万元购进 A、B 两种型 号得电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进得 A 型电动自行车与用 6 万元购进得 B 型电动自行车数量一样. (1)求 A、B 两种型号电动自行车得进货单价; (2)若 A 型电动自行车每辆售价为 2800 元,B 型电动自行车每辆售价为 3500 元,设 该商店计划购进 A 型电动自行车 m 辆,两种型号得电动自行车全部销售后可获利 润 y 元.写出 y 与 m 之间得函数关系式; (3)该商店如何进货才能获得最大利润?此时最大利润就是多少元? 25.(10 分)(2018•梧州)如图,AB 就是⊙M 得直径,BC 就是⊙M 得切线,切点为 B,C 就 是 BC 上(除 B 点外)得任意一点,连接 CM 交⊙M 于点 G,过点 C 作 DC⊥BC 交 BG 得 延长线于点 D,连接 AG 并延长交 BC 于点 E. (1)求证:△ABE∽△BCD; (2)若 MB=BE=1,求 CD 得长度.
22.(8 分)(2018•梧州)解不等式组
,并求出它得整数解,再化简代数式
•( ﹣
),从上述整数解中选择一个合适得数,求此代数式得值.
23.(8 分)(2018•梧州)随着人们生活水平得不断提高,旅游已成为人们得一种生活
时尚.为开发新得旅游项目,我市对某山区进行调查,发现一瀑布.为测量它得高度,
测量人员在瀑布得对面山上 D 点处测得瀑布顶端 A 点得仰角就是 30°,测得瀑布底
相关文档
最新文档