2011年学而思杯数学试题答案

合集下载

2011学而思杯五年级试卷及详解

2011学而思杯五年级试卷及详解

考试科目:数学考试时间: 80分钟总分: 120分填空题(共20题,每题6分直接写出答案)1.11111111 1357911131517 612203042567290 ++++++++=2.小镜是个小学生,最近参加一次数学竞赛,并获得了好成绩,小司问她:“姐姐,你考了多少分?得了第几名?”小镜说:“我的年龄、得分和名次相乘的积是776。

”小镜的年龄、得分、名次的和是。

3.布袋中有许多4种不同颜色的小球,每次摸两个,要保证有10次所摸的结果是一样的,那么至少要摸次。

4.牧场上有一片匀速生长的草地,如果有30头牛吃,可以吃6天;如果有25头牛吃,可以吃8天。

那么20头牛吃,可以吃天。

5.用8个棱长是1厘米的小正方体拼成1个大的长方体,这个长方体的表面积最大与最小的差是平方厘米。

6.用绳子测井深,把绳对折一次来测量,井外余6米,将绳对折两次来测量,还差2米,那么井深米。

7.如图所示,正方形ABCD的面积是16平方厘米,5BE=厘米,三角形DOE的面积是平方厘米。

O AB DE8.在如图所示○内填入不同的数,使得三条边上的三个数的和都是12,若A、B、C的和为18,则三个顶点的三个数的和是_______。

2011第六届学而思综合素质测评五年级C BA9.将一张纸剪成6块,从所得纸片中取出若干块,每块各剪成6块,再从所得纸片中取出若干块,每块各剪成6块……如此进行下去,到剪完某一次后停止,所得纸块总数可能是2005、2006、2007、2008、2009、2010、2011、2012这几个数中的_________。

(写出所有可能的答案)10.一个四位数,减去它各个数位上的数字之和,差是四位数658 , 中应填________。

11.如图所示,P为长方形ABCD内的一点,PAB∆的面积等于5,PBC∆的面积等于13,PBD∆的面积是。

AB CP12.将自然数N接在任一自然数的右面(例如将2接在35的右面得352),如果所得的新数都能被N整除,那么称N为神奇数,那么在小于100的自然数中,神奇数有1、。

五年级A

五年级A

绝密★启用前2011年首届全国学而思综合能力测评(学而思杯)数学试卷(五年级A 卷) 时间:13:30~14:50 满分:150分考生须知: 1. 请在答题纸上认真填写考生信息;2. 所有答案请填写在答题纸上,否则成绩无效一.填空题(每题8分,共40分)1. (视听题)杯子中有浓度为5%的盐水150克,那么其中含有______克盐. 【分析】浓度问题求溶质。

浓度=溶质÷溶液×100 %。

因此溶质=浓度×溶液。

1505%7.5⨯=克。

2. (视听题)杯子中有浓度为5%的盐水150克,向杯子中加入100克水,盐水的浓度变为______%. 【分析】浓度=溶质÷溶液×100 %。

()7.5150100100%3%÷+⨯=3. (视听题)杯子中有浓度为10%的盐水100克,向杯子中加入浓度为20%的盐水150克,混合均匀.新的盐水的浓度是______%.【分析】溶质总重量为10010%15020%40⨯+⨯=克;溶液总重量为100150250+=克。

因此溶液浓度为:40250100%16%÷⨯=4. 计算:10.253464155⨯+⨯+÷=______.【分析】=0.2(534641)28⨯++=原式5. 2011年3月11日,日本发生里氏9级大地震。

在3月15日,日本本州岛东海岸附近海域再次发生5级地震。

已知里氏地震级数每升2级,地震释放能量扩大到原来的1000倍,那么3月11日的大地震释放能量是3月15日东海岸地震的______倍. 【分析】差了4级,差了1000×1000=1,000,000倍. 二.填空题(每题10分,共50分)1. 横式“+=学理科到学而思学而思杯”中,相同的汉字代表相同的数字,不同的汉字代表不同的汉字,那么四位数“学而思杯”的最大值为______.【分析】确定“学”最大为8,那么到为7,而最大为6,此时有算式:825+7869=8694,那么四位数的最大值为86942.今天是2011年4月9日,20110409这个九位数是9的倍数,则方框里应填入的数字是______.【分析】容易得13.用若干个1×1×1的小立方体堆积成一个立体图形(小立方体不能悬空),它的正视图、左视图、俯视图都是下图的样子,那么堆积成满足条件的小立方体最少需要______个小立方体.【分析】如图,最小的体积为9立方厘米。

学而思答案

学而思答案

1、(1)可以,如(2011,211,11) →(2000,200,0)→(1000,200,1000)→(800,0,800)→(400,400,800)→(0,0,400).(2)因为操作就两种,每堆取走同样数目的小石子,将有偶数堆石子堆中一半移至另一堆,所以每次操作石子总数要么减少3的倍数,要么不变.现在共有2011+211+11=2233,不是3的倍数,所以不能将3堆中所有石子都取走.2、将这四个人用4个点表示,如果两个人之间送过礼,就在两点之间连一条线.由于每人送出2件礼物,图中共有4×2=8条线,由于每人礼品都分赠给2个人,所以每两点之间至多有1+1=2条线.四点间,每两点连一条线,一共6条线,现在有8条线,说明必有两点之间连了2条线,还有另外两点(有一点可以与前面的点相同)之间也连了2条线.即为所证结论。

3、从A 点考虑起,从A 点出发的直线段有5条,那么至少有3条颜色相同,不妨设AB 、AC 、AD 为红色,那么BC 、BD 、CD 中只要有一条是红色就和前面的构成了同色三角形;如果BC ,BD ,CD 中没有红色,那只能都是蓝色,这样BCD 构成了蓝色三角形,证明完毕.4、不可能.因为每次加上的数之和都是123410+++=,所以黑板上的四个数之和永远是10的整数倍.而99943996⨯=,不是10的倍数,所以黑板上的四个数不可都是999.5、不能。

要使一个灯泡由亮变暗,需要拉动奇数次开关。

那么要让5个亮着的灯泡都变暗,共需拉动奇数次开关(5个奇数相加,和一定是奇数)。

而我们每次操作都是拉偶数个开关,因此不能经过若干次操作使得5个灯泡都变暗。

6、1,1,1,1,1,2,7或者3,4,1,1,1,1,17、设3个顶点填入的3个自然数数分别为,,a b c ,假设,,a b a c b c +++都为奇数,于是a b a c b c +++++也为奇数。

但是()2a b a c b c a b c +++++=++是一个偶数,矛盾。

2011年学而思杯数学试题答案

2011年学而思杯数学试题答案

1.简单小数计算2011-201.1+20.11-2.011+0.001【解析】18282.分小四则混合运算541??1)12.3?(3.85??1854541【解析】??1)??12.3?(3.8518544?(3.85?3.6?12.3?1.8)?94????1.8?12.37.7?94?36?9?16 3 已知N*等于N的因数个数,比如4*=3,则(2011*+10*+6*)*=_______【解析】(2011*+10*+6*)*=(2+4+4)*=44用字母表示数一个非等腰三角形,一边长为6,一边长为7,还有一边长为6k,已知k是自然数,则三角形的周长为______.【解析】k=2,周长为6+7+12=25.5基础类型应用题1红光大队用拖拉机耕地,2台3小时耕75亩,照这样计算,4台5小时耕____亩.【解析】2台1小时可耕75 ÷3=25亩,4台5小时可耕地25×2×5=250亩6基础类型应用题2一个骗子到商店买了5元的东西,他付给店员50元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员5元的零钱,并且要回了开始给出的50元。

则这个骗子一共骗了______钱?【解析】由于一开始骗子并没有骗钱,产生骗钱的是后用零钱换50元,所以共骗得50-5=45元。

7约数倍数已知A、B两数的最小公倍数是120,B、C两数的最小公倍数是180,A、C两数的最小公倍数是72,则A、B、C三数的最小公倍数是______.3×3×5【解析】120=222180=2×3×53272=2×332×3×所以最小公倍数是25=3608简单的逻辑推理2011年8月14日,伦敦羽毛球世锦赛进入最后一个比赛日。

在女单决赛中,中国选手王仪涵2比0完胜中华台北选手郑韶婕,首次夺得世锦赛冠军,中国队也实现了女单项目的八连冠。

2011 学而思综合测评

2011 学而思综合测评

上图可知西院给东院 10 只
2011 年 学而思综合测评
三年级 教师版 第 3 页 共 4 页
后,西院的鸡有 8 份,东院的鸡有 4 份,8÷ 4=2(倍) ,10 只刚好对应了“ 1”份 东院现有 10× 4=40(只) ,西院现有 10× 8=80(只) ,两个院共有 120 只鸡。 18 有一块三角形地,三条边分别为 120 米、150 米、 80 米、每 10 米种一棵树,那么共种了 棵树。
14 某部队战士排成方阵行军,另一支队伍共 19 人加入他们的方阵,正好使横竖各增加一排 ,现共有 _______名战士。
2011 年 学而思综合测评
三年级 教师版 第 2 页 共 4 页
报告长官, 又 来 19 人.
【分析】后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的 交界处,计算横排竖排的人数时,对他进行了重复计算 ,也就是说现在每一排实际人数是
13 三棵树上共停着 43 只鸟,如果从第一棵树上飞 6 只到第二棵树上去,再从第二棵树上飞 4 只到第三棵 树上去,第三棵树上飞走了 10 只鸟,那么三棵树上小鸟的只数都相等,原来第二棵树上有 【分析】由题可知,现在每颗树上都有 (43 10) 3 11 (只) ,第二棵 11 6 4 9 只鸟. 只鸟。
19 1 2= 10 (人) ,因此可以求出总人数: 10 10= 100 (人) .
15 聪明昊,智慧巍,帅气铮三个人称体重.聪明昊说,我比智慧巍重 .智慧巍说,如果我和帅气铮一起称, 那我们体重的和是聪明昊的两倍.帅气铮说,我比聪明昊重,我的体重等于智慧巍和聪明昊的体重和.小朋 友们,你知道帅气铮的体重是智慧巍的 倍。 【分析】巍+铮 =昊+昊;铮 =巍+昊;所以,巍+巍+昊 =昊+昊,昊 =2 巍,铮=3 巍 16 如下图,将一张长方形的纸横着对折一次,再竖着对折一次,然后沿着对边中点的连线剪开,问这张 纸被剪成 张。

”学而思杯“一年级数学知识点详解

”学而思杯“一年级数学知识点详解

2、 李叔叔把一根木头锯成 4 段,用了 3 分钟,如果把这根木头锯成 8 段,需要______ 分钟。 【知识点】一年级春季学期第十二讲:间隔之谜。尚未学到。 【解析】把一根木头锯成 4 段,只需要锯 3 下,用时 3 分钟,则锯一下需用时 1 分钟; 把木头锯成 8 段,需要锯 7 下,故需要 7 分钟。 【答案】7
更多精彩奥数题及详解尽在 E 度论坛()一年级版块 第 1 页/共 8 页
学习改变命运
联系电话:6186 3366
4、 下面算式是用火柴棒摆成的,可惜是错的,请你移动其中的一根火柴棒,使等号两 边相等,正确的算式是____________.
【知识点】一年级秋季学期第九讲:火柴棒游戏。 【解析】动手移一移即可发现正确算式为:11+1=12 【答案】11+1=12
5、 甲、 乙、 丙、 丁 4 只小动物站成一排, 已知甲在丙左边 5 米处, 丁在乙左边 3 米处, 丙在丁右边 2 米处,问最左边和最右边的两只小动物相距____________米。 【知识点】一年级秋季学期第五讲:方向与位置; 一年级春季学期第五讲:智趣推理。 【解析】分清楚左右位置,用画线段图的方向推理如下: 左 5米 3米 右
图二
如图二:包含两个基本三角形的三角形有 8 个;
更多精彩奥数题及详解尽在 E 度论坛()一年级版块
第 3 页/共 8 页
学习改变命运
联系电话:6186 3366
包含三个基本三角形的三角形有 0 个;
图三
如图三,包含四个基本三角形的三角形有 2 个; 包含五个及五个以上三角形的三角形有 0 个。 则一共有 8+8+2=18(个)三角形 【答案】18
5、已知:
+

2011学而思杯六年级试卷

2011学而思杯六年级试卷
2011 学而思六年级综合能力测评试卷 第 3 页(共 6 页) 第 4 页(共 6 页)
2011 第六届学而思综合素质测评
六年级(B 卷)
解答题 1. 阅读下列材料,并解决后面的问题. 材料:一般地, n 个相同的因数 a 相乘: a a
n个
a 记为 a n .如 23 8 ,此时,3 叫做以 2 为底 8 的对数,记为
2011 学而思六年级综合能力测评试卷
第 5 页(共 6 页)
第 6 页(共 6 页)
1 1 , 而弟弟比哥哥少看了 , 求妹妹比弟弟多看了 _______ 页. 6 6
3.
3 的分母增加了 16 ,要使分数的值不变,那么分子应增加( 8
A. 6 4.
B.)
某股票 1 月底每股股价为 10 元, 2 月底比 1 月底上涨了 18% ,那么 2 月底的股价为( A. 10.8 元 B. 11.8 元 C. 10.1 元 D. 11 元 如图,小圆的面积是大半圆面积的( )
1000 800 500
25. 已知猫跑 5 步的路程与狼跑 3 步的路程相同; 猫跑 7 步的路程与狗跑 5 步的路程相同。 而猫跑 3 步的时间与狼 跑 5 步的时间相同;猫跑 5 步的时间与狗跑 7 步的时间相同,猫、狼、狗沿着周长为 300 米的圆形跑道,同 时同向同地出发。问当它们出发后第一次相遇时各跑了多少路程?
15. 速度为 60 千米/小时的火车从甲地开往乙地,出发 12 小时后,一架速度为火车 5 倍的飞机从甲地沿着和火 1 车同样的航线飞出,结果在全程 处飞机追上火车,则甲乙两地的距离是 千米。 4 16. 将 14 , 30 , 33 , 35 , 39 , 75 , 143 , 169 八个数平均分成两组,使这两组数乘积相等,则这两组数分别 为 。 17. 用长和宽分别是 75 厘米和 45 厘米的长方形铁皮拼成一个正方形,需要 块这样的铁皮. 18. ⑴草坪上自动旋转喷灌装置喷灌的最远距离是 10 米,它的最大喷射面积是 平方米.

2011学而思杯六年级10.26号样题详解

2011学而思杯六年级10.26号样题详解

2011年京城六年级学员综合能力测评(学而思杯)数学试题(样卷答案)1. 简单小数计算0.365×1.2+31-0.438【解析】312. 分小四则混合运算 计算:(...)(..)⨯⨯-+÷-÷--1352433366712313500925183=_______ 【解析】原式=13(4.3 3.6 3.6 6.7 3.6)(1.2350.09)241⨯⨯-+⨯-⨯-- 1365218523=⨯+=+=3. 简单分数裂项11111122446182040+++++⨯⨯⨯ 【解析】原式1111111111()222446182040=+-+-++-+ 111111()2222040=+-+191124040=++1=4. 换元(10.20.340.567+++)⨯(0.20.340.56789+++)-(10.20.340.56789++++)⨯(0.20.340.567++)【解析】设0.20.340.567++=A ,0.20.340.56789+++=B ,则原式变为(1+A )×B -(1+B )×A =B -A =89 。

5. 定义新运算定义如下运算:a △b =kab ,a ☆b =ka -b ,已知1△x =2☆x ,x △1=x ☆2,x 是非零数,则x =_____【解析】已知kx =2k -x =2x -k ,则k =x ,则x 2=x ,x ≠0,所以x =1.6. 用字母表示数一个三角形,三个角度数分别为a 、2a 、3a ,则最小的角为_______度。

【解析】180÷(a +2a +3a )×a =30,7. 整系数方程()()x x x --=-+6412022【解析】x x x x x -+=--==644202441238. 分数或比例方程x x x x +-++=+231764612【解析】()()1232321772x x x x +++-=+12692277213655x x x x x x +++-=+==9. 简单方程组11118131122x y x y +⎧=⎪+⎪⎨-⎪=⎪-⎩则x y -=______.【解析】3223x y =⎧⎨=⎩9x y -=10. 简单的概率问题分别先后掷2次骰子,点数之和为5的概率为三十六分之______.【解析】先后掷2次,共可以掷出6×6=36种可能情况,其中和为5的情况共有1+4=2+3=3+2=4+1这四种情况,概率为436,答案为411. 基础类型应用题1一个农业专业户去年收小麦是玉米的4倍,小麦比玉米多13.5吨,去年收小麦___吨.【解析】差倍问题 13.5÷(4-1)×4= 18吨12. 基础类型应用题2商店运来83千克苹果,每5千克装成一个礼盒,已经卖出了9盒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 简单小数计算2011-201.1+20.11-2.011+0.001【解析】18282. 分小四则混合运算(..)÷+⨯÷254138512311854【解析】541(3.8512.31)1854÷+⨯÷2 ()4(3.85 3.612.3 1.8)941.87.712.39436916⨯+⨯⨯=⨯+⨯=⨯== 3 已知N *等于N 的因数个数,比如4*=3,则(2011*+10*+6*)*=_______【解析】(2011*+10*+6*)*=(2+4+4)*=44 用字母表示数一个非等腰三角形,一边长为6,一边长为7,还有一边长为6k ,已知k 是自然数,则三角形的周长为______.【解析】k =2,周长为6+7+12=25.5 基础类型应用题1红光大队用拖拉机耕地,2台3小时耕75亩,照这样计算,4台5小时耕____亩.【解析】2台1小时可耕75 ÷3=25亩,4台5小时 可耕地25×2×5=250亩6 基础类型应用题2一个骗子到商店买了5元的东西,他付给店员50元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员5元的零钱,并且要回了开始给出的50元。

则这个骗子一共骗了______钱?【解析】由于一开始骗子并没有骗钱,产生骗钱的是后用零钱换50元,所以共骗得50-5=45元。

7 约数倍数已知A 、B 两数的最小公倍数是120,B 、C 两数的最小公倍数是180,A 、C 两数的最小公倍数是72,则A 、B 、C 三数的最小公倍数是______.【解析】120=23×3×5180=22×32×5 72=23×32所以最小公倍数是23×32×5=3608 简单的逻辑推理2011年8月14日,伦敦羽毛球世锦赛进入最后一个比赛日。

在女单决赛中,中国选手王仪涵2比0完胜中华台北选手郑韶婕,首次夺得世锦赛冠军,中国队也实现了女单项目的八连冠。

已知二人共得到67分,其中第二局,王仪涵竟然赢了整整11分,请问,第一局郑韶婕得了______分。

(羽毛球为21分制)【解析】第二局相差11分,因此比分为21:10,第一局总分为:67-21-10=36,比分为21:15,所以第一局郑韶婕得了15分9 简单的一半模型下图为面积100的平行四边形,则阴影部分的面积和是_____.【解析】阴影部分的面积为总面积的一半。

100÷2=5010 平均速度AB 间的路被平均分成三段,王先生驾车从A 地开往B 地,已知他这三段路上的平均速度分别为30 km /h ,40 km /h 和60km /h ,则王先生在AB 间的平均速度为______km /h .【解析】设每段路都为120km ,则王先生在这三段路的时间分别为4h ,3h ,2h 。

因此总时间为9h ,而总路程是120×3=360km ,最终的平均速度为360÷9=40km /h11 简单分数裂项15191113()142612203042+--+-⨯ 【解析】原式11111111111(1)1422334455667=-++-+--++--⨯ 6147=⨯ 12= 12 换元111113572011113572011++⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯ 【解析】设13572011⨯⨯⨯⨯⨯=A ,则原式变为11111111111A A A A A AA++=+==+++++ 13 整系数方程[(8)88]88x +⨯-÷=【解析】(856)88x +÷=78x +=1x =14 分数或比例方程()x x ⎡⎤⨯⨯++-=⎢⎥⎣⎦321321223423【解析】13213423x x ++-=x x ==65512215 简单方程组292232202a b c a c b b c a +⎧+=⎪⎪+⎪+=⎨⎪+⎪+=⎪⎩ 则b =_______【解析】三式相加()27236a b c a b c +++=⇒++=每个式子都乘2减去上式,得41022a b c =⎧⎪=⎨⎪=⎩b =10 16 简单的概率问题分别先后掷2次骰子,点数之积为8的概率为三十六分之______.【解析】先后掷2次,共可以掷出6×6=36种可能情况,其中积为8的情况共有2×4=4×2这2种,概率为三十六分之2,答案为2.17 分百应用题小明看一本书,计划每天看全书的九分之一。

按计划看了3天后,由于急于知道结局,于是跳过了200页,并将看书速度提高了一倍,又看了1天,把书看完。

已知小明计划每天看书的页数相同,则这本书共______页。

【解析】速度提高了一倍 ,看了1天,相当于原计划的2天,因此小明看了原计划3+2=5天的书,还有9-5=4天没看,所以原计划一天看书200÷4=50页,这本书共有50×9=450页18 枚举法一次超难的数学考试,某班前五名同学共得20分(得分是任意正整数),并且分数各不相同,也没有得0分的,则有_______种得分的情况。

【解析】有序枚举:1、2、3、4、101、2、3、5、91、2、3、6、81、2、4、5、81、2、4、6、71、3、4、5、72、3、4、5、6共7种19 排列组合用1、2、3、4、5这几个数字组成一个5位数,要求每个数字均出现1次,且3必须在2前面(但它们不一定相邻),2必须在1前面,则共能组成____个不同的五位数。

【解析】插空法 先将321按顺序排好,然后把4和5插到空里去。

第一个数有4种插法,第二个数有5种插法,一共有4×5=20种插法20 弦图或勾股定理如图所示,直角三角形PQR 的短直角边长为5厘米.正方形EFRQ 的面积是89平方厘米,则正方形PQDC 的面积为______。

【解析】由勾股定理可知222289564PQ QR PR =-=-=,正方形的面积即为6421 简单的数论题 今天是2011年10月6日,已知六位数2011WW 能被106整除,则该六位数是______. 【解析】用试除法,易知被除数是20118822 浓度问题1000千克青菜早晨测得它的含水量为90%,这些菜到了下午测得含水量为80%,那么这些菜的重量减少了_____千克.【解析】上下午时菜的果肉含量是不变的。

早晨时有果肉1000×(1-90%)=100千克,因此下午菜的重量为100÷(1-80%)=500千克,共减少了1000-500=500千克23 工程问题一项工程,乙单独做要12.5天完成.如果第一天甲做,第二天乙做,第三天一起做,这样交替轮流做,那么恰好用整数天完成;如果第一天乙做,第二天一起做,第三天甲做,这样交替轮流做,那么比上次轮流的做法少用半天完工.已知甲乙工效不相等,则甲单独做需要______天.【解析】有两种可能,第一种,第一次最后一天甲完成的,那么甲一天做的相当于乙半天做的,乙做12.5天相当于甲做25天的;第二种:最后一天是乙完成的,那么甲一天和乙一天共做的相当于乙一天和合作半天做的,于是甲乙工效相同,与已知矛盾,所以只能是第一种情况,答案是25.24 加乘原理用0、1、2、3、4这5个数字(可以重复),共能组成______个比2011小,比1006大的偶数。

【解析】千位为1时,2,3位均有5个数字可以选,第四位有3个数字可以选,去掉1000,1002,1004这3数,共有5×5×3-3=72(个)。

千位为2时,共有2000、2002、2004、2010这4个数,总计72+4=76个。

25 余数问题有一个三位数,它们除以2、4、6、7所得到的余数互不相同(不能余0)。

这样的三位数中最大的是_____【解析】除以2只能余1,除以4就只能余3,除以6只能余5,除以7可以余2、4、6,三位数中除以2只能余1,除以4就只能余3,除以6只能余5的数最大的是995,每小12都成立,就看余7,995除以7余1,983除以7余3,959除以7余0,947除以7余2,成立了,所以最大的是947。

26 公式类行程小偷与警察相隔30秒先后逆向跑上一自动扶梯,小偷每秒可跨越3级阶梯,警察每秒可跨越4级阶梯。

已知该自动扶梯每秒运行1.5级阶梯,警察要想在自动扶梯上抓住小偷的话,自动扶梯至少要有_____级。

【解析】小偷逆行1秒上1.5级阶梯,30秒上45级阶梯,警察1秒多比小偷上1级台阶,45秒即可追上,则至少需要454 1.5=112.5⨯-(),台阶必然是整数,所以最少113个台阶。

27 立体几何有一座圆柱塔,在地面到塔顶要通过塔内部的螺旋形通道上去,如图,已知塔内底面圆周长为30米,塔高140米,通道共转了三圈半。

问:通道共长____米【解析】将圆柱展开成长方形(图1),可发现通道的长度就是展开图中斜线的长度,即QM 长度的7倍。

将三角形QMN 分离出来(图2),利用勾股定理可知:QM =25,所以通道全长为25×7=175米图(1) 图(2)28 曲线形面积如右图,以直角三角形ABC 的两条直角边为直径作两个半圆,已知这两段半圆弧的长度之和是75.36厘米,那么三角形ABC 的面积最大是______平方厘米(π取3.14).【解析】根据条件3.14()275.36AB AC ⨯+÷=,所以48AB AC +=,三角形ABC 的面积为:2AB AC ⨯÷,最大是24242288⨯÷=平方厘米.29 钟表问题学而思杯数学考试时间为8:00-9:30,请问在考试时间内分针与秒针共重合了____次。

(8点为第一次) 【解析】分针和秒针每6060(601)59÷-=分钟重合一次,609088.559÷=,算上8点的1次,0.5舍去,共重合了89次30 压轴行程题B 地在A ,C 两地之间.甲从B 地到A 地去送信,甲出发10分后,乙从B 地出发到C 地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B 地至少要用_____分钟。

(注:甲,乙出发后不停留也不转向)【解析】根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:因为丙的速度是甲、乙的3倍,分步讨论如下:(1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的信当丙再回到B 点用5分钟,此时甲已经距B 地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信,再给乙送信,此时乙已经距B 地:10+5+5+15+15=50(分钟),此时追及乙需要:50÷(3-1)=25(分钟),返回B 地需要25分钟所以共需要时间为5+5+15+15+25+25=90(分钟)同理先追及甲需要时间为120分钟因此至少需要90分钟C B A5分钟5分钟10分钟。

相关文档
最新文档