北京丰台区第二中学数学 二次函数(篇)(Word版 含解析)

合集下载

2024届北京市丰台区第二中学中考数学最后冲刺模拟试卷含解析

2024届北京市丰台区第二中学中考数学最后冲刺模拟试卷含解析

2024届北京市丰台区第二中学中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果t>0,那么a+t与a的大小关系是( )A.a+t>a B.a+t<a C.a+t≥a D.不能确定2.已知正方形ABCD的边长为4cm,动点P从A出发,沿AD边以1cm/s的速度运动,动点Q从B出发,沿BC,CD边以2cm/s的速度运动,点P,Q同时出发,运动到点D均停止运动,设运动时间为x(秒),△BPQ的面积为y (cm2),则y与x之间的函数图象大致是()A.B.C.D.3.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A3B.2 C.3D.(123+4.已知抛物线y=ax2+bx+c与反比例函数y= bx的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是()A .B .C .D .5.如图,PB 切⊙O 于点B ,PO 交⊙O 于点E ,延长PO 交⊙O 于点A ,连结AB ,⊙O 的半径OD ⊥AB 于点C ,BP=6,∠P=30°,则CD 的长度是( )A .33B .32C .3D .236.如图,ABC ∆为等边三角形,要在ABC ∆外部取一点D ,使得ABC ∆和DBC ∆全等,下面是两名同学做法:( )甲:①作A ∠的角平分线l ;②以B 为圆心,BC 长为半径画弧,交l 于点D ,点D 即为所求;乙:①过点B 作平行于AC 的直线l ;②过点C 作平行于AB 的直线m ,交l 于点D ,点D 即为所求.A .两人都正确B .两人都错误C .甲正确,乙错误D .甲错误,乙正确7.如图,正六边形ABCDEF 内接于O ,M 为EF 的中点,连接DM ,若O 的半径为2,则MD 的长度为( )A 7B 5C .2D .18.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km,将13000用科学记数法表示应为( )A.0.13×105B.1.3×104C.1.3×105D.13×1039.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大10.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.x y > 3311.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数12.一个容量为50的样本,在整理频率分布时,将所有频率相加,其和是( )A.50 B.0.02 C.0.1 D.1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x的方程x2+x﹣a+54=0有两个不相等的实数根,则满足条件的最小整数a的值是( )A.﹣1 B.0 C.1 D.214.若两个关于x,y 的二元一次方程组3136mx nyx y+=⎧⎨-=⎩与52428x ny nx y-=-⎧⎨+=⎩有相同的解,则mn 的值为_____.15.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=223k kx-+(k为常数)的图象上,则y1、y2、y3的大小关系为________.16.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a),如图,若曲线y=2x(x>0)与此正方形的边有交点,则a的取值范围是_______.17.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是__________.18.因式分解:-2x 2y +8xy -6y =__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)京沈高速铁路赤峰至喀左段正在建设中,甲、乙两个工程队计划参与一项工程建设,甲队单独施工30天完成该项工程的13,这时乙队加入,两队还需同时施工15天,才能完成该项工程.若乙队单独施工,需要多少天才能完成该项工程若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?20.(6分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,2132P ⎛ ⎝⎭,(32P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围; (3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围.21.(6分)如图,在ABC 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.22.(8分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A ,B 两种农产品定期运往益阳某加工厂,每次运输A ,B 产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A ,B 两种产品原来的运费和现在的运费(单位:元∕件)如下表所示: 品种A B 原来的运费45 25 现在的运费 30 20(1)求每次运输的农产品中A ,B 产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B 产品的件数不得超过A 产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.23.(8分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.(1)请您列表或画树状图列举出所有可能出现的结果;(2)请你判断这个游戏对他们是否公平并说明理由.24.(10分)如图,AB 是⊙O 的直径,∠BAC=90°,四边形EBOC 是平行四边形,EB 交⊙O 于点D ,连接CD 并延长交AB 的延长线于点F .(1)求证:CF 是⊙O 的切线;(2)若∠F=30°,EB=6,求图中阴影部分的面积.(结果保留根号和π)25.(10分)计算:(﹣1)2﹣2sin45°+(π﹣2018)0+|﹣|26.(12分)平面直角坐标系xOy(如图),抛物线y=﹣x2+2mx+3m2(m>0)与x轴交于点A、B(点A在点B左侧),与y轴交于点C,顶点为D,对称轴为直线l,过点C作直线l的垂线,垂足为点E,联结DC、BC.(1)当点C(0,3)时,①求这条抛物线的表达式和顶点坐标;②求证:∠DCE=∠BCE;(2)当CB平分∠DCO时,求m的值.27.(12分)计算:(1)﹣12018+|3﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】试题分析:根据不等式的基本性质即可得到结果.t>0,∴a+t>a,故选A.考点:本题考查的是不等式的基本性质点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.2、B【解题分析】根据题意,Q 点分别在BC 、CD 上运动时,形成不同的三角形,分别用x 表示即可.【题目详解】(1)当0≤x ≤2时,BQ =2x 14242y x x =⨯⨯=当2≤x ≤4时,如下图()()()()211144448242428222y x x x x x x =-+⨯-⨯---⨯⨯-=-++由上可知故选:B .【题目点拨】本题是双动点问题,解答时要注意讨论动点在临界两侧时形成的不同图形,并要根据图形列出函数关系式.3、C【解题分析】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由垂径定理得到C 为AB 的中点,再由折叠得到CD=OC ,求出OC 的长,在直角三角形AOC 中,利用勾股定理求出AC 的长,即可确定出AB 的长.【题目详解】过O 作OC ⊥AB ,交圆O 于点D ,连接OA ,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:3,则3.故选C.【题目点拨】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.4、B【解题分析】分析:根据抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解:∵抛物线y=ax2+bx+c与反比例函数y=bx的图象在第一象限有一个公共点,∴b>0,∵交点横坐标为1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函数y=bx+ac的图象经过第一、三、四象限.故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.5、C【解题分析】连接OB,根据切线的性质与三角函数得到∠POB=60°,3再根据等腰三角形的性质与三角函数得到OC 的长,即可得到CD的长.【题目详解】解:如图,连接OB,∵PB切⊙O于点B,∴∠OBP=90°,∵BP=6,∠P=30°,∴∠POB=60°,OD=OB=BPtan30°=6×33∵OA=OB,∴∠OAB=∠OBA=30°,∵OD⊥AB,∴∠OCB=90°,∴∠OBC=30°,则OC=123∴3.故选:C.【题目点拨】本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.6、A【解题分析】根据题意先画出相应的图形,然后进行推理论证即可得出结论.【题目详解】甲的作法如图一:∵ABC 为等边三角形,AD 是BAC ∠的角平分线 ∴90BEA ∠=︒180BEA BED ∠+∠=︒90BED ∴∠=︒90BEA BED ∴∠=∠=︒由甲的作法可知,AB BD = ABC DBC ∴∠=∠在ABC 和DCB 中,AB BD ABC DBC BC BC =⎧⎪∠=∠⎨⎪=⎩()ABC DCB SAS ∴≅故甲的作法正确;乙的作法如图二://,//BD AC CD AB,ACB CBD ABC BCD ∴∠=∠∠=∠在ABC 和DCB 中,ABC BCD BC BCACB CBD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DCB ASA ∴≅故乙的作法正确;故选:A .【题目点拨】本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.7、A【解题分析】连接OM 、OD 、OF ,由正六边形的性质和已知条件得出OM ⊥OD ,OM ⊥EF ,∠MFO=60°,由三角函数求出OM ,再由勾股定理求出MD 即可.【题目详解】连接OM 、OD 、OF ,∵正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,∴OM ⊥OD ,OM ⊥EF ,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin ∠MFO=2×32=3, ∴MD=()2222327OM OD +=+=,故选A .【题目点拨】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键.8、B【解题分析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.将13000用科学记数法表示为:1.3×1.故选B.考点:科学记数法—表示较大的数9、D【解题分析】根据众数、中位数和平均数及方差的定义逐一判断可得.【题目详解】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确;D.甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误.故选D.【题目点拨】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.10、B【解题分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.11、A【解题分析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差12、D【解题分析】所有小组频数之和等于数据总数,所有频率相加等于1.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、D【解题分析】根据根的判别式得到关于a 的方程,求解后可得到答案.【题目详解】关于x 的方程2504x x a +-+=有两个不相等的实数根, 则251410,4a ⎛⎫∆=-⨯⨯-+> ⎪⎝⎭解得: 1.a >满足条件的最小整数a 的值为2.故选D.【题目点拨】本题考查了一元二次方程根与系数的关系,理解并能运用根的判别式得出方程是解题关键.14、1【解题分析】联立不含m 、n 的方程求出x 与y 的值,代入求出m 、n 的值,即可求出所求式子的值.【题目详解】 联立得:36428x y x y -⎧⎨+⎩=①=②, ①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:1-y=1,解得:y=0,则20x y ⎧⎨⎩==, 将x=2、y=0代入3152mx ny x ny n ==+⎧⎨--⎩,得:21102m n ⎧⎨-⎩==, 解得:1212m n ⎧⎪⎨⎪⎩==,则mn=1,故答案为1.【题目点拨】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15、y 2<y 1<y 2【解题分析】分析:设t=k 2﹣2k+2,配方后可得出t >1,利用反比例函数图象上点的坐标特征可求出y 1、y 2、y 2的值,比较后即可得出结论.详解:设t=k 2﹣2k+2,∵k 2﹣2k+2=(k ﹣1)2+2>1,∴t >1.∵点A (﹣2,y 1)、B (﹣1,y 2)、C (1,y 2)都在反比例函数y=223k k x-+(k 为常数)的图象上, ∴y 1=﹣2t ,y 2=﹣t ,y 2=t , 又∵﹣t <﹣2t <t , ∴y 2<y 1<y 2.故答案为:y 2<y 1<y 2.点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y 1、y 2、y 2的值是解题的关键.161a ≤≤【解题分析】因为A 点的坐标为(a ,a ),则C (a ﹣1,a ﹣1),根据题意只要分别求出当A 点或C 点在曲线上时a 的值即可得到答案.【题目详解】解:∵A 点的坐标为(a ,a ),∴C (a ﹣1,a ﹣1),当C 在双曲线y=2x 时,则a ﹣1=21a -,解得;当A 在双曲线y=2x 时,则a=2a,解得a=2,∴a的取值范围是2≤a≤2+1.故答案为2≤a≤2+1.【题目点拨】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于根据题意找到关键点,然后将关键点的坐标代入反比例函数求得确定值即可.17、5 2【解题分析】根据题意可得阴影部分的面积等于△ABC的面积,因为△ABC的面积是菱形面积的一半,根据已知可求得菱形的面积则不难求得阴影部分的面积.【题目详解】设AP,EF交于O点,∵四边形ABCD为菱形,∴BC∥AD,AB∥CD.∵PE∥BC,PF∥CD,∴PE∥AF,PF∥AE.∴四边形AEFP是平行四边形.∴S△POF=S△AOE.即阴影部分的面积等于△ABC的面积.∵△ABC的面积等于菱形ABCD的面积的一半,菱形ABCD的面积=12AC BD=5,∴图中阴影部分的面积为5÷2=52.18、-2 y (x-1)( x-3)【解题分析】分析:提取公因式法和十字相乘法相结合因式分解即可.详解:原式()2243,y x x =--+ ()()213.y x x =---故答案为()()213.y x x ---点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)乙队单独施工需要1天完成;(2)乙队至少施工l8天才能完成该项工程.【解题分析】(1)先求得甲队单独施工完成该项工程所需时间,设乙队单独施工需要x 天完成该项工程,再根据“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)设乙队施工y 天完成该项工程,根据题意列不等式解不等式即可.【题目详解】(1)由题意知,甲队单独施工完成该项工程所需时间为1÷13=90(天).设乙队单独施工需要x 天完成该项工程,则 301515190x++=, 去分母,得x+1=2x .解得x=1.经检验x=1是原方程的解.答:乙队单独施工需要1天完成.(2)设乙队施工y 天完成该项工程,则 1-363090y ≤ 解得y≥2.答:乙队至少施工l8天才能完成该项工程.20、(1)正方形ABCD 的“关联点”为P 2,P 3;(2)12m ≤≤或12m ≤≤-;(3n ≤≤【解题分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断; (2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E 在直线y =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【题目详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF ’⊥x 轴,GG ’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴1222m ≤≤.根据对称性,可以得出2122m-≤≤-.∴1222m≤≤或2122m-≤≤-.(3)∵3,03M⎛⎫-⎪⎪⎝⎭、N(0,1),∴33OM=,ON=1.∴∠OMN=60°.∵线段MN上的每一个点都是正方形ABCD 的“关联点”,①MN与小⊙Q相切于点F,如图3中,∵QF=1,∠OMN=60°,∴233 QM=∵3 OM=∴33 OQ=.∴13 3Q ⎛⎫⎪ ⎪⎝⎭.②M落在大⊙Q上,如图4中,∵2QM =3OM = ∴32OQ =∴2323Q ⎫⎪⎪⎭. 综上:33233n ≤≤【题目点拨】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.21、DG ∥BC ,理由见解析【解题分析】由垂线的性质得出CD ∥EF ,由平行线的性质得出∠2=∠DCE ,再由已知条件得出∠1=∠DCE ,即可得出结论.【题目详解】解:DG ∥BC ,理由如下:∵CD ⊥AB ,EF ⊥AB ,∴CD ∥EF ,∴∠2=∠DCE ,∵∠1=∠2,∴∠1=∠DCE ,∴DG ∥BC .【题目点拨】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE 是解题关键.22、(1)每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)产品件数增加后,每次运费最少需要1120元.【解题分析】(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件,根据表中的数量关系列出关于x 和y 的二元一次方程组,解之即可,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元,根据(1)的结果结合图表列出W 关于m 的一次函数,再根据“总件数中B 产品的件数不得超过A 产品件数的2倍”,列出关于m 的一元一次不等式,求出m 的取值范围,再根据一次函数的增减性即可得到答案.【题目详解】解:(1)设每次运输的农产品中A 产品有x 件,每次运输的农产品中B 产品有y 件,根据题意得:4525120030201200300x y x y +⎧⎨+-⎩==, 解得:1030x y ⎧⎨⎩==, 答:每次运输的农产品中A 产品有10件,每次运输的农产品中B 产品有30件,(2)设增加m 件A 产品,则增加了(8-m )件B 产品,设增加供货量后得运费为W 元,增加供货量后A 产品的数量为(10+m )件,B 产品的数量为30+(8-m )=(38-m )件,根据题意得:W=30(10+m )+20(38-m )=10m+1060,由题意得:38-m≤2(10+m ),解得:m≥6,即6≤m≤8,∵一次函数W 随m 的增大而增大∴当m=6时,W 最小=1120,答:产品件数增加后,每次运费最少需要1120元.【题目点拨】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.23、(1)36(2)不公平【解题分析】(1)根据题意列表即可;(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.【题目详解】(1)列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种等可能的结果,(2)这个游戏对他们不公平,理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,而P(两次掷的骰子的点数相同)61. 366 ==P(两次掷的骰子的点数的和是6)=5. 36∴不公平.【题目点拨】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24、(1)证明见解析;(2)9﹣3π【解题分析】试题分析:(1)、连接OD,根据平行四边形的性质得出∠AOC=∠OBE,∠COD=∠ODB,结合OB=OD得出∠DOC=∠AOC,从而证明出△COD和△COA全等,从而的得出答案;(2)、首先根据题意得出△OBD为等边三角形,根据等边三角形的性质得出EC=ED=BO=DB,根据Rt△AOC的勾股定理得出AC的长度,然后根据阴影部分的面积等于两个△AOC的面积减去扇形OAD的面积得出答案.试题解析:(1)如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,,∴△COD≌△COA,∴∠CDO=∠CAO=90°,∴CF⊥OD,∴CF是⊙O的切线.(2)∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等边三角形,∴∠4=60°,∵∠4=∠F+∠1,∴∠1=∠2=30°,∵EC∥OB,∴∠E=180°﹣∠4=120°,∴∠3=180°﹣∠E﹣∠2=30°,∴EC=ED=BO=DB,∵EB=6,∴OB=OD═OA=3,在Rt△AOC中,∵∠OAC=90°,OA=3,∠AOC=60°,∴AC=OA•tan60°=3,∴S阴=2•S△AOC﹣S扇形OAD=2××3×3﹣=9﹣3π.25、1【解题分析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果.【题目详解】解:原式=1﹣1×+1+=1﹣+1+=1.【题目点拨】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.26、(1)y=﹣x2+2x+3;D(1,4);(2)证明见解析;(3)m=33;【解题分析】(1)①把C点坐标代入y=﹣x2+2mx+3m2可求出m的值,从而得到抛物线解析式,然后把一般式配成顶点式得到D点坐标;②如图1,先解方程﹣x2+2x+3=0得B(3,0),则可判断△OCB为等腰直角三角形得到∠OBC=45°,再证明△CDE为等腰直角三角形得到∠DCE=45°,从而得到∠DCE=∠BCE;(2)抛物线的对称轴交x轴于F点,交直线BC于G点,如图2,把一般式配成顶点式得到抛物线的对称轴为直线x=m,顶点D的坐标为(m,4m2),通过解方程﹣x2+2mx+3m2=0得B (3m ,0),同时确定C (0,3m 2),再利用相似比表示出GF=2m 2,则DG=2m 2,接着证 明∠DCG=∠DGC 得到DC=DG ,所以m 2+(4m 2﹣3m 2)2=4m 4,然后解方程可求出m . 【题目详解】(1)①把C (0,3)代入y=﹣x 2+2mx+3m 2得3m 2=3,解得m 1=1,m 2=﹣1(舍去), ∴抛物线解析式为y=﹣x 2+2x+3; ∵()222314y x x x =-++=--+, ∴顶点D 为(1,4);②证明:如图1,当y=0时,﹣x 2+2x+3=0,解得x 1=﹣1,x 2=3,则B (3,0), ∵OC=OB ,∴△OCB 为等腰直角三角形, ∴∠OBC=45°, ∵CE ⊥直线x=1, ∴∠BCE=45°, ∵DE=1,CE=1,∴△CDE 为等腰直角三角形, ∴∠DCE=45°, ∴∠DCE=∠BCE ;(2)解:抛物线的对称轴交x 轴于F 点,交直线BC 于G 点,如图2, ()2222234y x mx m x m m =++=--+﹣,∴抛物线的对称轴为直线x=m ,顶点D 的坐标为(m ,4m 2), 当y=0时,﹣x 2+2mx+3m 2=0,解得x 1=﹣m ,x 2=3m ,则B (3m ,0), 当x=0时,y=﹣x 2+2mx+3m 2=3m 2,则C (0,3m 2), ∵GF ∥OC , ∴,GF BF OC BO =即22,33GF mm m= 解得GF=2m 2, ∴DG=4m 2﹣2m 2=2m 2, ∵CB 平分∠DCO , ∴∠DCB=∠OCB , ∵∠OCB=∠DGC , ∴∠DCG=∠DGC , ∴DC=DG ,即m2+(4m2﹣3m2)2=4m4,∴21 3m,=而m>0,∴33m=.【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;灵活应用等腰直角三角形的性质进行几何计算;理解坐标与图形性质,记住两点间的距离公式.27、(1)1;(2)2a+2【解题分析】(1)根据特殊角锐角三角函数值、绝对值的性质即可求出答案;(2)先化简原式,然后将x的值代入原式即可求出答案.【题目详解】解:(1)原式=﹣1+23+2×32=1;(2)原式=a2+2a+1+1﹣a2=2a+2.【题目点拨】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.。

北京市丰台二中2019-2020学年高二上学期期中考试数学试卷Word版含解析

北京市丰台二中2019-2020学年高二上学期期中考试数学试卷Word版含解析

北京市丰台二中2019-2020学年上学期期中考试高二数学试卷一、选择题:每题只有一个正确选项,请把你认为正确的选项填涂在答题卡上.共12小题,每题5分,计60分.1.(5分)复数z=的虚部为()A.2 B.2i C.1 D.i2.(5分)下列语句不是命题的是()A.他的个子很高B.5的平方是20C.北京是中国的一部分D.同角的余角相等3.(5分)已知p,q是简单命题,则“p∧q是真命题”是“¬p是假命题”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件4.(5分)已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能垂直5.(5分)在命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题、否命题、逆否命题中,假命题的个数是()A.0 B.1 C.2 D.36.(5分)如图,E、F、G、H是三棱柱对应边上的中点,过此四点作截面EFGH,则截面以下的几何体是()A.五面体B.棱锥C.棱台D.棱柱7.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<08.(5分)若直线a⊥直线b,直线b⊥平面β,则a与β的关系是()A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β9.(5分)如图,一个几何体的三视图是三个直角三角形,则该几何体的体积为()A.B.C.1 D.210.(5分)如图是长方体被一平面所截后得到的几何体,四边形EFGH为截面,长方形ABCD为长方体的底面,则四边形EFGH的形状为()A.梯形B.平行四边形C.梯形或平行四边形D.不能确定11.(5分)如图,PA垂直于以AB为直径的圆所在的平面,C为圆上异于A、B的任意一点,则有:①PA⊥BC;②BC⊥平面PAC;③AC⊥PB;④PC⊥BC.上述关系正确的题号是()A.①②③④B.①②④C.①②③D.①③④12.(5分)如图,DA⊥平面ABC,ED⊥平面BCD,DE=DA=AB=AC,∠BAC=120°,M为BC的中点,则直线EM 与平面BCD所成角的正弦值为()A.B.C.D.二、填空题:请把你认为正确的结果填写在答题卡对应位置上.共6小题,每题5分,总计30分. 13.(5分)在平面上,若两个正三角形的边长的比为1:3,则它们的面积比为;类似地:在空间,两个正四面体的棱长的比为1:3,则它们的体积比为.14.(5分)将“菱形的对角线互相平分”写成三段论的形式,其大前提为:.15.(5分)若=4+3i,=﹣1﹣i(i是虚数单位),则=(用复数代数式表示)16.(5分)用一个平面去截一个球,若与球心距离为1的截面圆的半径也为1,则该球的体积为.17.(5分)已知平面α,β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.当满足条件时,有m∥β(填所选条件的序号)18.(5分)如图(1),在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP,D为AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,得到四棱锥P﹣ABCD,如图(2).则在四棱锥P﹣ABCD中,AP 与平面EFG的位置关系为.三、解答题:要写出证明过程或解答过程.19.(15分)如图,在正方体ABCD=A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.(1)求证:AD1∥平面EFG;(2)求证:平面AB1D1∥平面EFG;(3)求异面直线B1D1与EG所成的角度数.20.(15分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD.(1)求证:CD⊥平面PAD;(2)求证:平面PAB⊥平面PCD;(3)除了已知和(2)中的两个平面互相垂直以外,在不添加其它点和线的情况下,图中还有哪些平面是互相垂直的?21.(15分)在数列{a n}中,已知a1=1,且a n+1=.(1)求a2,a3,a4;(2)猜想数列{a n}的通项公式;(3)试用数学归纳法证明(2)中猜想.22.(15分)已知函数f(x)=a x+(a>1).(1)试比较f(﹣3)与f(﹣2),f(0)与f(1)的大小;(2)写出函数f(x)的单调递增区间;(只写结果,不用证明)(3)用反证法证明方程f(x)=0没有负数根.北京市丰台二中2019-2020学年上学期期中考试高二数学试卷参考答案一、选择题:每题只有一个正确选项,请把你认为正确的选项填涂在答题卡上.共12小题,每题5分,计60分.1.(5分)复数z=的虚部为()A.2 B.2i C.1 D.i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数代数形式的乘除法法则化简复数z,从而求得它的虚部.解答:解:复数z====i,故复数z的虚部为1,故选:C.点评:本题主要考查复数的基本概念,两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)下列语句不是命题的是()A.他的个子很高B.5的平方是20C.北京是中国的一部分D.同角的余角相等考点:四种命题.专题:简易逻辑.分析:本题考查命题的定义,根据定义逐项判断即可,属于基础题目.解答:解:A、无法判断真假,不是命题,A错误,B,C,D可以判断真假,是命题,正确,故选:A.点评:解题关键是定义:命题是能够判断真假的陈述句.3.(5分)已知p,q是简单命题,则“p∧q是真命题”是“¬p是假命题”的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据复合命题之间的关系结合充分条件和必要条件的定义即可得到结论.解答:解:若p∧q是真命题,则p,q都是真命题,则¬p是假命题,即充分性成立,若¬p是假命题,则p是真命题,此时p∧q是真命题,不一定成立,即必要性不成立,故“p∧q是真命题”是“¬p是假命题”的充分不必要条件,故选:A点评:本题主要考查充分条件和必要条件的判断,根据复合命题真假之间的关系是解决本题的关键.4.(5分)已知a、b是两条异面直线,c∥a,那么c与b的位置关系()A.一定是异面B.一定是相交C.不可能平行D.不可能垂直考点:空间中直线与直线之间的位置关系.专题:证明题.分析:由平行公理,若c∥b,因为c∥a,所以a∥b,与a、b是两条异面直线矛盾.异面和相交均有可能.解答:解:a、b是两条异面直线,c∥a,那么c与b异面和相交均有可能,但不会平行.因为若c∥b,因为c∥a,由平行公理得a∥b,与a、b是两条异面直线矛盾.故选C点评:本题考查空间的两条直线的位置关系的判断、平行公理等知识,考查逻辑推理能力.5.(5分)在命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题、否命题、逆否命题中,假命题的个数是()A.0 B.1 C.2 D.3考点:四种命题.专题:简易逻辑.分析:结合互为逆否的两个命题真假性相同,逐一分析命题“已知a,b都是实数,若a+b>0,则a,b 不全为0”的逆命题、否命题、逆否命题真假,可得答案.解答:解:命题“已知a,b都是实数,若a+b>0,则a,b不全为0”为真命题,故其逆否命题为真命题;命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题为“已知a,b都是实数,若a,b不全为0,则a+b>0”为假命题;故原命题的否命题也为假命题;故命题“已知a,b都是实数,若a+b>0,则a,b不全为0”的逆命题、否命题、逆否命题中,假命题的个数是2个,故选:C点评:本题考查四种命题的真假,本题解题的关键是知道原命题与逆否命题具有相同的真假性,否命题与逆命题具有相同的真假性.6.(5分)如图,E、F、G、H是三棱柱对应边上的中点,过此四点作截面EFGH,则截面以下的几何体是()A.五面体B.棱锥C.棱台D.棱柱考点:平面的基本性质及推论.专题:空间位置关系与距离.分析:根据棱柱的结构特征进行判断.解答:解:截面以下的几何体满足:有两个平面互相平行,其它侧面都是平行四边形,相邻侧面的棱互相平行,这样的立体图形为四棱柱,故选:D.点评:主要考查了棱柱的结构特征,属于容易题.7.(5分)命题“对任意x∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0 B.对任意x∈R,使得x2<0C.存在x0∈R,都有D.不存在x∈R,使得x2<0考点:命题的否定;全称命题.专题:证明题.分析:根据全称命题“∀x∈M,p(x)”的否定为特称命题:“∃x0∈M,¬p(x)”即可得出.解答:解:根据全称命题的否定是特称命题可得:命题“对任意x∈R,都有x2≥0”的否定为“∃x0∈R,使得”.故选A.点评:熟练掌握全称命题“∀x∈M,p(x)”的否定为特称命题“∃x0∈M,¬p(x)”是解题的关键.8.(5分)若直线a⊥直线b,直线b⊥平面β,则a与β的关系是()A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β考点:平面与平面之间的位置关系.专题:空间位置关系与距离.分析:根据线面垂直的性质、线面平行的判定,即可得出结论.解答:解:直线a⊥直线b,直线a⊥平面β,b⊂β,或b⊄β,若b⊄β,则b∥β,∴b⊂β,或b∥β.故选:D.点评:本题考查线面垂直的性质、线面平行的判定,考查学生分析解决问题的能力,属于基础题.9.(5分)如图,一个几何体的三视图是三个直角三角形,则该几何体的体积为()A.B.C.1 D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为三棱锥.解答:解:该几何体为三棱锥,其体积为V=××3×1×2=1,故选C.点评:三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.10.(5分)如图是长方体被一平面所截后得到的几何体,四边形EFGH为截面,长方形ABCD为长方体的底面,则四边形EFGH的形状为()A.梯形B.平行四边形C.梯形或平行四边形D.不能确定考点:平面的基本性质及推论.专题:空间位置关系与距离.分析:首先,分产生的截面四边形的四个顶点的位置进行讨论.解答:解:如图示时,该截面四边形为平行四边形,当截面产生的两个四个交点,其中两个为下底面的产生的,两个为截面与上底面产生时,此时截面四边形为梯形,故截面四边形可能为梯形或平行四边形,故选:C.点评:本题重点考查了空间中棱柱、棱锥、棱台的结构特征,属于容易题.注意分类讨论思想在求解问题中的灵活运用.11.(5分)如图,PA垂直于以AB为直径的圆所在的平面,C为圆上异于A、B的任意一点,则有:①PA⊥BC;②BC⊥平面PAC;③AC⊥PB;④PC⊥BC.上述关系正确的题号是()A.①②③④B.①②④C.①②③D.①③④考点:直线与平面垂直的性质.专题:空间位置关系与距离.分析:由PA⊥以AB为直径的圆所在的平面,可得A正确,由圆的性质可得AC⊥BC,可得B正确,由B 及线面垂直的性质可得D正确.解答:解:由题意可得AC⊥BC,由PA⊥以AB为直径的圆所在的平面可知PA⊥BC,故①正确,⇒BC⊥平面PAC,故②正确,对于③假设AC⊥PB,结合选项②,可得AC⊥平面PBC,则AC⊥PC,又AC⊥PA,故③不正确,利用直线与平面垂直的性质可得BC⊥PC,故④正确,故选B.点评:本题主要考查了三垂线定理的运用,涉及到了“线面垂直”与“线线垂直”的转化,要求考生熟练掌握基本概念、基本定理.12.(5分)如图,DA⊥平面ABC,ED⊥平面BCD,DE=DA=AB=AC,∠BAC=120°,M为BC的中点,则直线EM 与平面BCD所成角的正弦值为()A.B.C.D.考点:直线与平面所成的角.专题:空间位置关系与距离;空间角.分析:由ED⊥平面BCD,可得DM为EM在平面BCD上的射影,即∠EMD为EM与平面BCD所成角.解三角形可得直线EM与平面BCD所成角的正弦值;解答:解:∵ED⊥平面BCD,∴DM为EM在平面BCD上的射影,∴∠EMD为EM与平面BCD所成角.∵DA⊥平面ABC,AB⊂平面ABC,AC⊂平面ABC,∴DA⊥AB,DA⊥AC,设DE=DA=AB=AC=a,则DC=DB=a,在△ABC中,∠BAC=120°,∴BC=a,又∵M为BC中点,∴DM⊥BC,BM=BC=a,∴DM=a.在Rt△EDM中,EM==,∴sin∠EMD==,故选:A点评:本题考查的知识点是直线与平面的夹角,直线与平面垂直的判定定理,直线与平面垂直的性质定理,难度中档.二、填空题:请把你认为正确的结果填写在答题卡对应位置上.共6小题,每题5分,总计30分. 13.(5分)在平面上,若两个正三角形的边长的比为1:3,则它们的面积比为;类似地:在空间,两个正四面体的棱长的比为1:3,则它们的体积比为.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:①由正三角形的面积计算公式S=(a为边长),可得=.②如图所示,设正四面体的棱长为x,则AO=,可得h==.利用它们的体积比==即可得出.解答:解:①由正三角形的面积计算公式S=(a为边长).∴==.②如图所示,设正四面体的棱长为x,则AO==.∴h==.∵两个正四面体的棱长的比为1:3,则它们的体积比===.故答案为:.点评:本题考查了面积比、体积比与棱长比之间的关系、三角形的面积计算公式、棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题.14.(5分)将“菱形的对角线互相平分”写成三段论的形式,其大前提为:“平行四边形的对角线互相平分”.考点:演绎推理的基本方法.专题:推理和证明.分析:由演绎推理的基本规则,大前提是一个一般性的结论,本题中研究的是平行四边形的性质,可得答案.解答:解:将“菱形的对角线互相平分”写成三段论的形式为:大前提:“平行四边形的对角线互相平分”,小前提:“菱形是平行四边形”,结论:“菱形的对角线互相平分”,故答案为:“平行四边形的对角线互相平分”点评:本题考查进行简单的演绎推理,解题的关键是对演绎推理的规则有着熟练的掌握,再就是熟练掌握了平行四边形的性质,本题是概念型题,知识性理论性较强.15.(5分)若=4+3i,=﹣1﹣i(i是虚数单位),则=﹣5﹣4i(用复数代数式表示)考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:直接利用向量的坐标运算结合复数的加法运算得答案.解答:解:∵=4+3i,=﹣1﹣i(i是虚数单位),则=﹣=﹣1﹣i﹣(4+3i)=﹣5﹣4i.故答案为:﹣5﹣4i.点评:考查了复数的代数表示法及其几何意义,训练了平面向量的坐标运算,是基础题.16.(5分)用一个平面去截一个球,若与球心距离为1的截面圆的半径也为1,则该球的体积为π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:求出小圆的半径,利用球心到该截面的距离为1,小圆的半径,通过勾股定理求出球的半径,即可求出球的体积.解答:解:用一平面去截球所得截面的面积为π,所以小圆的半径为1已知球心到该截面的距离为1,所以球的半径为r=所以球的体积为:πr3=π故答案为:π.点评:本题考查球的小圆的半径,球心到该截面的距离,球的半径之间的关系,考查计算能力,是基础题.17.(5分)已知平面α,β和直线m,给出条件:①m∥α;②m⊥α;③m⊂α;④α⊥β;⑤α∥β.当满足条件③⑤时,有m∥β(填所选条件的序号)考点:直线与平面平行的判定.专题:证明题;空间位置关系与距离.分析:要使m∥β,根据线面平行的判定定理和定义,只需m与β内的一条直线平行或者m在与β平行的平面内即可.解答:解:根据面面平行的性质,可得m⊂α,α∥β时,m∥β.故满足条件③⑤时,有m∥β.故答案为:③⑤.点评:本题考查直线与平面平行的判定,一般有两种思路:判定定理和定义,要注意根据条件选择使用.18.(5分)如图(1),在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=AP,D为AP的中点,E,F,G分别为PC,PD,CB的中点,将△PCD沿CD折起,得到四棱锥P﹣ABCD,如图(2).则在四棱锥P﹣ABCD中,AP 与平面EFG的位置关系为平行.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:首先,可以取AD的中点为H,连接FH,得到FH∥PA,然后,得到AP∥平面EFG.解答:解:可以取AD的中点为H,连接FH,因为F为中点,所以FH∥PA,∴PA∥平面EFHG,∴AP∥平面EFG.故答案为:平行.点评:本题重点考查了空间中点线面的位置关系、直线与平面平行等知识,属于中档题.若题目中出现中点问题,添加辅助线的口诀为:有中点连中点,得到中位线;无中点,取中点,相连得到中位线.三、解答题:要写出证明过程或解答过程.19.(15分)如图,在正方体ABCD=A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.(1)求证:AD1∥平面EFG;(2)求证:平面AB1D1∥平面EFG;(3)求异面直线B1D1与EG所成的角度数.考点:异面直线及其所成的角;直线与平面平行的判定;平面与平面平行的判定.专题:空间位置关系与距离.分析:(1)首先,连结C1B,然后,得到四边形ABC1D1是平行四边形,从而得证;(2)根据(1)可以证明AB1∥平面EFG,从而证明;(3)根据平行关系,得到∠FEG就是异面直线B1D1与EG所成的角,然后放到三角形中求解.解答:解:(1)连结C1B,∵AB∥B1C1,且AB=B1C1∴四边形ABC1D1是平行四边形,∴AD1∥BC1,又∵E、G为中点,∴BC1∥EG,∴AD1∥EG,∴AD1∥平面EFG;(2)结合(1),同理可以证明AB1∥平面EFG,∵AB1∩AD1=A,∴平面AB1D1∥平面EFG;(3)∵BD∥B1D1,且BD∥EF,∴∠FEG就是异面直线B1D1与EG所成的角,在△EFG中,显然为等边三角形,∴异面直线B1D1与EG所成的角为60°.点评:本题重点考查了空间中平行关系、异面直线所成的角等知识,考查比较综合,解题关键是学会转化思想在立体几何中的应用.20.(15分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA=PD=AD.(1)求证:CD⊥平面PAD;(2)求证:平面PAB⊥平面PCD;(3)除了已知和(2)中的两个平面互相垂直以外,在不添加其它点和线的情况下,图中还有哪些平面是互相垂直的?考点:平面与平面垂直的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(1)只要证明CD垂直与平面PAD的两条相交直线;(2)结合已知和(1)得到PA⊥面PDC,再利用面面垂直的判定定理证明;(3)结合(1,2)利用线面垂直和面面垂直的判定得到其余的垂直平面.解答:(1)证明:∵底面ABCD是正方形,∴CD⊥AD,∵侧面PAD⊥底面ABCD,PA=PD过P作PE⊥AD,垂足为E,∴PE⊥底面ABCD,∴PE⊥CD,∵AD∩PE=E,∴CD⊥平面PAD;(2)证明:由(1)可知CD⊥平面PAD.∴CD⊥PA.又∵PA=PD=AD,∴△PAD是等腰直角三角形,且∠APD=90°,即PA⊥PDCD∩PD=D,且CD、PD⊂面PDC∴PA⊥面PDC又PA⊂面PAB,∴面PAB⊥面PDC.(3)除了已知和(2)中的两个平面互相垂直以外,在不添加其它点和线的情况下,图中还有平面PCD⊥平面PAD,平面ABCD⊥平面PAD,平面PAB⊥平面PAD.点评:本题考查了线面垂直的判定定理和性质定理的运用以及面面垂直的判定,关键是将线面关系和面面关系转化为线线关系解答.21.(15分)在数列{a n}中,已知a1=1,且a n+1=.(1)求a2,a3,a4;(2)猜想数列{a n}的通项公式;(3)试用数学归纳法证明(2)中猜想.考点:数学归纳法;数列递推式.专题:计算题;证明题;等差数列与等比数列;点列、递归数列与数学归纳法.分析:(1)利用数列递推式,代入计算可得结论;(2)由a1=,a2=,a3=,a4=,即可猜想得到通项公式;(3)利用(2)的猜想a n的表达式,运用数学归纳法证明.注意两个步骤缺一不可,特别必须运用假设证明n=k+1,也成立.解答:解:(1)∵a1=1,a n+1=,∴a2==,a3==,a4==.(2)由(1),a1=,a2=,a3=,a4=,可以猜想a n=.(3)用数学归纳法证明:ⅰ)当n=1时,a1==1,所以当n=1时猜想成立.ⅱ)假设当n=k(k∈N*)时猜想成立,即a k=,当n=k+1时,a k+1===,所以当n=k+1时猜想也成立.由ⅰ)和ⅱ)可知,猜想对任意的n∈N*都成立.所以a n=.点评:本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,属于中档题.22.(15分)已知函数f(x)=a x+(a>1).(1)试比较f(﹣3)与f(﹣2),f(0)与f(1)的大小;(2)写出函数f(x)的单调递增区间;(只写结果,不用证明)(3)用反证法证明方程f(x)=0没有负数根.考点:指数函数综合题.专题:函数的性质及应用;导数的综合应用.分析:(1)求出f(﹣3),f(﹣2),f(0),f(1),并根据指数函数的单调性即可比较f(﹣3)与f (﹣2),f(0)与f(1)的大小;(2)求f′(x),并判断f′(x)的符号,从而写出f(x)的单调递增区间;(3)假设f(x)有负数根,也就是存在x<0,使得,然后将该方程变成:,由0<a x<1便得到,解该不等式得到的x的范围应该和x<0矛盾,从而说明假设不成立.解答:解:(1)f(﹣3)=,f(﹣2)=a﹣2+4;∵a>1;∴a﹣3<a﹣2,;∴f(﹣3)<f(﹣2);同理可得f(0)<f(1);(2)f′(x)=>0;∴函数f(x)的单调递增区间为(﹣∞,﹣1),(﹣1,+∞);(3)证明:假设f(x)=0有负数根;即存在x<0,使成立;∴;∵0<a x<1;∴,解得,与x<0矛盾;∴假设不成立;即方程f(x)=0没有负数根.点评:考查指数函数的单调性,求导数,并判断导数符号从而求出函数的单调区间的方法,以及利用反证法证明问题时找矛盾的方法与过程.。

北京丰台区第二中学九年级上册期末精选试卷检测题

北京丰台区第二中学九年级上册期末精选试卷检测题

北京丰台区第二中学九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了a%,且储备猪肉的销量占总销量的34,两种猪肉销售的总金额比3月20日提高了1%10a,求a的值.【答案】(1)去年年底猪肉的最低价格为每千克50元;(2)a的值为20.【解析】【分析】(1)设去年年底猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设3月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【详解】解:(1)设去年年底猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥200,解得:x≥50.答:去年年底猪肉的最低价格为每千克50元;(2)设3月20日的总销量为1;根据题意得:60(1﹣a%)×34(1+a%)+60×14(1+a%)=60(1+110a%),令a%=y,原方程化为:60(1﹣y)×34(1+y)+60×14(1+y)=60(1+110y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.2.某中心城市有一楼盘,开发商准备以每平方米7000元价格出售,由于国家出台了有关调控房地产的政策,开发商经过两次下调销售价格后,决定以每平方米5670元的价格销售.(1)求平均每次下调的百分率;(2)房产销售经理向开发商建议:先公布下调5%,再下调15%,这样更有吸引力,请问房产销售经理的方案对购房者是否更优惠?为什么?【答案】(1)平均每次下调的百分率为10%.(2)房产销售经理的方案对购房者更优惠. 【解析】 【分析】(1)根据利用一元二次方程解决增长率问题的要求,设出未知数,然后列方程求解即可; (2)分别求出两种方式的增长率,然后比较即可. 【详解】(1)设平均每次下调x%,则7000(1﹣x )2=5670,解得:x 1=10%,x 2=190%(不合题意,舍去); 答:平均每次下调的百分率为10%.(2)(1﹣5%)×(1﹣15%)=95%×85%=80.75%,(1﹣x )2=(1﹣10%)2=81%. ∵80.75%<81%,∴房产销售经理的方案对购房者更优惠.3.如图,∠ AOB =90°,且点A ,B 分别在反比例函数1k y x =(x <0),2ky x=(x >0)的图象上,且k 1,k 2分别是方程x 2-x -6=0的两根. (1)求k 1,k 2的值;(2)连接AB ,求tan ∠ OBA 的值.【答案】(1)k 1=-2,k 2=3. (2)tan∠OBA =63. 【解析】解:(1)∵k 1,k 2分别是方程x 2-x -6=0的两根,∴解方程x 2-x -6=0,得x 1=3,x 2=-2.结合图像可知:k 1<0,k 2>0,∴k 1=-2,k 2=3.(2)如图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥y 轴于点D .[来源:学&科&网Z&X&X&K]由(1)知,点A ,B 分别在反比例函数2y x =-(x <0),3y x=(x >0)的图象上, ∴S △ACO =12×2-=1 ,S △ODB =12×3=32.∵∠ AOB =90°, ∴∠ AOC +∠ BOD =90°,∵∠ AOC +∠ OAC =90°,∴∠ OAC =∠ BOD . 又∵∠ACO =∠ODB =90°,∴△ACO ∽△ODB .∴S S ACO ODB ∆∆=2OA OB ⎛⎫ ⎪⎝⎭=23,∴OA OB =±6(舍负取正),即OA OB =6. ∴在Rt △AOB 中,tan ∠ OBA =OA OB =6.4.已知关于x 的二次函数22(21)1y x k x k =--++的图象与x 轴有2个交点.(1)求k 的取值范围;(2)若图象与x 轴交点的横坐标为12,x x ,且它们的倒数之和是32-,求k 的值. 【答案】(1)k <-34;(2)k=﹣1 【解析】试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b 2-4ac 的范围可求解出k 的值;(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k 的值.试题解析:(1)∵二次函数y=x 2-(2k-1)x+k 2+1的图象与x 轴有两交点, ∴当y=0时,x 2-(2k-1)x+k 2+1=0有两个不相等的实数根. ∴△=b 2-4ac=[-(2k-1)]2-4×1×(k 2+1)>0. 解得k <-34; (2)当y=0时,x 2-(2k-1)x+k 2+1=0. 则x 1+x 2=2k-1,x 1•x 2=k 2+1, ∵=== 32-,解得:k=-1或k= 13-(舍去), ∴k=﹣15.定南县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售. (1)求平均每次下调的百分率;(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【答案】(1)10%;(2)方案② 【解析】试题分析:首先设下调的百分率为x ,根据题意列出方程进行求解,得出答案;分别求出两种方案所需要花费的钱数,然后进行比较.试题解析:(1)设平均每次下调的百分率是x ,依题意得,4000(1-x )2=3240 解之得:x=0.1=10%或x=1.9(不合题意,舍去) 答:平均每次下调的百分率是10%.(2)方案①实际花费=100×3240×98%=317520元 方案②实际花费=100×3240-100×80=316000元∵317520>316000 ∴方案②更优惠 考点:一元二次方程的应用二、初三数学 二次函数易错题压轴题(难)6.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣4≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+4,(当a =2时取等号)∴0<﹣b∴﹣4≤b <0,即b 的取值范围是﹣4≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.7.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G . (1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >-【解析】 【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】解:(1)当1m =-时,()22613y x x x =++≥把(),1P a 代入,得22611a a ++=解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫--⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△ 解得:m=0(舍去)或29m =-由题意可知抛物线的对称轴为直线x=32m 且x ≥3m∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.8.如图,若抛物线y =x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =x ﹣3经过点B ,C . (1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC .①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或2(舍去0和2),故x =3﹣2,则x 2﹣2x ﹣3=2﹣42, 故点P (3﹣2,2﹣42).综上,点P 的坐标为:(2,﹣3)或(3﹣2,2﹣42). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.9.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】 【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=, ①∠MAN=∠ABD 时, (Ⅰ)当△ANM ∽△ABD 时, 直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-,则直线AM 的表达式为:3(2)4y x =--,故点M (0,32),AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32),故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0);②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时,∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BDAM AN==, 解得:AN=94,故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.10.如图,已知二次函数22(0)y ax ax c a 的图象与x 轴负半轴交于点A (-1,0),与y 轴正半轴交与点B ,顶点为P ,且OB=3OA ,一次函数y=kx+b 的图象经过A 、B .(1) 求一次函数解析式;(2)求顶点P 的坐标;(3)平移直线AB 使其过点P ,如果点M在平移后的直线上,且3tan 2OAM ∠=,求点M 坐标;(4)设抛物线的对称轴交x 轴与点E ,联结AP 交y 轴与点D ,若点Q 、N 分别为两线段PE 、PD 上的动点,联结QD 、QN ,请直接写出QD+QN 的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-) (445【解析】【分析】(1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M 在x 轴下方时,有31312x x +-=+,∴59x =- ∴25(,9M - 23-) (4)作点D 关于直线x=1的对称点D’,过点D’作D’N ⊥PD 于点N当-x 2+2x+3=0时,解得,x=-1或x=3,∴A (-1,0),P 点坐标为(1,4),则可得PD 解析式为:y=2x+2,令x=0,可得y=2,∴D (0,2),∵D 与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD ,设ND′解析式为y=kx+b ,则k=-12,即y=-12x+b , 将D′(2,2)代入,得2=-12×2+b ,解得b=3, 可得函数解析式为y=-12x+3, 将两函数解析式组成方程组得:13222y x y x ⎧=-+⎪⎨⎪=+⎩,解得25145 xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214,)55,由两点间的距离公式:d=222144522555⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴所求最小值为455【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.三、初三数学旋转易错题压轴题(难)11.如图,在矩形ABCD中,6AB cm=,8AD cm=,连接BD,将ABD△绕B点作顺时针方向旋转得到A B D'''△(B′与B重合),且点D'刚好落在BC的延长上,A D''与CD相交于点E.(1)求矩形ABCD与A B D'''△重叠部分(如图1中阴影部分A B CE'')的面积;(2)将A B D'''△以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与A B D'''△重叠部分的面积为y,移动的时间为x,请你直接写出y关于x的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得AA B''△成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)2452cm ;(2)22331624(0)22588020016(4)3335x x x y x x x ⎧--+≤<⎪⎪=⎨⎪-+≤≤⎪⎩;(3)存在,使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、95. 【解析】【分析】(1)先用勾股定理求出BD 的长,再根据旋转的性质得出10B D BD cm ''==,2CD B D BC cm '=''-=,利用B D A ∠'''的正切值求出CE 的值,利用三角形的面积差即可求阴影部分的面积;(2)分类讨论,当1605x ≤<时和当1645x ≤≤时,分别列出函数表达式; (3)分类讨论,当AB A B '=''时;当AA A B '=''时;当AB AA '='时,根据勾股定理列方程即可.【详解】解:(1)6AB cm =,8AD cm =,10BD cm ∴=,根据旋转的性质可知10B D BD cm ''==,2CD B D BC cm '=''-=,tan A B CE B D A A D CD '''''∠==''', 682CE ∴=, 32CE cm ∴=, ()28634522222A B CE A B D CED S S S cm ''''''⨯∴==-⨯÷=-; (2)①当1605x ≤<时,22CD x '=+,32CE x =, 233+22CD E S x x '∴=△, 22133368242222y x x x ∴=⨯⨯-=--+; ②当1645x ≤≤时,102BC x =-,()41023CE x =- ()221488020010223333y x x x ∴=⨯-=-+. (3)①如图1,当AB A B '=''时,0x =秒;②如图2,当AA A B '=''时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2236AN A N +'=,222418623655x ⎛⎫⎛⎫∴-++= ⎪ ⎪⎝⎭⎝⎭, 解得:6695x -=秒,(6695x --=舍去); ③如图2,当AB AA '='时,1825A N BM BB B M x '=='+'=+,245A M NB '==, 2222AB BB AN A N +'=+'22224183646255x x ⎛⎫⎛⎫∴+=-++ ⎪ ⎪⎝⎭⎝⎭ 解得:32x =秒. 综上所述:使得AA B ''△成为等腰三角形的x 的值有:0秒、32秒、669-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.12.如图一,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)得到矩形A 1BC 1D 1,点A 1在边CD 上.(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC=,求n m 的值. (3)如图二,在(2)的条件下,直线AB 上有一点P ,BP=2,点E 是直线DC 上一动点,在BE 左侧作矩形BEFG 且始终保持BE n BG m =,设AB=33E 移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)56π;(2)3;(3)存在,63+【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=-推出16A CEC=,推出A1C=26nm•,推出BH=A1C=26nm•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到3FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt△A1HB中,∵BA1=BA=m=2,∴BA1=2HA1,∴∠ABA1=30°,∴旋转角为30°,∵22125+=∴D 到点D 1所经过路径的长度=30551806ππ⋅⋅=; (2)∵△BCE ∽△BA 2D 2,∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=-, ∴16A C EC=, ∴A 1C=26n m⋅, ∴BH=A 1C=2226n m n m -=⋅, ∴42226n m n m-=⋅, ∴m 4﹣m 2n 2=6n 4, ∴242416n n m m-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,∴3FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴FG F FM FE D ==,∵∠DFM=90°,tan FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴FM DM =;在矩形ABCD 中,有AD AB =3=,则3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=+【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.13.如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG=2OD ,OE=2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE .(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.【答案】(1)见解析;(2)①30°或150°,②AF'的长最大值为222+,此时315α=.【解析】【分析】(1)延长ED交AG于点H,易证△AOG≌△DOE,得到∠AGO=∠DEO,然后运用等量代换证明∠AHE=90°即可;(2)①在旋转过程中,∠OAG′成为直角有两种情况:α由0°增大到90°过程中,当∠OAG′=90°时,α=30°,α由90°增大到180°过程中,当∠OAG′=90°时,α=150°;②当旋转到A、O、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=2+2,此时α=315°.【详解】(1)如图1,延长ED交AG于点H,∵点O是正方形ABCD两对角线的交点,∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,90OAOD AOG DOE OG OE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴△AOG ≌△DOE , ∴∠AGO=∠DEO , ∵∠AGO+∠GAO=90°, ∴∠GAO+∠DEO=90°, ∴∠AHE=90°, 即DE ⊥AG ;(2)①在旋转过程中,∠OAG′成为直角有两种情况: (Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时, ∵OA=OD=12OG=12OG′, ∴在Rt △OAG′中,sin ∠AG′O=OA OG '=12, ∴∠AG′O=30°, ∵OA ⊥OD,OA ⊥AG′, ∴OD ∥AG′,∴∠DOG′=∠AG′O=30°∘, 即α=30°;(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时, 同理可求∠BOG′=30°, ∴α=180°−30°=150°. 综上所述,当∠OAG′=90°时,α=30°或150°. ②如图3,当旋转到A. O 、F′在一条直线上时,AF′的长最大,∵正方形ABCD的边长为1,∴OA=OD=OC=OB=2,∵OG=2OD,∴OG′=OG=2,∴OF′=2,∴AF′=AO+OF′=22+2,∵∠COE′=45°,∴此时α=315°.【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,掌握正方形的四条边相等、四个角相等,旋转变换的性质是解题的关键,注意特殊角的三角函数值的应用.14.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC=612.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.15.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.【解析】试题分析:(1)证AD=BE,根据三角形的中位线推出FH=12AD,FH∥AD,FG=12BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=12AD,FH∥AD,FG=12BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证∴FH=12AD ,FH ∥AD ,FG=12BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE ,在△ACD 和△BCE 中AC BC ACD BCE CE CD ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.四、初三数学 圆易错题压轴题(难)16.如图,在直角体系中,直线AB 交x 轴于点A(5,0),交y 轴于点B,AO 是⊙M 的直径,其半圆交AB 于点C,且AC=3.取BO 的中点D,连接CD 、MD 和OC . (1)求证:CD 是⊙M 的切线;(2)二次函数的图象经过点D 、M 、A,其对称轴上有一动点P,连接PD 、PM,求△PDM 的周长最小时点P 的坐标;(3)在(2)的条件下,当△PDM 的周长最小时,抛物线上是否存在点Q ,使S △PDM =6S △QAM ?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】解:(1)证明:连接CM ,∵OA 为⊙M 直径,∴∠OCA=90°.∴∠OCB=90°. ∵D 为OB 中点,∴DC=DO .∴∠DCO=∠DOC . ∵MO=MC ,∴∠MCO=∠MOC . ∴.又∵点C 在⊙M 上,∴DC 是⊙M 的切线. (2)∵A 点坐标(5,0),AC=3 ∴在Rt △ACO 中,.∴545(x )x 5)12152-=--(,∴,解得10OD 3=. 又∵D 为OB 中点,∴1552+.∴D 点坐标为(0,154).连接AD ,设直线AD 的解析式为y=kx+b ,则有解得.∴直线AD 为.∵二次函数的图象过M (56,0)、A(5,0),∴抛物线对称轴x=154. ∵点M 、A 关于直线x=154对称,设直线AD 与直线x=154交于点P , ∴PD+PM 为最小.又∵DM 为定长,∴满足条件的点P 为直线AD 与直线x=154的交点. 当x=154时,45y (x )x 5)152=--(. ∴P 点的坐标为(154,56). (3)存在. ∵,5y a(x )x 5)2=--(又由(2)知D (0,154),P (154,56), ∴由,得,解得y Q =±103.∵二次函数的图像过M(0,56)、A(5,0), ∴设二次函数解析式为,又∵该图象过点D (0,154),∴,解得a=512. ∴二次函数解析式为.又∵Q 点在抛物线上,且y Q =±103. ∴当y Q =103时,,解得x=15524-或x=1552+;当y Q =512-时,,解得x=154. ∴点Q 的坐标为(15524-,103),或(15524+103),或(154,512-).【解析】试题分析:(1)连接CM ,可以得出CM=OM ,就有∠MOC=∠MCO ,由OA 为直径,就有∠ACO=90°,D 为OB 的中点,就有CD=OD ,∠DOC=∠DCO ,由∠DOC+∠MOC=90°就可以得出∠DCO+∠MCO=90°而得出结论.(2)根据条件可以得出2222OC OA AC 534=-=-=和OC OBtan OAC AC OA∠==,从而求出OB 的值,根据D 是OB 的中点就可以求出D 的坐标,由待定系数法就可以求出抛物线的解析式,求出对称轴,根据轴对称的性质连接AD 交对称轴于P ,先求出AD 的解析式就可以求出P 的坐标. (3)根据PDM DAM PAM S S S ∆∆∆=-,求出Q 的纵坐标,求出二次函数解析式即可求得横坐标.17.在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、 AD 、BD .已知圆O 的半径长为5,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长;(2)如图2,设AC=x ,ACO OBDSS=y ,求y 关于x 的函数解析式并写出定义域;(3)若四边形AOBD 是梯形,求AD 的长.【答案】(1)2;(2)2825x x x -+(0<x <8);(3)AD=145或6.【解析】 【分析】(1)根据垂径定理和勾股定理可求出OC 的长.(2)分别作OH ⊥AB ,DG ⊥AB ,用含x 的代数式表示△ACO 和△BOD 的面积,便可得出函数解析式.(3)分OB ∥AD 和OA ∥BD 两种情况讨论. 【详解】解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB=8, ∴OD ⊥AB ,AC=12AB=4, 在Rt △AOC 中,∵∠ACO=90°,AO=5, ∴22AO AC -,∴OD=5, ∴CD=OD ﹣OC=2;(2)如图2,过点O 作OH ⊥AB ,垂足为点H , 则由(1)可得AH=4,OH=3, ∵AC=x ,∴CH=|x ﹣4|,在Rt △HOC 中,∵∠CHO=90°,AO=5,∴∴CD=OD ﹣OC=5过点DG ⊥AB 于G , ∵OH ⊥AB , ∴DG ∥OH , ∴△OCH ∽△DCG , ∴OH OCDG CD=, ∴DG=OH CD OC⋅35, ∴S △ACO =12AC ×OH=12x ×3=32x , S △BOD =12BC (OH +DG )=12(8﹣x )×(335)=32(8﹣x )∴y=ACO OBDS S=()323582x x -(0<x <8)(3)①当OB ∥AD 时,如图3,过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF=AE , ∴S=12AB•OH=12OB•AE , AE=AB OH OB ⋅=245=OF , 在Rt △AOF 中,∠AFO=90°,AO=5,∴75∵OF 过圆心,OF ⊥AD ,∴AD=2AF=145.②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得DG=BM=245, 在Rt △GOD 中,∠DGO=90°,DO=5,∴GO=22DO DG -=75,AG=AO ﹣GO=185, 在Rt △GAD 中,∠DGA=90°,∴AD=22AG DG +=6综上得AD=145或6.故答案为(1)2;(2)y=()282558x x x x -+-(0<x <8);(3)AD=145或6.【点睛】本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.18.四边形ABCD 内接于⊙O ,连接AC 、BD ,2∠BDC +∠ADB =180°.(1)如图1,求证:AC =BC ;(2)如图2,E 为⊙O 上一点,AE =BE ,F 为AC 上一点,DE 与BF 相交于点T ,连接AT ,若∠BFC =∠BDC +12∠ABD ,求证:AT 平分∠DAB ; (3)在(2)的条件下,DT =TE ,AD =8,BD =12,求DE 的长. 【答案】(1)见解析;(2)见解析;(3)2 【解析】 【分析】(1)只要证明∠CAB=∠CBA 即可.。

2022年北京市丰台区中考数学总复习:二次函数附答案解析

2022年北京市丰台区中考数学总复习:二次函数附答案解析
【解答】解:(1)∵点A(﹣2,0),点B(4,0),
∴设抛物线的解析式为:y=a(x+2)(x﹣4),
把点C(0,2 )代入得:a ,
故抛物线的表达式为:y (x+2)(x﹣4) x2 x+2 ;
(2)设P(x, x2 x+2 ),
∵动直线l在y轴的右侧,P为抛物线与l的交点,
∴0<x<4,
∵点A(﹣2,0)、C(0,2 ),
(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.
【解答】(1)由y x2 x+m,
令y=0,则(x+2)(x﹣m)=0,
∴AO=2,BO=m,
∴A(﹣2,0),B(m,0),
∵AB=7,
∴m﹣(﹣2)=7,m=5,
(1)求直线和抛物线的解析式;
(2)点P在抛物线上,解决下列问题:
①在直线AB下方的抛物线上求点P,使得△PAB的面积等于20;
②连接OA,OB,OP,作PC⊥x轴于点C,若△POC和△ABO相似,请直接写出点P的坐标.
【解答】解:(1)把A(6,3)代入y=﹣kx+6,得3=﹣6x+6.
解得k .
∵CE=HD,∠CEF=∠CHD=90°,
∴△CEF≌△DHE(ASA),
∵EF∥DN,NF∥DE,
∴四边形EDNF为平行四边形,
∴EF=HE=DN=3k,CF=DE=FN,
∴△CFN为等腰直角三角形,
∴∠PCN=∠FNC=45°,
∴∠PCN=∠PNC=45°﹣α,
∴PC=PN=5k,
∴PD=2k,
2022年北京市中考数学总复习:二次函数

北京丰台区第二中学数学整式的乘法与因式分解(篇)(Word版 含解析)

北京丰台区第二中学数学整式的乘法与因式分解(篇)(Word版 含解析)

北京丰台区第二中学数学整式的乘法与因式分解(篇)(Word 版含解析)一、八年级数学整式的乘法与因式分解选择题压轴题(难)1.将多项式24x +加上一个整式,使它成为完全平方式,则下列不满足条件的整式是( ) A .4-B .±4xC .4116xD .2116x 【答案】D【解析】【分析】分x 2是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当x 2是平方项时,4士4x+x ²=(2士x )2,则可添加的项是4x 或一4x ; ②当x 2是乘积二倍项时,4+ x 2+4116x =(2+214x )2,则可添加的项是4116x ; ③若为单项式,则可加上-4.故选:D.【点睛】本题考查了完全平方式,比较复杂,需要我们全面考虑问题,首先考虑三个项分别充当中间项的情况,就有三种情况,还有就是第四种情况加上一个数,得到一个单独的单项式,也是可以成为一个完全平方式,这种情况比较容易忽略,要注意.2.下列四个多项式,可能是2x 2+mx -3 (m 是整数)的因式的是A .x -2B .2x +3C .x +4D .2x 2-1【答案】B【解析】【分析】将原式利用十字相乘分解因式即可得到答案.【详解】因为m 是整数,∴将2x 2+mx -3分解因式:2x 2+mx -3=(x-1)(2x+3)或2x 2+mx -3=(x+1)(2x-3),故选:B.【点睛】此题考查因式分解,根据二次项和常数项将多项式分解因式是解题的关键.3.因式分解x 2+mx ﹣12=(x +p )(x +q ),其中m 、p 、q 都为整数,则这样的m 的最大值是( )A .1B .4C .11D .12【答案】C【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.详解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx -12∴p+q=m ,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m 的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.4.在2014,2015,2016,2017这四个数中,不能表示为两个整数平方差的数是( ).A .2014B .2015C .2016D .2017 【答案】A【解析】由于22()()a b a b a b -=+-,所以22201510081007=-;222016505503=-;22201710091008=-;因+a b 与-a b 的奇偶性相同,21007⨯一奇一偶,故2014不能表示为两个整数的平方差. 故选A.5.下列各式不能用公式法分解因式的是( )A .92-xB .2269a ab b -+-C .22x y --D .21x -【答案】C【解析】【分析】根据公式法有平方差公式、完全平方公式,可得答案.【详解】A 、x 2-9,可用平方差公式,故A 能用公式法分解因式;B 、-a 2+6ab-9 b 2能用完全平方公式,故B 能用公式法分解因式;C 、-x 2-y 2不能用平方差公式分解因式,故C 正确;D 、x 2-1可用平方差公式,故D 能用公式法分解因式;故选C .【点睛】本题考查了因式分解,熟记平方差公式、完全平方公式是解题关键.6.已知4y 2+my +9是完全平方式,则m 为( )A .6B .±6C .±12D .12【答案】C【解析】【分析】原式利用完全平方公式的结构特征求出m 的值即可.【详解】∵4y 2+my +9是完全平方式,∴m =±2×2×3=±12.故选:C .【点睛】此题考查完全平方式,熟练掌握完全平方公式是解题的关键.7.下列运算正确的是( )A .23a a a ⋅=B .623a a a ÷=C .2222a a -=D .()22436a a =【答案】A【解析】【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;【详解】解:2123•a a a a +==,A 准确; 62624a a a a -÷==,B 错误;2222a a a -=,C 错误;()22439a a =,D 错误;故选:A .【点睛】本题考查实数和整式的运算;熟练掌握同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则是解题的关键.8.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误;B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.9.已知三个实数a,b,c 满足a-2b+c=0,a+2b+c <0,则( )A .b>0,b 2-ac ≤0B .b <0,b 2-ac ≤0C .b>0,b 2-ac ≥0D .b <0,b 2-ac ≥0【答案】D【解析】【分析】 根据题意得a+c=2b ,然后将a+c 替换掉可求得b <0,将b 2-ac 变形为()24a c -,可根据平方的非负性求得b 2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b ,∴a+2b+c=4b <0,∴b <0, ∴a 2+2ac+c 2=4b 2,即22224a ac c b ++= ∴b 2-ac=()22222220444a c a ac c a ac c ac -++-+-==≥, 故选:D.【点睛】 本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2【答案】D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A 、原式=a 9,故A 选项错误,不符合题意;B 、原式=27a 6,故B 选项错误,不符合题意;C 、原式=a 2﹣2ab+b 2,故C 选项错误,不符合题意;D 、原式=6a 2,故D 选项正确,符合题意,故选D .【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.二、八年级数学整式的乘法与因式分解填空题压轴题(难)11.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.【答案】27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.12.已知25,23a b==,求2a b +的值为________.【答案】15.【解析】【分析】逆用同底数幂的乘法运算法则将原式变形得出答案.【详解】解:∵2a =5,2b =3,∴2a+b =2a ×2b =5×3=15.故答案为:15.【点睛】此题主要考查了同底数幂的乘法运算,正确将原式变形是解题关键.13.5(m -n)4-(n-m)5可以写成________与________的乘积.【答案】 (m-n)4, (5+m-n )【解析】把多项式5(m -n)4-(n-m)5运用提取公因式法因式分解即可得5(m -n)4-(n-m)5=(m -n)4(5+m-n ).故答案为:(m-n)4,(5+m-n ).14.计算:532862a a a -÷=()___________.【答案】343a a -【解析】根据整式的除法—多项式除以单项式,可知:532862a a a -÷=()8a 5÷2a 2-6a 3÷2a 2=343a a -.故答案为:343a a -.15.若a ,b 互为相反数,则a 2﹣b 2=_____.【答案】0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.16.若x ﹣1x=2,则x 2+21x 的值是______. 【答案】6【解析】根据完全平方公式,可知(x ﹣1x )2= x 2-2+21x =4,移项整理可得x 2+21x=6. 故答案为6.点睛:此题主要考查了整式的乘法,解题关键是利用完全平方公式进行变形,然后化简整理即可求解,注意整体思想的应用,比较简单,是常考题.17.分解因式:2x 2﹣8=_____________【答案】2(x+2)(x ﹣2)【解析】【分析】先提公因式,再运用平方差公式.【详解】2x 2﹣8,=2(x 2﹣4),=2(x+2)(x ﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.18.若3a b +=,则226a b b -+的值为__________.【答案】9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可. 详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.19.已知16x x +=,则221x x +=______ 【答案】34【解析】 ∵16x x +=,∴221x x +=22126236234x x ⎛⎫+-=-=-= ⎪⎝⎭, 故答案为34.20.分解因式:32231827m m n mn -+=____________________【答案】23(3)m m n -【解析】【分析】先提公因式3m ,然后再利用完全平方公式进行分解即可得.【详解】3322m 18m n 27mn -+=3m(m 2-6mn+9n 2)=3m(m-3n)2,故答案为:3m(m-3n)2.【点睛】本题考查了提公因式法与公式法的综合运用,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.。

北京丰台区第二中学七年级下册数学期末试卷(篇)(Word版 含解析)

北京丰台区第二中学七年级下册数学期末试卷(篇)(Word版 含解析)

北京丰台区第二中学七年级下册数学期末试卷(篇)(Word 版 含解析) 一、解答题1.已知//AB CD ,点E 在AB 与CD 之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.2.如图,已知直线12//l l ,点A B 、在直线1l 上,点C D 、在直线2l 上,点C 在点D 的右侧,()80,2,ADC ABC n BE ∠=︒∠=︒平分,ABC DE ∠平分ADC ∠,直线BE DE 、交于点E .(1)若20n =时,则BED ∠=___________; (2)试求出BED ∠的度数(用含n 的代数式表示);(3)将线段BC 向右平行移动,其他条件不变,请画出相应图形,并直接写出BED ∠的度数.(用含n 的代数式表示)3.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.4.已知//AB CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一动点P .(1)如图1所示时,试问AEP ∠,EPF ∠,PFC ∠满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问AEP ∠,EPF ∠,PFC ∠还可能满足怎样的数量关系?请画图并证明(3)当EPF ∠满足0180EPF ︒<∠<︒,且QE ,QF 分别平分PEB ∠和PFD ∠, ①若60EPF ∠=︒,则EQF ∠=__________°.②猜想EPF ∠与EQF ∠的数量关系.(直接写出结论)5.如图,∠EBF =50°,点C 是∠EBF 的边BF 上一点.动点A 从点B 出发在∠EBF 的边BE 上,沿BE 方向运动,在动点A 运动的过程中,始终有过点A 的射线AD ∥BC .(1)在动点A 运动的过程中, (填“是”或“否”)存在某一时刻,使得AD 平分∠EAC ? (2)假设存在AD 平分∠EAC ,在此情形下,你能猜想∠B 和∠ACB 之间有何数量关系?并请说明理由;(3)当AC ⊥BC 时,直接写出∠BAC 的度数和此时AD 与AC 之间的位置关系.二、解答题6.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论. 7.已知:ABC 和同一平面内的点D .(1)如图1,点D 在BC 边上,过D 作//DE BA 交AC 于E ,//DF CA 交AB 于F .根据题意,在图1中补全图形,请写出EDF ∠与BAC ∠的数量关系,并说明理由;(2)如图2,点D 在BC 的延长线上,//DF CA ,EDF BAC ∠=∠.请判断DE 与BA 的位置关系,并说明理由.(3)如图3,点D 是ABC 外部的一个动点.过D 作//DE BA 交直线AC 于E ,//DF CA 交直线AB 于F ,直接写出EDF ∠与BAC ∠的数量关系,并在图3中补全图形.8.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论. 9.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.10.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.三、解答题11.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.12.小明在学习过程中,对教材中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在ABC 中,90ACB ∠=︒,AE 是角平分线,CD 是高,AE 、CD 相交于点F .求证:CFE CEF ∠=∠;(变式思考)如图2,在ABC 中,90ACB ∠=︒,CD 是AB 边上的高,若ABC 的外角BAG ∠的平分线交CD 的延长线于点F ,其反向延长线与BC 边的延长线交于点E ,则CFE ∠与CEF ∠还相等吗?说明理由;(探究延伸)如图3,在ABC 中,AB 上存在一点D ,使得ACD B ∠=∠,BAC ∠的平分线AE 交CD 于点F .ABC 的外角BAG ∠的平分线所在直线MN 与BC 的延长线交于点M .直接写出M ∠与CFE ∠的数量关系.13.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.14.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC . (1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小; (3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .15.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明; (2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.【参考答案】一、解答题1.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD . 【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG=∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.2.(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解解析:(1)60°;(2)n°+40°;(3)n°+40°或n°-40°或220°-n°【分析】(1)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数;(2)同(1)中方法求解即可;(3)分当点B在点A左侧和当点B在点A右侧,再分三种情况,讨论,分别过点E作EF∥AB,由角平分线的定义,平行线的性质,以及角的和差计算即可.【详解】解:(1)当n=20时,∠ABC=40°,过E作EF∥AB,则EF∥CD,∴∠BEF=∠ABE,∠DEF=∠CDE,∵BE平分∠ABC,DE平分∠ADC,∴∠BEF=∠ABE=20°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=60°;(2)同(1)可知:∠BEF=∠ABE=n°,∠DEF=∠CDE=40°,∴∠BED=∠BEF+∠DEF=n°+40°;(3)当点B在点A左侧时,由(2)可知:∠BED=n°+40°;当点B在点A右侧时,如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABE=n°,∠CDG=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=2n°,∠ADC=80°,∴∠ABE=12∠ABC=n°,∠CDG=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=180°-∠ABE=180°-n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF+∠DEF=180°-n°+40°=220°-n°;如图所示,过点E作EF∥AB,∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=70°,∴∠ABG=12∠ABC=n°,∠CDE=12∠ADC=40°,∵AB∥CD∥EF,∴∠BEF=∠ABG=n°,∠CDE=∠DEF=40°,∴∠BED=∠BEF-∠DEF=n°-40°;综上所述,∠BED的度数为n°+40°或n°-40°或220°-n°.【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,正确应用平行线的性质得出各角之间关系是解题关键.3.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.4.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,AEP∠,EPF∠,PFC∠满足数量关系为:EPF AEP PFC ∠=∠+∠;(2)当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;(3)①若当P 点在EF 的左侧时,150EQF BEQ QFD ∠=∠+∠=︒;当P 点在EF 的右侧时,可求得30BEQ QFD ∠+∠=︒;②结合①可得180218023602()EPF BEQ DFQ BEQ PFD ∠=︒-∠+︒-∠=︒-∠+∠,由EQF BEQ DFQ ∠=∠+∠,得出2360EPF EQF ∠+∠=︒;可得EPF BEP PFD =∠+∠,由BEQ DFQ EQF ∠+∠=∠,得出2EPF EQF ∠=∠.【详解】解:(1)如图1,过点P 作//PG AB ,//PG AB ,EPG AEP ∴∠=∠,//AB CD ,//PG CD ∴,FPG PFC ∴∠=∠,AEP PFC EPF ∴∠+∠=∠;(2)如图2,当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;过点P 作//PG AB ,//PG AB ,180EPG AEP ∴∠+∠=︒,//AB CD ,//PG CD ∴,180FPG PFC ∴∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒;(3)①如图3,若当P 点在EF 的左侧时,60EPF ∠=︒,36060300PEB PFD ∴∠+∠=︒-︒=︒, EQ ,FQ 分别平分PEB ∠和PFD ∠, 12BEQ PEB ∴∠=∠,12QFD PFD ∠=∠, 11()30015022EQF BEQ QFD PEB PFD ∴∠=∠+∠=∠+∠=⨯︒=︒; 如图4,当P 点在EF 的右侧时,60EPF ∠=︒,60PEB PFD ∴∠+∠=︒,11()603022BEQ QFD PEB PFD ∴∠+∠=∠+∠=⨯︒=︒; 故答案为:150︒或30;②由①可知:11()(360)22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=︒-∠,2360EPF EQF ∴∠+∠=︒; 11()22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=∠, 2EPF EQF ∴∠=∠.综合以上可得EPF ∠与EQF ∠的数量关系为:2360EPF EQF ∠+∠=︒或2EPF EQF ∠=∠.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.5.(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC ⊥AD .【分析】(1)要使AD 平分∠EAC ,则要求∠EAD =∠CAD ,由平行线的性质可得∠B =∠EAD ,∠ACB =∠CAD解析:(1)是;(2)∠B =∠ACB ,证明见解析;(3)∠BAC =40°,AC ⊥AD .【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.二、解答题6.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a,则CP//a//b,根据平行线的性质求解.(2)作CP//a,由平行线的性质及等量代换得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分类讨论点P在线段GF上或线段GF延长线上两种情况,过点P作a,b的平行线求解.【详解】解:(1)如图,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC =∠GOP +∠POQ =135°,∴∠GOP =135°-∠POQ ,∴∠OPQ =135°-∠POQ +∠PQF .如图,当点P 在GF 延长线上时,作PN //a ,连接PQ ,OP ,则PN //a //b ,∴∠GOP =∠OPN ,∠PQF =∠NPQ ,∵∠OPN =∠OPQ +∠QPN ,∴∠GOP =∠OPQ +∠PQF ,∴135°-∠POQ =∠OPQ +∠PQF .【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.7.(1)图见解析,,理由见解析;(2),理由见解析;(3)图见解析,或.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,由此即可得;(2)如图(见解析),先根据平行线的性质可解析:(1)图见解析,EDF BAC ∠=∠,理由见解析;(2)//DE BA ,理由见解析;(3)图见解析,EDF BAC ∠=∠或180EDF BAC ∠+∠=︒.【分析】(1)根据平行线的画法补全图形即可得,根据平行线的性质可得,EDF BFD B B D AC F ∠=∠∠∠=,由此即可得;(2)如图(见解析),先根据平行线的性质可得BAC BOD ∠=∠,再根据等量代换可得EDF BOD ∠=∠,然后根据平行线的判定即可得;(3)先根据点D 的位置画出如图(见解析)的两种情况,再分别利用平行线的性质、对顶角相等即可得.【详解】(1)由题意,补全图形如下:EDF BAC∠=∠,理由如下:DE BA,//∴∠=∠,EDF BFDDF CA,//∴∠=∠,BABFD C∴∠=∠;EDF BACDE BA,理由如下:(2)//如图,延长BA交DF于点O,DF CA,//∴∠=∠,BAC BOD∠=∠,EDF BAC∴∠=∠,EDF BOD//∴;DE BA(3)由题意,有以下两种情况:∠=∠,理由如下:①如图3-1,EDF BAC//DE BA,E EAF∴∠+∠=︒,180DF CA,//E EDF∴∠+∠=︒,180∴∠=∠,EAF EDF由对顶角相等得:BAC EAF∠=∠,∴∠=∠;EDF BAC②如图3-2,180EDF BAC ∠+∠=︒,理由如下://DE BA ,180EDF F ∴∠+∠=︒,//DF CA ,BAC F ∴∠=∠,180EDF BAC ∴∠+∠=︒.【点睛】本题考查了平行线的判定与性质等知识点,较难的是题(3),正确分两种情况讨论是解题关键.8.(1)136°;(2)∠AOG+∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ+∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ+∠PQF .解析:(1)136°;(2)∠AOG +∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ +∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ +∠PQF .【分析】(1)如图1,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后利用∠ACP +∠BCP =90°即可求得答案;(2)如图2,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后结合已知条件可得∠BCP =∠NEF ,然后利用∠ACP +∠BCP =90°即可得到结论;(3)分两种情况,如图3,当点P 在GF 上时,过点P 作PN ∥OG ,则NP ∥OG ∥EF ,根据平行线的性质可推出∠OPQ =∠GOP +∠PQF ,进一步可得结论;如图4,当点P 在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.9.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角∠ACB;理由见解析.解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=12【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB .【详解】解:(1)∵CE //AB , ∴∠ACE =∠A ,∠ECD =∠B , ∵∠ACD =∠ACE+∠ECD , ∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD , ∴∠FCD =12∠ECD ,∠HAF =12∠HAD ,∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB , ∴∠ECD =∠B , ∵AH //BC , ∴∠B+∠HAB =180°, ∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下:GR 平分QGD ∠,12QGR QGD ∴∠=∠.GN 平分AQG ∠,12NQG AQG ∴∠=∠.//QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG =180°﹣∠QGR ﹣∠NQG =180°﹣12(∠AQG+∠QGD )=180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC )∠ACB.=12【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.10.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A (−2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=1×90°=45°;2x+1,则G点坐标为(0,1),然(3)先根据待定系数法确定直线AC的解析式为y=12后利用S△PAC=S△APG+S△CPG进行计算.【详解】解:(1)由题意知:a=−b,a−b+4=0,解得:a=−2,b=2,∴ A(−2,0),B(2,0),C(2,2),∴S△ABC=1AB BC=4;2(2)∵CB∥y轴,BD∥AC,∴∠CAB=∠ABD,∴∠3+∠4+∠5+∠6=90°,过E作EF∥AC,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°; (3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b , 把A (−2,0)、C (2,2)代入得:-2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1, ∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1, ∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.三、解答题11.(1)∠E=45°;(2)∠E=;(3)不变化, 【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E=12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案. (3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案. 【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB , ∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB ∴∠D+∠B=2∠E , ∴∠E=12(∠D+∠B ),∵∠ADC=50°,∠ABC=40°, ∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F , ∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D , ∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD=∠B+∠BAE -12(∠B+∠BAD+∠D )= 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F , ,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠ 90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠ ,OEB CAD ADP ∴∠-∠=∠ 2,ADP ACB ABC ∠=∠-∠1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.12.[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可解析:[习题回顾]证明见解析;[变式思考] 相等,证明见解析;[探究延伸] ∠M+∠CFE=90°,证明见解析. 【分析】[习题回顾]根据同角的余角相等可证明∠B=∠ACD ,再根据三角形的外角的性质即可证明; [变式思考]根据角平分线的定义和对顶角相等可得∠CAE=∠DAF 、再根据直角三角形的性质和等角的余角相等即可得出CFE ∠=CEF ∠;[探究延伸]根据角平分线的定义可得∠EAN=90°,根据直角三角形两锐角互余可得∠M+∠CEF=90°,再根据三角形外角的性质可得∠CEF=∠CFE ,由此可证∠M+∠CFE=90°. 【详解】[习题回顾]证明:∵∠ACB=90°,CD 是高, ∴∠B+∠CAB=90°,∠ACD+∠CAB=90°, ∴∠B=∠ACD , ∵AE 是角平分线, ∴∠CAF=∠DAF ,∵∠CFE=∠CAF+∠ACD ,∠CEF=∠DAF+∠B , ∴∠CEF=∠CFE ;[变式思考]相等,理由如下: 证明:∵AF 为∠BAG 的角平分线, ∴∠GAF=∠DAF , ∵∠CAE=∠GAF , ∴∠CAE=∠DAF ,∵CD 为AB 边上的高,∠ACB=90°, ∴∠ADC=90°, ∴∠ADF=∠ACE=90°,∴∠DAF+∠F=90°,∠E+∠CAE=90°, ∴∠CEF=∠CFE ;[探究延伸]∠M+∠CFE=90°,证明:∵C 、A 、G 三点共线 AE 、AN 为角平分线, ∴∠EAN=90°, 又∵∠GAN=∠CAM ,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF=∠CFE,∴∠M+∠CFE=90°.【点睛】本题考查三角形的外角的性质,直角三角形两锐角互余,角平分线的有关证明,等角或同角的余角相等.在本题中用的比较多的是利用等角或同角的余角相等证明角相等和三角形一个外角等于与它不相邻的两个内角之和,理解并掌握是解决此题的关键.13.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE∠=14°∠的大小不变.DAE理由:∵ AD平分∠ BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 14.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.15.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED80∠=︒.EKD【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.。

北京丰台区第二中学数学九年级上册期末试卷解析版

北京丰台区第二中学数学九年级上册期末试卷解析版

北京丰台区第二中学数学九年级上册期末试卷解析版 一、选择题 1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3- B .3 C .3- D .32.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或4 3.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是( )A .团队平均日工资不变B .团队日工资的方差不变C .团队日工资的中位数不变D .团队日工资的极差不变 4.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内 B .P 在圆上C .P 在圆外D .无法确定 5.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 6.如果两个相似三角形的周长比是1:2,那么它们的面积比是( )A .1:2B .1:4C .12D 2:1 7.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名 读 听 写 小莹 92 80 90若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为( ) A .86B .87C .88D .89 8.一组数据0、-1、3、2、1的极差是( ) A .4B .3C .2D .1 9.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠DB .∠C =∠E C .AD AB AE AC = D .AC BC AE DE = 10.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点11.如图所示的网格是正方形网格,则sin A 的值为( )A .12B .2C .35D .4512.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B .3C .32D .2 13.如图,在平面直角坐标系xOy 中,二次函数21y ax bx =++的图象经过点A ,B ,对系数a 和b 判断正确的是( )A .0,0a b >>B .0,0a b <<C .0,0a b ><D .0,0a b <>14.下列方程中,是一元二次方程的是( )A .2x +y =1B .x 2+3xy =6C .x +1x =4D .x 2=3x ﹣215.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252- B .25- C .251- D .52-二、填空题16.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)17.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)18.如图,直线l 1∥l 2∥l 3,A 、B 、C 分别为直线l 1,l 2,l 3上的动点,连接AB ,BC ,AC ,线段AC 交直线l 2于点D .设直线l 1,l 2之间的距离为m ,直线l 2,l 3之间的距离为n ,若∠ABC =90°,BD =3,且12m n =,则m +n 的最大值为___________.19.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.20.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.21.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.22.抛物线2(-1)3y x =+的顶点坐标是______.23.如图,若一个半径为1的圆形纸片在边长为6的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片能接触到的最大面积为_____.24.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C ,则线段A′C 长度的最小值是______.25.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.26.在平面直角坐标系中,抛物线2y x 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.27.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.28.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x ,则列出方程是______________.29.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题31.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像;(2)直接写出不等式221x x x -->+的解集.32.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,D 、E 分别是边BC 、AC 上的两个动点,且DE =4,P 是DE 的中点,连接PA ,PB ,则PA +14PB 的最小值为_____.33.为加快城乡对接,建设美丽乡村,某地区对A 、B 两地间的公路进行改建,如图,A ,B 两地之间有一座山.汽车原来从A 地到B 地需途经C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC =80千米,∠A =45°,∠B =30°.(1)开通隧道前,汽车从A 地到B 地要走多少千米?(2)开通隧道后,汽车从A 地到B 地可以少走多少千米?(结果保留根号)34.(1)如图①,AB 为⊙O 的直径,点P 在⊙O 上,过点P 作PQ ⊥AB ,垂足为点Q .说明△APQ ∽△ABP ;(2)如图②,⊙O 的半径为7,点P 在⊙O 上,点Q 在⊙O 内,且PQ =4,过点Q 作PQ 的垂线交⊙O 于点A 、B .设PA =x ,PB =y ,求y 与x 的函数表达式.35.某小型工厂9月份生产的A 、B 两种产品数量分别为200件和100件,A 、B 两种产品出厂单价之比为2:1,由于订单的增加,工厂提高了A 、B 两种产品的生产数量和出厂单价,10月份A 产品生产数量的增长率和A 产品出厂单价的增长率相等,B 产品生产数量的增长率是A 产品生产数量的增长率的一半,B 产品出厂单价的增长率是A 产品出厂单价的增长率的2倍,设B 产品生产数量的增长率为x (0x >),若10月份该工厂的总收入增加了4.4x ,求x 的值.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ;(1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 的半径为3,点C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫ ⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.37.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)38.如图,在Rt △AOB 中,∠AOB =90°,tan B =34,OB =8. (1)求OA 、AB 的长;(2)点Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度秒的速度匀速运动,设运动时间为t 秒(0<t ≤5)以P 为圆心,PA 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD ,QC .①当t 为何值时,点Q 与点D 重合?②若⊙P 与线段QC 只有一个公共点,求t 的取值范围.39.平面直角坐标系xOy 中,矩形OABC 的顶点A ,C 的坐标分别为(2,0),(0,3),点D 是经过点B ,C 的抛物线2y x bx c =-++的顶点.(1)求抛物线的解析式;(2)点E 是(1)中抛物线对称轴上一动点,求当△EAB 的周长最小时点E 的坐标; (3)平移抛物线,使抛物线的顶点始终在直线CD 上移动,若平移后的抛物线与射线..BD 只有一个公共点,直接写出平移后抛物线顶点的横坐标m 的值或取值范围.40.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据题干可以明确得到p,q 是方程2330x x -=的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q 是方程2330x x -=的两根,∴3,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键. 2.A解析:A【解析】【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可.【详解】解:如图所示,∵△ABC 、△ABD 都是直角三角形,∴A,B,C,D 四点共圆,∵AC=BC ,∴BAC ABC 45∠∠==︒,∴ADC ABC 45∠∠==︒,作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =, ∵CD=7,CE=7-x, ∵AB 52=∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+,∴()22257x x =+-解得,x=3或x=4, ∴AD 232x ==2. 故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解. 3.B解析:B【解析】【分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:26042804300443⨯+⨯+⨯⨯=280; 调整后的平均数是:260528023005525⨯+⨯+⨯++=280; 故A 正确;调整前的方差是:()()()222142602804280280430028012⎡⎤-+-+-⎣⎦=8003; 调整后的方差是:()()()222152602802280280530028012⎡⎤-+-+-⎣⎦=10003; 故B 错误; 调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C 正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D 正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.4.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.【点睛】此题考查点与圆的位置关系,通过比较点到圆心的距离d 的距离与半径r 的大小确定点与圆的位置关系.5.D解析:D【解析】【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±= ∵15x <<∴54t -<≤故答案为D .【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.6.B解析:B【解析】【分析】直接根据相似三角形的性质即可得出结论.【详解】解:∵两个相似三角形的周长比是1:2,∴它们的面积比是:1:4.故选:B .【点睛】本题考查相似三角形的性质,掌握相似三角形的周长比等于相似比,面积比等于相似比的平方是解题的关键.7.C解析:C【解析】【分析】利用加权平均数按照比例进一步计算出个人总分即可.【详解】根据题意得:92580390288532⨯+⨯+⨯=++(分), ∴小莹的个人总分为88分;故选:C .【点睛】本题主要考查了加权平均数的求取,熟练掌握相关公式是解题关键.8.A解析:A【解析】【分析】根据极差的概念最大值减去最小值即可求解.【详解】解:这组数据:0、-1、3、2、1的极差是:3-(-1)=4.故选A.【点睛】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.9.D解析:D【解析】【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加AC BCAE DE=不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.10.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.11.C解析:C【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=22326525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.12.D解析:D【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD=2AB,再证明△CBD为等边三角形得到BC=BD=2AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD=2AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD=2AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,∴下面圆锥的侧面积=2×1=2.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.13.D解析:D【解析】【分析】根据二次函数y=ax2+bx+1的图象经过点A,B,画出函数图象的草图,根据开口方向和对称轴即可判断.【详解】解:由二次函数y=ax2+bx+1可知图象经过点(0,1),∵二次函数y=ax2+bx+1的图象还经过点A,B,则函数图象如图所示,抛物线开口向下,又对称轴在y 轴右侧,即02b a-> , ∴b >0,故选D 14.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A 、原方程为二元一次方程,不符合题意;B 、原式方程为二元二次方程,不符合题意;C 、原式为分式方程,不符合题意;D 、原式为一元二次方程,符合题意,故选:D .【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.15.A解析:A【解析】根据黄金比的定义得:AP AB = ,得42AP == .故选A. 二、填空题16.【解析】抛物线的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x1>x2>1 时,y1>y2 .故答案为>解析:12y y >【解析】抛物线()2y x 11=-+的对称轴为:x=1,∴当x>1时,y 随x 的增大而增大.∴若x 1>x 2>1 时,y 1>y 2 .故答案为> 17.或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有解析:5 或1555【解析】【分析】计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有×10=5, 当AC<BC 时,则有BC=12AB=12×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.18.【解析】【分析】过作于,延长交于,过作于,过作于,设,,得到,,根据相似三角形的性质得到,,由,得到,于是得到,然后根据二次函数的性质即可得到结论.【详解】解:过作于,延长交于,过作于,过解析:274【解析】【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==,得到3DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,29y x =-+,由12m n =,得到2n m =,于是得到()3m n m +=最大,然后根据二次函数的性质即可得到结论.【详解】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE BN x ==,CF BM y ==, 3BD =,3DM y ∴=-,3DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒,90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒,EAB CBF ∴∠=∠,ABE BFC ∴∆∆∽,∴AE BE BF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠,CMD AND ∴∆∆∽,∴AN DN CM DM=,即3132m x n y -==-, 29y x ∴=-+,12m n =, 2n m ∴=,()3m n m ∴+=最大,∴当m 最大时,()3m n m +=最大,22(29)292mn xy x x x x m ==-+=-+=,∴当92(29)4x =-=⨯-时,28128mn m ==最大, 94m ∴=最大, m n ∴+的最大值为927344⨯=. 故答案为:274. 【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m 的函数解析式是解题的关键.19.【解析】【分析】在OA 上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB 时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA 上取使,∵,∴,在△和△QOC 中,,【解析】【分析】在OA 上取'C 使'OC OC =,得'OPC OQC ≅,则CQ=C'P ,根据点到直线的距离垂线段最短可知当'PC ⊥AB 时,CP 最小,由相似求出C'P 的最小值即可.【详解】解:如图,在OA 上取'C 使'OC OC =,∵90AOC POQ ∠=∠=︒,∴'POC QOC ∠=∠,在△'POC 和△QOC 中,''OP OQ POC QOC OC OC =⎧⎪∠=∠⎨⎪=⎩,∴△'POC ≌△QOC (SAS ),∴'PC QC =∴当'PC 最小时,QC 最小,过'C 点作''C P ⊥AB ,∵直线l :28y x =+与坐标轴分别交于A ,B 两点,∴A 坐标为:(0,8);B 点(-4,0),∵'4OC OC OB ===, ∴22228445AB OA OB ++=''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''445C P =, ∴4''55C P = ∴线段CQ 455 455【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.20.【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:解析:13x【解析】【分析】直接利用函数图象与x 轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x 轴交于(-1,0),(3,0),故当y <0时,x 的取值范围是:-1<x <3.故答案为:-1<x <3.【点睛】此题主要考查了抛物线与x 轴的交点,正确数形结合分析是解题关键.21.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 22.(1,3)【解析】【分析】根据顶点式:的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,解析:(1,3)【解析】【分析】根据顶点式:2()y a x h k =-+的顶点坐标为(h ,k )即可求出顶点坐标.【详解】解:由顶点式可知:2(-1)3y x =+的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:2()y a x h k =-+的顶点坐标为(h ,k )是解决此题的关键.23.6+π.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两解析:.【解析】【分析】根据直角三角形的面积和扇形面积公式先求出圆形纸片不能接触到的面积,再用等边三角形的面积去减即可得能接触到的最大面积.【详解】解:如图,当圆形纸片运动到与∠A 的两边相切的位置时,过圆形纸片的圆心O 作两边的垂线,垂足分别为D ,E ,连接AO ,则Rt △ADO 中,∠OAD =30°,OD =1,AD 3∴S △ADO =12OD •AD 3 ∴S 四边形ADOE =2S △ADO 3∵∠DOE =120°,∴S 扇形DOE =3π, ∴纸片不能接触到的部分面积为:333π)=3﹣π ∵S △ABC =1233∴纸片能接触到的最大面积为: 33=3+π.故答案为3.【点睛】此题主要考查圆的综合运用,解题的关键是熟知等边三角形的性质、扇形面积公式.24.【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2 解析:272【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C 长度取最小值时,即A′在MC 上时,过点M 作MF ⊥DC 于点F ,∵在边长为2的菱形ABCD 中,∠A=60°,M 为AD 中点,∴2MD=AD=CD=2,∠FDM=60°, ∴∠FMD=30°, ∴FD=12MD=1, ∴FM=DM×cos30°=3,∴2227MC FM CF =+=,∴A′C=MC ﹣MA′=272-.故答案为272-.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.25.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=2510BD AB ==.26.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.27.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.28.=31.5【解析】【分析】根据题意,第一次降价后的售价为,第二次降价后的售价为,据此列方程得解.【详解】根据题意,得:=31.5故答案为:=31.5.【点睛】本题考查一元二次方程的解析:()2561x -=31.5【解析】【分析】根据题意,第一次降价后的售价为()561x -,第二次降价后的售价为()2561x -,据此列方程得解.【详解】根据题意,得:()2561x -=31.5故答案为:()2561x -=31.5.【点睛】本题考查一元二次方程的应用,关键是理解第二次降价是以第一次降价后的售价为单位“1”的. 29.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x =3(x+)2﹣,∴函数的对称轴为x =﹣,∴当﹣1≤x≤0时,函数有最解析:﹣13≤y ≤1 【解析】【分析】 利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y =3x 2+2x =3(x +13)2﹣13, ∴函数的对称轴为x =﹣13, ∴当﹣1≤x ≤0时,函数有最小值﹣13,当x =﹣1时,有最大值1, ∴y 的取值范围是﹣13≤y ≤1, 故答案为﹣13≤y ≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.30.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴解析:3:2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r1=3 3a同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar 1:r 2=32:故答案为32:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.三、解答题31.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象∴解集是x <-1或x >3【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.32.1452【解析】【分析】连接PC,则PC=12DE=2, 在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出结果.【详解】解:连接PC,则PC=12DE=2,∴P在以C为圆心,2为半径的圆弧上运动,在CB上截取CM=0.25,连接MP,∴0.25121,2444 CM CPCP CB====,∴CM CP CP CB=,∵∠MCP=∠PCB, ∴△CPM∽△CBP,∴PM=14 PB,∴PA+14PB=PA+PM,∴当P、M、A共线时,PA+14PB最小,即221450.25+6=2.【点睛】本题考查了最短路径问题,相似三角形的判定与性质,正确做出辅助线是解题的关键. 33.(1)开通隧道前,汽车从A地到B地要走2)千米;(2)汽车从A地到B地比原来少走的路程为23千米.【解析】【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比。

北京中考压轴二次函数综合分类解析

北京中考压轴二次函数综合分类解析

代数几何综合一、二次函数压轴题类类型解析在北京中考中二次函数的重要性不言而喻,稳坐压轴题倒数第三题,数学想上90分的学生,这道题严格意义上来说必须拿下的,基本的布置有三问,前两问比较简单,基本一半以上的学生都能拿下,但最后一问涉及临界点问题,有的题目甚至需要将图像想象成会动的函数来讲,对学生的分析能力来说是一个比较大的挑战。

在二次函数前两问中,通常考查函数的对称轴,与x轴的交点坐标,顶点坐标,求函数解析式,或者带点计算的基本能力。

常见考点:1.顶点(-b2a ,4ac−b24a),对称轴是直线x=-b2a2.与x轴交点坐标(−b+√b2−4ac2a ,0)(−b−√b2−4ac2a,0)3.顶点式求函数解析式4.函数图像平移以及翻折问题,平移规律左加右减,上加下减,函数图像关于x轴翻折图像类似M或W。

5.抛物线中对称性与距离问题6.抛物线常见的定点函数。

最后一问的解答过程中,一般情况从六个方面确定函数的图像的基本性质。

1.分析开口方向和大小,有的函数需要分类讨论2.分析抛物线的对称轴3. 分析定点坐标4. 分析抛物线与x 轴的交点坐标5. 分析抛物线与y 轴的交点坐标6. 分析抛物线的其它定点总的来说,给定的条件中,一定能确定二次函数某些性质,例如:开口大小固定,过固定点,与x 轴交点固定,截x 轴的线段长度固定等,具体情况还是要具体分析,但基本上都离不开对图像的分析。

一、公共点类型线段或直线与抛物线有交点时,考察类型较多,也是模拟考试中的重点内容,根据函数图像的性质,分析临界点,代数即可。

易(房山)26.在平面直角坐标系xOy 中,二次函数2y x mx n =++的图象经过点 A (−1,a ),B (3,a ),且顶点的纵坐标为 -4. (1)求 m ,n 和 a 的值;(2)记二次函数图象在点 A ,B 间的部分为 G (含 点A 和点B ),若直线 2y kx =+与 图象G 有公共点,结合函数图象,求 k 的取值范围.易(延庆)26.在平面直角坐标系xOy 中,抛物线2432y ax ax a =-+-(0a ≠)的对称轴与x 轴交于点A ,将点A 向右平移3个单位长度,向上平移2个单位长度,得到点B . (1)求抛物线的对称轴及点B 的坐标;(2)若抛物线与线段AB 有公共点,结合函数图象,求a 的取值范围.易(顺义)26.在平面直角坐标系xOy 中,抛物线 2(3)3y mx m x =+--(0m >)与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C , 4=AB ,点D 为抛物线的顶点. (1)求点A 和顶点D 的坐标;(2)将点D 向左平移4个单位长度,得到点E ,求直线BE 的表达式;(3)若抛物线26=-y ax 与线段DE 恰有一个公共点,结合函数图象,求a 的取值范围.中(平谷)26.平面直角坐标系xOy 中,抛物线3222-+-=m mx x y 与y 轴交于点A ,过A 作AB ∥x 轴与直线x =4交于B 点.(1)抛物线的对称轴为x = (用含m 的代数式表示); (2)当抛物线经过点A ,B 时,求此时抛物线的表达式;(3)记抛物线在线段AB 下方的部分图象为G (包含A ,B 两点),点P (m ,0)是x 轴上一动点,过P 作PD ⊥x 轴于P ,交图象G 于点D ,交AB 于点C ,若CD ≤1,求m 的取值范围.中(石景山)26.在平面直角坐标系xOy 中,直线1y kx =+(0)k ≠经过点(2,3)A ,与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点(,2)C m . (1)求m 的值;(2)求抛物线的顶点坐标;(3)11(,)N x y 是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22(,)P x y ,33(,)Q x y (点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围.中(西城)26.在平面直角坐标系xOy 中,已知抛物线2y x mx n =-+.(1)当2m 时, ①求抛物线的对称轴,并用含n 的式子表示顶点的纵坐标;②若点1(2,)A y ,22(,)B x y 都在抛物线上,且21y y ,则2x 的取值范围是_______;(2)已知点P (-1,2),将点P 向右平移4个单位长度,得到点Q .当n =3时,若抛物线与线段PQ恰有一个公共点,结合函数图像,求m 的取值范围.中(东城)26.在平面直角坐标系xOy 中,抛物线2691(0)y mx mx m m =-++≠(1)求抛物线的顶点坐标;(2)若抛物线与x 轴的两个交点分别为A 和B (点A 在点B 的左侧),且AB =4,求m 的值;(3)已知四个点C (2,2),D (2,0),E (5,-2),F (5,6),若抛物线与线段CD 和线段EF 都没有公共点,请直接写出m 的取值范围.中(大兴)26. 在平面直角坐标系中xOy 中,抛物线(1)求抛物线的对称轴;(2)若抛物线过点A (-1,6),求二次函数的表达式;(3)将点A (-1,6)沿x 轴向右平移7个单位得到点B ,若抛物线与线段AB 始终有两个公共点,结合函数的图象,求a 的取值范围.中(密云)26.已知抛物线2224y x mx m =-+-,抛物线的顶点为P . (1)求点P 的纵坐标.(2)设抛物线x 轴交于A 、B 两点,1122(,),(,)A x y B x y ,21x x >. ①判断AB 长是否为定值,并证明.②已知点M (0,-4),且MA ≥5,求21-x x m +的取值范围.2-41y ax ax =+难(门头沟)26.在平面直角坐标系xOy中,一次函数4=+的图象与x轴交于点A,与过点(0,5)y x平行于x轴的直线l交于点B,点A关于直线l的对称点为点C.(1)求点B和点C坐标;(2)已知某抛物线的表达式为22=-+-.2y x mx m m①如果该抛物线顶点在直线4=+上,求m的值;y x②如果该抛物线与线段BC有公共点,结合函数图象,直接写出m的取值范围.难(朝阳)26.在平面直角坐标系xOy中,抛物线y=x2-2x+a-3,当a=0时,抛物线与y轴交于点A,将点A向右平移4 个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.二、对称性对称性考察比较灵活,两点纵坐标相同时,说明两点关于对称轴对称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京丰台区第二中学数学 二次函数(篇)(Word 版 含解析)一、初三数学 二次函数易错题压轴题(难)1.已知函数2266()22()x ax a x a y x ax a x a ⎧-+>=⎨-++≤⎩(a 为常数,此函数的图象为G )(1)当a =1时,①直接写出图象G 对应的函数表达式 ②当y=-1时,求图象G 上对应的点的坐标(2)当x >a 时,图象G 与坐标轴有两个交点,求a 的取值范围 (3)当图象G 上有三个点到x 轴的距离为1时,直接写出a 的取值范围【答案】(1)①2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩,②(1,1),(31),(31)--+--;(2)0a <或2635a <<;(3)1a -<,1153a <<,113a <<-【解析】 【分析】(1)①将1a =代入函数解析式中即可求出结论;②分1x >和1x ≤两种情况,将y=-1分别代入求出x 的值即可;(2)根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可;(3)先求出266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+,222y x ax a =-++的对称轴为直线()221ax a =-=⨯-,顶点坐标为()2,2a aa +,然后根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可. 【详解】(1)①1a =时,2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩②当1x >时,2661x x -+=-2670x x -+=1233x x ==当1x ≤时,2221x x -++=-2230x x --=121,3x x =-=(舍)∴坐标为(1,1),(31),(31)---- (2)当0a <时266()y x ax a x a =-+>与y 轴交点坐标(0,6)a ,266y x ax a =-+对称轴为直线6321ax a -=-=⨯,过点(1,1) ∴x >a >3a ,此时图像G 与坐标轴有两个交点(与x 轴一个交点,与y 轴一个交点) 当0a ≥时,266()y x ax a x a =-+>的图像与y 轴无交点顶点坐标为()23,96a a a -+当x a =时,256y a a =-+>0①,且2960a a -+<②时,此时图像G 与x 轴有两个交点将①的两边同时除以a ,解得65a <; 将②的两边同时除以a ,解得23a > ∴2635a << 即当2635a <<时,图像G 与坐标轴有两个交点, 综上,0a <或2635a <<(3)266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+ 222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a + ①当a <0时,()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +由()210a +≥可得221a a +≥-,即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>必过(1,1),即此图象必有一个点到x 轴的距离为1,此时x>3a ,y >225666a a a a a a ⋅+=-+-当2221561a a a a ⎧+<⎨-+<-⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:315a --<;当2221561a aa a⎧+>⎨-+>-⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点解得:1a-+<<,与前提条件a<0不符,故舍去;②当a≥0时,()222y x ax a x a=-++≤中,当x=a时,y的最大值为22a a+,必过点(-1,-1),即此图象必有一个点到x轴的距离为1而()266y x ax a x a=-+>,此时当x=3a时,y的最小值为296a a-+,由()2310a--≤可得2961a a-+≤,即此图象必有一个点到x轴的距离为1当222221561961961a aa aa aa a⎧+<⎪-+>⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴只有一个交点,()266y x ax a x a=-+>与x轴有两个交点解得:115a<<-+且13a≠;当222221561961961a aa aa aa a⎧+<⎪-+<⎪⎨-+<-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴只有一个交点,()266y x ax a x a=-+>与x轴有两个交点此不等式无解,故舍去;当222221561961961a aa aa aa a⎧+>⎪-+<⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点此不等式无解,故舍去;综上:315a--<或1153a<<或113a<<-【点睛】此题考查的是二次函数的性质和分段函数的应用,此题难度较大,掌握二次函数的性质和分类讨论的数学思想是解决此题的关键.2.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣4≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b=221a a ≤+4,(当a=2时取等号) ∴0<﹣b≤4,∴﹣4≤b <0, 即b的取值范围是﹣4≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小. 【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-.(3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得2a ≤<,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-;综上:1a ≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:a >综上:若使得函数与矩形ABCD 无交点,则3a <--或1a ≤<-或a > 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.4.如图①是一张矩形纸片,按以下步骤进行操作:(Ⅰ)将矩形纸片沿DF 折叠,使点A 落在CD 边上点E 处,如图②;(Ⅱ)在第一次折叠的基础上,过点C 再次折叠,使得点B 落在边CD 上点B′处,如图③,两次折痕交于点O ;(Ⅲ)展开纸片,分别连接OB 、OE 、OC 、FD ,如图④. (探究)(1)证明:OBC≌OED;(2)若AB=8,设BC为x,OB2为y,是否存在x使得y有最小值,若存在求出x的值并求出y的最小值,若不存在,请说明理由.【答案】(1)见解析;(2)x=4,16【解析】【分析】(1)连接EF,根据矩形和正方形的判定与性质以及折叠的性质,运用SAS证明OBC≌OED即可;(2)连接EF、BE,再证明△OBE是直角三角形,然后再根据勾股定理得到y与x的函数关系式,最后根据二次函数的性质求最值即可.【详解】(1)证明:连接EF.∵四边形ABCD是矩形,∴AD=BC,∠ABC=∠BCD=∠ADE=∠DAF=90°由折叠得∠DEF=∠DAF,AD=DE∴∠DEF=90°又∵∠ADE=∠DAF=90°,∴四边形ADEF是矩形又∵AD=DE,∴四边形ADEF是正方形∴AD=EF=DE,∠FDE=45°∵AD=BC,∴BC=DE由折叠得∠BCO=∠DCO=45°∴∠BCO=∠DCO=∠FDE.∴OC=OD.在△OBC与△OED中,BC DEBCO FDEOC OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△OBC≌△OED(SAS);(2)连接EF、BE.∵四边形ABCD是矩形,∴CD=AB=8.由(1)知,BC=DE∵BC=x,∴DE=x∴CE=8-x由(1)知△OBC≌△OED∴OB=OE,∠OED=∠OBC.∵∠OED+∠OEC=180°,∴∠OBC+∠OEC=180°.在四边形OBCE中,∠BCE=90°,∠BCE+∠OBC+∠OEC+∠BOE=360°,∴∠BOE=90°.在Rt△OBE中,OB2+OE2=BE2.在Rt△BCE中,BC2+EC2=BE2.∴OB2+OE2=BC2+CE2.∵OB2=y,∴y+y=x2+(8-x)2.∴y=x2-8x+32∴当x=4时,y有最小值是16.【点睛】本题是四边形综合题,主要考查了矩形和正方形的判定与性质、折叠的性质、全等三角形的判定、勾股定理以及运用二次函数求最值等知识点,灵活应用所学知识是解答本题的关键.x≥时,它们对应的函数值5.定义:对于已知的两个函数,任取自变量x的一个值,当0x<时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.相等;当0例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数21 42y x x=-+-的相关函数为2214,(0)214,(0)2x x xyx x x⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩,①当m<0时,将B(m,32)代入y=x2-4x+12得m2-4m+1322=,解得:m=2+5(舍去)或m=25-.当m≥0时,将B(m,32)代入y=-x2+4x-12得:-m2+4m-12=32,解得:m=2+2或m=22-.综上所述:m=25-或m=22+或m=22-.②当-3≤x<0时,y=x2-4x+12,抛物线的对称轴为x=2,此时y随x的增大而减小,∴当3x=-时,有最大值,即2143(3)4(3)22y=--⨯-+=,∴此时y的最大值为432.当0≤x≤3时,函数y=-x2+4x12-,抛物线的对称轴为x=2,当x=0有最小值,最小值为12-,当x=2时,有最大值,最大值y=72.综上所述,当-3≤x≤3时,函数y=-x2+4x12-的相关函数的最大值为432,最小值为12-;(3)如图1所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.6.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.7.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)25,049494t tS tt⎧⎛≤≤⎪⎪⎝⎭=-<≤+<≤.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t<t<t【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:375 22+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:230 2nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(173,﹣509);(4)如图2,设∠ACO=α,则tanα=12AOCO=,则sinα5,cosα5①当0≤t 35时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST =∠ACO =α,过点T 作TL ⊥KH , 则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; 35<t 35时(右侧图),同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 53594+; 综上,S =2535,023593535,(245435935(5)1044t t t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪⎪+<≤⎪⎩.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.8.在平面直角坐标系中,抛物线y=x 2+(k ﹣1)x ﹣k 与直线y=kx+1交于A ,B 两点,点A 在点B 的左侧.(1)如图1,当k=1时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由. 【答案】(1)A(-1,0) ,B(2,3) (2)△ABP 最大面积s=1927322288⨯=; P (12,﹣34) (3)存在;25【解析】 【分析】(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可. 【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1. 联立两个解析式,得:x 2﹣1=x+1, 解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3, ∴A (﹣1,0),B (2,3). (2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k . ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:k=±25,∵k>0,∴k=25.∴存在唯一一点Q,使得∠OQC=90°,此时k=25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,直线3y x与x轴、y轴分别交于点A,C,经过A,C两点的抛物线2y ax bx c=++与x轴的负半轴的另一交点为B,且tan3CBO∠=(1)求该抛物线的解析式及抛物线顶点D的坐标;(2)点P是射线BD上一点,问是否存在以点P,A,B为顶点的三角形,与ABC相似,若存在,请求出点P的坐标;若不存在,请说明理由【答案】(1)243y x x=++,顶点(2,1)D--;(2)存在,52,33P⎛⎫--⎪⎝⎭或(4,3)--【解析】【分析】(1)利用直线解析式求出点A、C的坐标,从而得到OA、OC,再根据tan∠CBO=3求出OB,从而得到点B的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D的坐标;(2)根据点A、B的坐标求出AB,判断出△AOC是等腰直角三角形,根据等腰直角三角形的性质求出AC,∠BAC=45°,再根据点B、D的坐标求出∠ABD=45°,然后分①AB和BP是对应边时,△ABC和△BPA相似,利用相似三角形对应边成比例列式求出BP,过点P作PE⊥x轴于E,求出BE、PE,再求出OE的长度,然后写出点P的坐标即可;②AB和BA是对应边时,△ABC和△BAP相似,利用相似三角形对应边成比例列式求出BP,过点P作PE⊥x轴于E,求出BE、PE,再求出OE的长度,然后写出点P的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC ,∠AOC=90°,∴△AOC 是等腰直角三角形,∴,∠BAC=45°,∵B (-1,0),D (-2,-1),∴∠ABD=45°,①AB 和BP 是对应边时,△ABC ∽△BPA , ∴AB AC BP BA =,即2BP = 解得BP=3, 过点P 作PE ⊥x 轴于E ,则BE=PE=23×22=23, ∴OE=1+23=53, ∴点P 的坐标为(-53,-23); ②AB 和BA 是对应边时,△ABC ∽△BAP , ∴AB AC BA BP =, 即2322BP=, 解得BP=32过点P 作PE ⊥x 轴于E ,则BE=PE=3222=3, ∴OE=1+3=4,∴点P 的坐标为(-4,-3); 综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t =或98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点, ∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=,∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=. 设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,PE =,PF =在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(455(2)t t +-=+-∴12t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。

相关文档
最新文档