4实验四LC晶体压控振荡器与丙类功率放大器

合集下载

丙类高频功率放大器实验

丙类高频功率放大器实验

页眉内容实验二 丙类高频功率放大器实验一. 实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。

2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。

3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。

4.掌握丙类高频谐振功率放大器的计算与设计方法。

二。

预习要求:1.复习高频谐振功率放大器的工作原理及特点。

2.熟悉并分析图3所示的实验电路,了解电路特点。

三.电路特点及实验原理简介1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。

当电路的输出负载为天线回路时,就可以完成无线电发射的任务。

为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。

2.高频谐振功率放大器的工作原理参见图1。

谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重要、最为难调的单元电路之一。

根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。

丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。

图1中,V bb 为基极偏压,V cc 为集电极直流电源电压。

为了得到丙类工作状态,V bb 应为负值,即基极处于反向偏置。

u b 为基极激励电压。

图2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。

V bz 是晶体管发射结的起始电压(或称转折电压)。

由图可知,只有在u b 的正半周,并且大于V bb 和V bz 绝对值之图1 高频功放原理图cR LT和时,才有集电极电流流通。

即在一个周期内,集电极电流i c只在-θ~+θ时间内导通。

由图可见,集电极电流是尖顶余弦脉冲,对其进行傅里叶级数分解可得到它的直流、基波和其它各次谐波分量的值,即:i c=I C0+ I C1m COSωt + I C2M COS2ωt + … + I CnM COSnωt + …bm bbbz U VV COS +=θ求解方法在此不再叙述。

高频电子线路(通信电子线路)实验指导书

高频电子线路(通信电子线路)实验指导书

实验一 函数信号发生实验一、实验目的1)、了解单片集成函数信号发生器ICL8038的功能及特点。

2)、掌握ICL8038的应用方法。

二、实验预习要求参阅相关资料中有关ICL8038的内容介绍。

三、实验原理(一)、ICL8038内部框图介绍ICL8038是单片集成函数信号发生器,其内部框图如图2-1所示。

它由 恒流源I 2和I 1、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组成。

外接电容C 可由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为总电 源电压(指U CC +U EE )的2/3 和1/3。

恒流源I 2和I 1的大 小可通过外接电阻调节,但 必须I 2>I 1。

当触发器的输出为低电平时,恒流源I 2断开 图2-1 ICL8038原理框图,恒流源I 1给C 充电,它的两端电压u C 随时间线性上升,当达到电源电压的确2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变外接电容E E为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),I 2将加到C 上进行反充电,相当于C 由一个净电流I 放电,C 两端的电压u C 又转为直线下降。

当它下降到电源电压的1/3时,电压比较器B 输出电压便发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I 2断开,I 1再给C 充电,……如此周而复始,产生振荡。

若调整电路,使I 2=2I 1,则触发器输出为方波,经反相缓冲器由引脚9输出方波信号。

C 上的电压u c ,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。

将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从引脚2输出。

1、ICL8038引脚功能图图2-2 ICL8038引脚图供电电压为单电源或双电源: 单电源10V ~30V 双电源±5V ~±15V2、实验电路原理图如图2-3 所示。

lc压控振荡器实验报告doc

lc压控振荡器实验报告doc

lc压控振荡器实验报告篇一:实验2 振荡器实验实验二振荡器(A)三点式正弦波振荡器一、实验目的1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1. 熟悉振荡器模块各元件及其作用。

2. 进行LC振荡器波段工作研究。

3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4. 测试LC振荡器的频率稳定度。

三、基本原理图6-1 正弦波振荡器(4.5MHz)【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡频率。

振荡频率可调范围为:?3.9799?M??f0??4.7079?M?CCI?25pCCI?5p调节电容CCI,使振荡器的频率约为4.5MHz 。

振荡电路反馈系数: F=C1356??0.12 C20470振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。

四、实验步骤根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

1. 调整静态工作点,观察振荡情况。

1)将开关S2全拨下,S1全拨下,使振荡电路停振调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使IEQ=ICQ=UEQ/R10=5.0mA )。

2)将开关S2的1拨上,S1全拨下,构成LC振荡器。

丙类高频功率放大器实验

丙类高频功率放大器实验
C。基极调制特性的观察 负载选Rp=75Ω,电源电压Vcc和输入信号幅度保持不变, 调整Rp2,观察脉冲电流的形状与幅值的变化,记录,并 描述放大器的基极调制特性。
D。放大特性的观察 保持Vcc,Vbb和RL不变,改变输入电压的幅值,观察当信号 幅度从小到大变化时,脉冲电流的变化。
A、负载特性的观察 1、调整到最理想状态,记录欠压,临界与过压三个状态下 的脉冲电流波形,并相应记下其对应输出放大波形其幅值。
P5
GND
1
1
石英晶体振荡 器—提供载波 信号
推动级—提 供足够的激 励电压
丙类功率放大器
• 理论分析表明,当放大器工作在谐振状态的时候,负载 为纯电阻状态,集电极直流电流最小,回路电压最大。 但由于实际电路中内部电容的反馈作用,导致这两种 现象不会同时发生。因此,在实验中,不仅要监视集 电极直流电流,同时要监视集电极的脉冲电流来调谐 电路。
COSq Vbz Vbb
U bm
或电压 电流
iC i vCE min
c max
0 qc
V BZ
vCE VCC Vcm coswt
V cm vCE
V CC
V BB
iC v bEmax
+ vb -
VBB
wt
V bm vBE
1
Pc T
T
0 iC vCEdt
1. iC 与vBE同相,与vCE反相;
v BE
理想效率
负载
应用
θc=1800 θc=900 900<θc<1800 θc<900
50% 78.5%
电阻 推挽,回路
低频 低频、高频
50%<η<78.5%

lc压控振荡器实验报告doc

lc压控振荡器实验报告doc

lc压控振荡器实验报告篇一:实验2 振荡器实验实验二振荡器(A)三点式正弦波振荡器一、实验目的1. 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2. 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3. 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1. 熟悉振荡器模块各元件及其作用。

2. 进行LC振荡器波段工作研究。

3. 研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4. 测试LC振荡器的频率稳定度。

三、基本原理图6-1 正弦波振荡器(4.5MHz)【电路连接】将开关S2的1拨上2拨下, S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡频率。

振荡频率可调范围为:?3.9799?M??f0??4.7079?M?CCI?25pCCI?5p调节电容CCI,使振荡器的频率约为4.5MHz 。

振荡电路反馈系数: F=C1356??0.12 C20470振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。

四、实验步骤根据图6-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

1. 调整静态工作点,观察振荡情况。

1)将开关S2全拨下,S1全拨下,使振荡电路停振调节上偏置电位器RA1,用数字万用表测量R10两端的静态直流电压UEQ(即测量振荡管的发射极对地电压UEQ),使其为5.0V(或稍小,以振荡信号不失真为准),这时表明振荡管的静态工作点电流IEQ=5.0mA(即调节W1使IEQ=ICQ=UEQ/R10=5.0mA )。

2)将开关S2的1拨上,S1全拨下,构成LC振荡器。

南理工高频电子实验-非线性丙类功率放大器实验报告

南理工高频电子实验-非线性丙类功率放大器实验报告

高频电子实验非线性丙类功率放大器实验学号班级专业姓名非线性丙类功率放大器实验一、实验目的(1)了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。

(2)了解激励信号变化对功率放大器工作状态的影响。

二、实验原理晶体管高频功率放大器的原理线路(1)采用负偏置:减小无用功耗,提高效率;(2)采用变压器耦合:阻抗匹配,减小负载电阻R对谐振回路的影响;(3)采用电感部分接入:减小晶体管输出电阻对谐振回路的影响。

在晶体管负偏置,输入信号为大信号的条件下:晶体管在输入信号的正半周的部分时间内导通,在输入信号的其他时间内截止;基级电流和集电极电流为高频脉冲信号;集电极电流流过具有选频作用的并联谐振回路后,产生了与输入信号同频的集电极电压信号。

电流、电压波形(流)通角θ: 有电流出现时所对应相角的一半。

集电极电流式中tω012cos cos 2cos C c c c cn i I I t I t I n t ωωω=+++++()()()()()()()()()()0maxmax 01maxmax 1max 2max 1sin cos ()21cos 1sin cos ()cos 1cos 12sin cos 2sin cos ()cos 11cos 1c C C cC C cn C C n I i t d t I I I i t t d t I I n n n I i t n t d t I n n I n θθθθθθθθθωππθαθθθθωωππθαθθθθθωωππθαθ----==-=-==-=-==--=>⎰⎰⎰()n n αθ称为余弦脉冲的次谐波分解系数。

高频功放的电流、电压波形tCCU BBU 1cos o c c L u u I R tω==cos CE CC o CC c u U u U U tω=-=-输出功率:直流输入功率:集电极损耗功率: 集电极效率:负载特性实验电路图如下图22111111222c c c c L LU P I U I R R ===200012c CCc CCP i Ud t I U πωπ==⎰01c P P P =-11001122c c c CC I U P P I U ηγξ===()()1100c c I I αθγαθ==称为波形系数cCCU U ξ=称为集电极电压利用系数min1(1)L c CE CC c CES R U U U U U =->较小,使得较小,使得,称为欠压状态;min 2(2)L c CE CC c CES R U U U U U =-=增大,使得增大,使得,称为临界状态;min3(3)L c CE CC c CES R U U U U U =-<继续增大,使得继续增大,使得,称为过压状态。

丙类谐振功率放大器实验报告

丙类谐振功率放大器实验报告

丙类谐振功率放大器实验报告实验名称:丙类谐振功率放大器实验实验目的:掌握丙类谐振功率放大器的原理和工作方式,了解其特性和优缺点。

实验器材:- 电源- 音频信号源- 信号发生器- 示波器- 50欧姆传输线- 电容、电感、二极管、晶体管、散热片等元件实验原理:丙类谐振功率放大器是一种将小信号放大成大功率信号的电路,由一个谐振电路和一个功率放大器组成。

当谐振电路中的电容和电感共振时,可以得到一个较高的电压,然后被送入功率放大器中进行放大,最终得到一个输出信号。

丙类谐振功率放大器的特点是输出功率高,效率较高,并且对信号失真较小。

但是它也存在一些缺点,例如存在一定的交叉失真,产生的高频谐波也较多。

实验步骤:1.根据电路原理图连接电路,将信号源连接到输入端,将示波器连接到输出端。

2.调节输入信号源的幅度和频率,观察谐振电路的谐振情况和输出信号的放大程度。

3.根据实际情况调整谐振电路和功率放大器的参数,比如改变电容和电感的数值,改变晶体管的偏置电压等。

4.记录每次调整时示波器上显示的输出信号波形和参数,分析并比较不同调整情况下的谐振效果和输出信号特点。

实验结果及分析:在实验中,我们通过调整电容、电感和晶体管的参数,成功实现了丙类谐振功率放大器的实验。

我们发现,当谐振电路中的电容和电感共振时,输出信号会有一个较高的幅度和较高的功率,但是也会出现一定的失真和高频谐波。

通过不断调整参数,我们可以得到较好的谐振效果和输出信号特性。

总结:通过本次实验,我们了解到了丙类谐振功率放大器的原理和工作方式,学习了一些改变谐振电路和功率放大器参数的方法,掌握了实验技能。

同时我们也认识到该电路存在一定的缺陷,需要根据实际应用情况进行考虑选择。

实验三 丙类高频功率放大器实验

实验三 丙类高频功率放大器实验

实验三丙类高频功率放大器实验一.实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。

2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。

3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。

4.掌握丙类高频谐振功率放大器的计算与设计方法。

二.预习要求:1.复习高频谐振功率放大器的工作原理及特点。

2.熟悉并分析图3所示的实验电路,了解电路特点。

三.实验仪表设备1.双踪示波器2.直流电压表3.信号发生器4.TPE-GP4高频综合实验箱[实验区域:高频功放(调幅)及发射电路部分、LC与晶体振荡器部分]四.电路特点及实验原理简介1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。

当电路的输出负载为天线回路时,就可以完成无线电发射的任务。

为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。

2.高频谐振功率放大器的工作原理谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重要、最为难调的单元电路之一。

根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。

丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。

图3-1中,V bb为基极偏压,V cc为集电极直流电源电压。

为了得到丙类工作状态,V bb应为负值,即基极处于反向偏置。

u b为基极激励电压。

图3-2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。

V bz是晶体管发射结的起始电压(或称转折电压)。

由图可知,只有在u b的正半周,并且大于V bb和V bz绝对值之和时,才有集电极电流流通。

即在一个周期内,集电极电流i c只在-θ~+θ时间内导通。

由图可见,集电极电流是尖顶余弦脉冲,对其进行傅里叶级数分解可得到它的直流、基波和其它各次谐波分量的值,即:i c=I C0+ I C1m COSωt + I C2M COS2ωt + … + I CnM COSnωt + …bm bbbz U VV COS +=θ图3-3 高频功放(调幅)及发射电路原理图求解方法在此不再叙述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等效负载
RL(Ω)
TP9
(V)
TP8
(V)
1110 R19//R20//R21
TP8 波形
0110 R20//R21
0100 R20
欠压ie波 形参考图
临界ie波 形参考图
过压ie波 形参考图
(3)观察激励电压变化对工作状态的影响
先调1号板输入信号源的“RF幅度旋钮”,使TP8出现下凹的电流波形,若不对称, 可调T6的磁芯,再由大到小或由小到大改变信号的幅值,用示波器CH1通道接TP8,记 录显示的电流波形变化过程。
《电流波形参考图》
五、实验结论
1、如何提高晶体压控振荡器的频率范围?
2、根据负载特性与激励信号电压变化实验所测参数与观察到的现象,说明课程结束,谢谢!
高频电子线路实验
实验实训中心——高频电子线路实验室
实验四 LC、晶体压控振荡器与丙类功率放大器
一、实验目的
1、掌握三点式正弦振荡器的电路组成及原理; 2、了解振荡器形成维持振荡的过程与外界因素变化对其性能的影响; 3、了解丙类功率放大器的基本工作原理与特性。
注:本次抄写2、9、10、11、12、13页
CH1接入TP9,轻微调节T6使TP9输出幅度最大;
b)将8号板S1置“0000”,以0.5MHz 步进从9MHz~13MHz 改变输入信号频率,1
号板RF幅度输出Vpp保持300mV不变,记录TP9的输出电压幅值。
表3:
CH1 TP7
MHz
9 9.5 10.0 10.5 11.0 11.5 12 12.5 13
三、实验电路 (电路略) 1、正弦波振荡器(4.5MHz)
入输 频 音
2、丙类功率放大器电路图(电路略)
(欠压)
ic (临界)
ic
(过压)
VCES
VCC
VCC
ω
θ
CCV
图 谐振功放的负载特性
四、8号板实验电路框图
信号源 1信号号板源 P2
频率计 P3 6号频板率计A通

P1
非线性丙类功率放大 ( 号板
本次实验需要实验模块: 3号板、万用表、1号板、6号板 8号板、
二、实验原理:
接通电源瞬间产生含有多种频率的微弱电脉冲,经三极管放大、选频、 正反馈形成闭合环路形成并维持振荡。
功率放大器按其电流导通角的范围分为甲、乙、甲乙、丙、丁类、丙 类功放其电流导通角较小,效率较高常用作无线电发射机的末级,由于其 集电极负载为调谐回路,又称为谐振功率放大器。
P5
输入
甲类 TP15 丙类
功率
功率
放大
放大
TP9
输出
示波器
四、实验内容 1、3号板振荡器的测量
(1) 静态工作点对振荡的影响 a)将3号板S1置 “01”,S2置 “00”,构成LC振荡器,将示波器探头置×10; b)用专用螺丝刀改变W1,示波器CH1测量TP4,即停振(波形消失)、起振
(波形刚出现)、振幅最大时三种状态,并用万用表测量TP2三种状态时的电位,记 录表(1)
CH2 TP9 VPP(v)
(2)负载特性测试 从1号板输入
口,8号板的S1依次 置

高频正弦信号接入8号板P5输入接
1110(欠压)、0110(临界)、 0100(过压),示
波器CH1通道接TP9,观测
,CH2通道接TP8,观测

的波形。其中R19=18Ω,R20=51Ω,R21=100Ω,记录表(4)
c) 将3号板S1置“10”,S2置“01”,构成晶体压控振荡器,重复上述(b)的步骤。 记录表(2)
0.7V
6V
12V
2、8号板丙类功率放大器
1)调谐特性测试
a)将1号板中

的高频信号接入8号板P5接口用CH1接
入TP7监测。再把CH1通道接TP15,轻微调节T5使TP15输出的Vpp为3.5V,最后再把
注:万用表档位置直流“10V"档
停振 起振
(2)两种压控振荡器的频率变化范围
a) 把3号板S1置“01”,S2置“10”,构成LC压控振荡器,3号板P1连接6号板A 通道。
b)将W2按左0.7V(低阻)、中6V(中阻)、右12V(高阻)的顺序调节,用万用 表接变容二极管TP7两端测量低、中、高阻的实际反向电压与频率计测量的频率。(注: 频率保留4位小数)
相关文档
最新文档