甲醇制甲醛过程中催化剂失活的原因

合集下载

甲醇合成催化剂失活分析

甲醇合成催化剂失活分析

甲醇合成催化剂失活分析摘要:现如今,随着我国经济的发展与社会的进步,化工生产领域也成功步入到了高速发展的新阶段。

如果还想要提高化工生产的创造力与生产能力,相关工作人员就需要针对铜基催化剂的内容进行深入的探究。

站在客观的角度上进行探究,甲醇合成铜基催化剂在探析工作的相关流程上,发现了失活问题在化工生产目标中所造成的影响不容忽视,针对这些负面影响我们需及时制定应对措施,这对于今后的工作可以取得佳绩提供了非常大的帮助。

本文就甲醇合成铜基催化剂失活的影响原因进行了详细分析,以此希望能够为化工生产的系列工作提供帮助。

关键词:甲醇;铜基催化剂;失活一、造成甲醇合成铜基催化剂失活的因素在化工产业的新时期发展中,作为极具代表性的甲醇合成铜基催化剂想要取得进一步佳绩,除了解决现有的系列问题外,还需针对相关工作做出贡献,这样才有利于为日后工作提供相应的的帮助。

把过去工作中的相关经验与线下工作的标准相结合起来,就可以发现影响甲醇合成铜基催化剂失活的因素可分为两项。

一、在对原材料的选择过程中,并没做出良好的选择,导致原材料中所含杂质过高,这直接影响到了其在生产过程中的效率与质量,以至于产品达不到最初预期。

二、出现甲醇合成酮基催化剂失活的影响因素还与技术人员的工作能力相关,能力不足就会导致失活情况的出现,以至于在化学反应的综合把控中达不到预期效果,最终导致出现了不良影响。

二、如何判断催化剂活性好坏(一)热点温度在化学工业上,通常把合成塔轴线上温度的最高点称为热点温度。

热点温度与铜基催化剂活性两者呈正相关,铜基催化剂活性越高,也就代表着热点温度位置越高。

在其床层的上方位置反应物的浓度可以达到最高值,生成物的浓度相反确是最低点,这时所形成的运动反应是最剧烈的,铜基催化剂的温度也因此呈持续上升趋势。

当到达温度巅峰值后,生成物的浓度增加反应物的浓度降低,反应进程开始减慢。

反应的生成物热量被带走,床层的温度逐渐降低。

(二)铜基催化剂床层温差铜基催化剂的床层温度变化过大,就会造成部分床层温度达不到铜基催化剂活性温度的状况出现,这就会出现变化反应都集中在局部活性温度达标的地点,从而释放热量,因此化学反应越剧烈就会带动床层温度变化越大,铜基催化剂的活性温度也就因此变得更好了。

探究甲醇合成催化剂失活的影响因素

探究甲醇合成催化剂失活的影响因素

探究甲醇合成催化剂失活的影响因素甲醇,化学式为CH3OH,是一种重要的有机化合物,也是工业上常用的化工产品之一。

甲醇的合成催化剂失活是一个值得探究的重要问题,因为催化剂的失活将影响甲醇生产的效率和成本,进而影响整个工业生产系统的稳定性和经济性。

本文将从催化剂的物理性质、化学环境和操作条件三个方面探讨影响甲醇合成催化剂失活的因素。

一、催化剂的物理性质甲醇合成催化剂通常采用氧化锌和铜的复合物作为主要成分,同时也包括少量的铬、铝等元素。

催化剂的物理性质对其失活有重要影响。

催化剂的比表面积是一个重要的影响因素。

催化剂的比表面积越大,其活性部位的数量也就越多,有助于提高反应速率;而当催化剂富含表面缺陷时,也会导致活性部位的数量减少,催化剂的失活会更快。

催化剂的晶型和结构对其失活也有重要影响。

晶相的变化和结构缺陷的产生都会导致催化剂性能的下降,进而影响甲醇合成反应的进行。

催化剂的热稳定性和耐磨损性也是影响其失活的重要因素。

热稳定性差、易受磨损的催化剂会更快失活。

二、化学环境化学环境是催化剂失活的另一个重要因素。

气体组成、温度、压力等化学环境的变化都会导致催化剂的失活。

反应气氛的气体组成对催化剂失活有重要影响。

在甲醇合成反应中,如果反应气氛中存在大量的氧化物、硫化物等杂质,就会导致催化剂受到中毒,失去活性。

温度和压力也会影响催化剂的活性和稳定性。

过高的温度会导致催化剂的晶相变化、结构热膨胀等,都会导致催化活性下降;而过高的压力也会导致催化剂的失活。

三、操作条件总结来看,催化剂的物理性质、化学环境和操作条件是影响甲醇合成催化剂失活的重要因素。

为了提高催化剂的稳定性和活性,需要综合考虑这些因素,并进行合理的设计和优化。

只有在严格控制这些因素的前提下,才能有效减缓催化剂的失活速度,提高甲醇合成反应的效率和产量,进而促进相关工业的发展和进步。

探究甲醇合成催化剂失活的影响因素

探究甲醇合成催化剂失活的影响因素

技术与信息82 |  2019年2月物质之间吸附力的差别来形成不同的色层,同时使物质在移动的过程中,利用亲合力不同来使之得到明显的分离,并且进行溶液萃取。

3.2 工业化色谱分离制取维生素E的特点工业化色谱分离技术制取维生素E 的最大特点就是其成低,纯度高。

工业化色谱分离技术在生产高纯度维生素E 产品中优势明显。

其工艺回收率也相对较高。

同时,色谱分离技术的应用使生产不存在溶剂回收,分子量范围控制,能量成本以及回收率等一系列的问题。

3.3 工业化色谱分离工艺和分离装置的种类分析3.3.1 单塔式分离法单塔式分离方法是液相色谱分析法在工业化的应用。

虽然这种单塔式的工艺在建设费用方面相对较低,但是相应的它的分离纯度和分离效率也有所降低。

仅限于有独立峰值的部分能够进行分离,并且在峰值重叠的部分的纯度是存疑的。

3.3.2 模拟移动床分离装置模拟移动床分离装置是当前工业生产高纯度维生素E 的最常用分离装置,其中填充剂应用是一份十分重要的工作。

可以在分离过程中利用充填剂和溶离液互为逆流接触,使另一成分向下方排出,同时可以利用溶液的流速,充填剂的移动速度和流出量等条件来进行纯度高的成分提取,并且使所产生的两种成分进行可连续的分离,这其中充填剂移动环节就是模拟移动床的应用效果的体现。

3.3.3 改良型模拟移动床分离装置模拟移动床可以保持相对较高的分离精度和分离效率,但是需要的床数量较多,不利于装置系统的自动化控制。

而经过改良以后,以四槽式构成,整体设备制造费用相对较低且更利于控制。

3.4 色谱分离生产高纯度维生素E技术色谱分离生产的技术主要是以分子蒸馏工艺的基础为下层建筑,并且利用色谱分离法做出进一步的提纯,这是一种在传统分子蒸馏工艺基础上,利用模拟移动层色谱分离法进行分离的工艺,分离以后,产品纯度能够达到95%以上。

4 结语维生素E 作为一种脂溶性维生素,对于人体的生理机能具有重要的作用。

本文介绍了维生素E 产品的新型生产技术。

催化剂的失活原因

催化剂的失活原因

催化剂的失活原因催化剂的失活原因一般分为中毒、烧结和热失活、结焦和堵塞三大类。

1、中毒引起的失活(1)暂时中毒(可逆中毒)毒物在活性中心上吸附或化合时,生成的键强度相对较弱可以采取适当的方法除去毒物,使催化剂活性恢复而不会影响催化剂的性质,这种中毒叫做可逆中毒或暂时中毒。

(2)永久中毒(不可逆中毒)毒物与催化剂活性组份相互作用,形成很强的的化学键,难以用一般的方法将毒物除去以使催化剂活性恢复,这种中毒叫做不可逆中毒或永久中毒。

(3)选择性中毒催化剂中毒之后可能失去对某一反应的催化能力,但对别的反应仍有催化活性,这种现象称为选择中毒。

在连串反应中,如果毒物仅使导致后继反应的活性位中毒,则可使反应停留在中间阶段,获得高产率的中间产物。

2、结焦和堵塞引起的失活催化剂表面上的含碳沉积物称为结焦。

以有机物为原料以固体为催化剂的多相催化反应过程几乎都可能发生结焦[7]。

由于含碳物质和/ 或其它物质在催化剂孔中沉积,造成孔径减小(或孔口缩小),使反应物分子不能扩散进入孔中,这种现象称为堵塞。

所以常把堵塞归并为结焦中,总的活性衰退称为结焦失活,它是催化剂失活中最普遍和常见的失活形式。

通常含碳沉积物可与水蒸气或氢气作用经气化除去,所以结焦失活是个可逆过程。

与催化剂中毒相比,引起催化剂结焦和堵塞的物质要比催化剂毒物多得多。

在实际的结焦研究中,人们发现催化剂结焦存在一个很快的初期失活,然后是在活性方面的一个准平稳态,有报道称结焦沉积主要发生在最初阶段(在0.15s 内), 也有人发现大约有50%形成的碳在前20s 内沉积。

结焦失活又是可逆的,通过控制反应前期的结焦,可以极大改善催化剂的活性,这也正是结焦失活研究日益活跃的重要因素。

3、烧结和热失活(固态转变)催化剂的烧结和热失活是指由高温引起的催化剂结构和性能的变化。

高温除了引起催化剂的烧结外,还会引起其它变化,主要包括:化学组成和相组成的变化,半熔,晶粒长大,活性组分被载体包埋,活性组分由于生成挥发性物质或可升华的物质而流失等。

化学反应中催化剂失活的原因及预防措施

化学反应中催化剂失活的原因及预防措施

化学反应中催化剂失活的原因及预防措施化学反应中,催化剂扮演着至关重要的角色。

它们能够降低反应活化能,提高反应速率,从而加速化学反应的进行。

然而,随着反应的进行,催化剂可能会失活,导致反应速率降低甚至停止。

那么,催化剂失活的原因是什么?如何采取预防措施呢?催化剂失活的原因之一是物理因素。

在催化反应中,催化剂与反应物之间会发生化学吸附和脱附过程。

但随着反应进行,一些反应产物或中间体可能会在催化剂表面上沉积,形成物理屏障。

这些物理屏障会阻碍反应物与催化剂之间的接触和相互作用,从而降低了催化反应的活性。

此外,催化剂颗粒也可能因为表面损伤或堆积导致失活。

催化剂失活的另一个重要原因是化学因素。

化学因素指的是在催化反应中,催化剂与反应物之间发生氧化、还原等化学反应。

这些化学反应会改变催化剂的化学性质和结构,导致催化剂活性的降低或完全丧失。

例如,催化剂中的活性位点可能会发生被氧化、被还原、被中毒等现象,从而丧失反应催化能力。

此外,一些副反应或附加反应也会导致催化剂失活,例如副反应生成了催化剂的毒性物质,或者附加反应生成了与催化剂的活性位点竞争吸附的物质。

为了预防催化剂失活,科学家们采取了一系列的措施。

首先,选择适当的催化剂材料是关键。

许多催化剂在特定反应条件下表现出更好的稳定性和活性。

因此,科学家们需要进行深入的研究和筛选,以找到最适合特定反应的催化剂材料。

其次,改进催化剂的设计和制备方法也是一种有效的预防措施。

例如,通过改变催化剂的结构、改进活性位点的分布和可访问性,可以提高催化剂的反应活性和稳定性。

此外,合理调控反应条件,如温度、压力、反应物浓度等,有助于降低催化剂失活的风险。

此外,定期对催化剂进行检测和维护也是非常重要的。

通过观察催化剂活性的变化和失活的迹象,可以及时采取措施修复或更换催化剂。

此外,对催化剂进行修复或再生也是一种有效的手段。

一些失活的催化剂可以通过再生、清洗或改性来恢复其活性,延长其使用寿命。

甲醇合成催化反应机理及催化剂失活因素分析

甲醇合成催化反应机理及催化剂失活因素分析

甲醇合成催化反应机理及催化剂失活因素分析摘要:在甲醇生产过程中,甲醇合成催化剂常会发生中毒、高温烧结、失活等现象,大大影响了甲醇产量,也降低了催化剂的寿命,使生产成本进一步提高。

本文主要对甲醇合成催化反应机理及催化剂失活因素进行分析。

关键词:甲醇合成催化反应机理失活一、反应机理甲醇合成催化反应机理一直是研究人员关注和争议的焦点,不同的反应原料(CO/H2,或CO2/H2)、不同的催化剂、甚至相同的催化体系,催化剂结构不同,也可能导致反应机理不同。

有关反应机理的研究,主要集中在甲醇合成反应的直接碳源、反应的中间物种、反应的控速步骤以及CO在反应中的作用等问题。

早期研究者多数以动力学和H2、CO吸附等问接的实验结果为基础进行反应机理的研究;而现在多数基于同位素标记、光谱测定以及动力学模拟计算等比较直接的证据,但仍不能得出统一明确的结论。

本文按合成甲醇直接碳源的不同,将机理划分为以下3种:CO与CO2共同作为直接碳源机理、CO作为直接碳源机理以及CO2作为直接碳源机理。

(一)一氧化碳和二氧化碳作为直接碳源在CO和CO2加氢合成甲醇反应机理研究中,人们普遍认为甲酰基和甲酸基是反应过程的重要中间物种,CO吸附活化后直接生成甲酰基,而CO2吸附活化后生成甲酸基,并且CO和CO2可以通过表面氧或甲酸基等物种相互转化。

也有不同的观点认为CO吸附活化后与表面羟基结合生成甲酸盐,而CO则与表面氧结合生成碳酸根离子。

(二)一氧化碳作为直接碳源CO加氢合成甲醇的机理,可分为以下两种观点。

一种观点认为,CO首先在活性位上吸附活化,然后与吸附态的氢原子发生分步加氢反应,最终生成甲醇;而原料气中的CO2仅为补充碳源。

这种机理不能解释原料中少量CO2的存在能够明显促进甲醇合成反应的现象。

第二种观点认为,活化态的CO在加氢过程中同时与羟基、表面氧等物种发生反应,生成甲酸盐、甲氧基以及碳酸盐等中间物种,中间物种再通过脱氧及水解等反应生成甲醇。

甲醇合成催化剂中毒失活机理及现状分析

甲醇合成催化剂中毒失活机理及现状分析

甲醇合成催化剂中毒失活机理及现状分析摘要:合成催化剂活性的好坏直接关系到甲醇产量及各项能耗的高低,是甲醇生产极其重要的环节。

我厂甲醇装置自开工以来一直被合成催化剂中毒现象所困扰,并且损失了大量资金,对装置的产量、成本及长周期运行均产生了极大影响。

本文将针对甲醇装置合成催化剂中毒失活机理、现状及措施展开探讨。

希望能对装置的运行及提高合成催化剂的使用效率提供有价值的参考。

关键词:催化剂;毒物;硫;羰基物;失活目前国内外所采用的甲醇合成催化剂均为铜基催化剂,氧化铜含量约占50-70%(wt),氧化锌含量约占20-30%。

铜基催化剂在使用前都要将其还原成单质铜才具有活性,而活性铜对硫、氯、羰基金属、油、磷、氨等毒物和温度变化较敏感,另外在还原过程中对温度的控制,防止烧结现象对催化剂活性也会产生一定影响。

所以铜基催化剂对原料气纯度和生产操作精细程度的要求很严格,否则极易造成催化剂中毒及失活。

本文将从以下毒物对催化剂的影响及生产运行控制两方面对催化剂中毒机理及失活现象展开论述。

1 催化剂中毒机理成因及失活研究1.1 硫对催化剂的影响硫是原料气中常见的毒物,也是引起催化剂活性衰退的主要因素。

换言之,原料气的硫含量决定了铜基催化剂的活性和使用寿命。

原料气中硫一般以h2s和cos形式存在。

除上述两种形态外,还有cs2、硫醚、噻吩等有机硫,它们相对含量比较少,但较难以脱除。

铜基甲醇催化剂对硫化物十分敏感,微量的硫化物就易造成催化剂的永久性中毒失活。

原料气中硫化物通常有h2s、cos、cs2和噻吩等。

通过科研机构的研究证实cs2和噻吩极易导致催化剂中毒,其次为cos,中毒作用相对最弱的是h2s。

h2s在活性cu上的吸附比在zno上强。

对于硫中毒的机理,通常认为是h2s和活性组分铜起反应生成硫化亚铜,覆盖催化剂表面和堵塞孔道而使其丧失活性,而且是永久中毒。

因此对原料气进行精脱硫净化是一种有效的延长甲醇催化剂使用寿命的方法。

甲醇合成催化剂失活及影响因素分析

甲醇合成催化剂失活及影响因素分析

甲醇合成催化剂失活及影响因素分析摘要:如今,我国的化工生产进入到了快速发展的阶段,要想在后期的创造以及生产能力上有明显的提升,就需要不断深入研发催化剂方面的内容。

从客观的角度来分析,甲醇合成催化剂的研究工作当中,失活问题的出现,对化工目标造成了很大的负面影响,必须采取科学、合理的手段来应对,这样才能在日后的工作中,不断取得更好的成绩。

鉴于此,本文就甲醇合成催化剂失活及影响因素展开探讨,以期为相关工作起到参考作用。

关键词:甲醇;合成;催化剂;失活1.甲醇合成催化剂失活的影响因素新时代的化工产业发展过程中,甲醇合成催化剂是非常有代表性的内容,想要在未来工作的开展上取得更好的成绩,必须坚持在现有的问题解决上,做出较为卓越的贡献,这样才能对未来工作的部署,提供更多的支持与参考。

结合以往的工作经验和当下的工作标准,认为甲醇合成催化剂失活的影响因素,主要是表现在以下几个方面:第一,甲醇合成催化剂的研发过程中,针对相关的原材料,并没有做出良好的过滤和筛选,以至于在杂质的含量方面过高,影响到了甲醇合成催化剂的生产效率和生产质量,最终获得的产品不尽如人意,难以得到预期工作效果。

第二,甲醇合成催化剂的失活出现,还与技术人员的能力不足存在关系,在化学反应的综合把控过程中,难以得到预期效果,最终造成的不良影响较为显著。

2.如何判断催化剂活性好坏催化活性是指催化剂对反应速度的影响程度,是判断催化剂性能高低的标准。

工业应用中催化剂的活性评价可采用以下方法:热点温度,催化剂活性好则热点温度位置高,活性差则热点温度位置低;单程转化率,入口含量较高的反应物在出口的含量,越低则催化剂活性越好;床层温差,一定的入口温度条件下床层温差大则活性好。

2.1热点温度在催化剂床层上层,工艺气中反应物的浓度最高,生成物的浓度最低,此时反应最剧烈,所以催化剂床层的温度沿轴线上升。

到某一温度最高,此后,随着生成物浓度的增加,反应物浓度相对应降低,反应进行缓慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甲醇制甲醛过程中催化剂失活的原因
以甲醇为原料,结晶银作催化剂制取甲醛,催化剂寿命短的原因很多,有外在因素,也有内在因素,根据生产经验,总结出主要的原因有以下几点:
1、反应温度高
结晶银催化制取甲醛,反应温度较高(一般控制在
630-650 ℃),催化剂长期处于高温状态,导致催化剂的晶相、晶粒分解度逐渐发生变化,破坏了原有的组织和结构,这是结晶银催化剂寿命短的主要原因。

有时反应器温度波动过大或出现超温运行,催化剂的物理结构便会逐渐发生变化,其孔隙率相应减少,温度再升高,就会出现催化剂选择性下降,副产物增多的问题,直接影响了催化剂的活性。

2 、有害杂质影响
结晶银催化剂由于受到原料气夹带的外来物质污染和反应
物结焦,其活性表面容易被覆盖,催化剂孔隙被堵塞。

使催化剂粘聚在一起,造成床内局部阻力上升,反应气走短路,直接导致催化剂利用率降低,寿命缩短。

比如原料气中含有挥发性硫、氯化物,会与结晶银生成硫化银和氯化银而使催化剂中毒,如含有醛、酮等有机物,则会因其树脂化作用而堵塞银粒表面的孔隙,导致催化剂活性的降低;如含有挥发性铁化合物,会在催化剂上分解成氧化铁,覆盖在表面而破坏其活性,而且催化剂表面覆盖
了氧化铁细粒,将会加快甲醇的完全燃烧反应,使尾气中CO2含量增加,同时放出大量热,使反应温度迅速升高甚至失控,从而影响触媒的选择性,导致副反应增多。

因此反应原料气中硫、氯化物、醛、酮、铁杂质等有害杂质的存在可导致催化剂中毒。

此外,如果电解银催化剂本身带有氯化物、铁等杂质,在反应条件下有可能与有效成分银作用,使催化剂的催化效能受到破坏,从而发生催化剂中毒现象。

3 、生产过程不稳定
甲醛生产中,由于各种因素的影响,生产的稳定性有可能会受到破坏。

比如,工作不正常引起的临时停车;生产过程操作不得当,使蒸发温度或氧化反应温度产生较大的波动;蒸发器液位控制不好(过高或过低)等等都会对催化剂活性造成一定的影响,从而缩短其使用寿命。

4 、催化剂床层破坏
甲醛生产中,如果催化床层厚薄松紧不均,催化剂与氧化器器壁有缝隙存在或出现床层裂缝、塌陷都会加剧甲醛的深度氧化,从而影响催化剂的活性。

5、旧催化剂所含杂质
由催化剂失活的原因可以总结出旧催化剂所含的主要杂质
成分,如下:
1)催化剂床层底部为铜网,旧催化剂取出时会带出大量铜杂质。

2)催化剂表层由于长时间处于高温状态下,会烧结而形成部分氧化银。

3)甲醇蒸发器内甲醇使用时间较短时间后呈棕**,停车后会发现催化剂表面呈灰色或微**,有大量碳和铁。

4)空气经过过滤,但没有水洗,空气中还含有部分硫、磷、氯等有害物。

相关文档
最新文档