实数教案设计
实数教案(精选3则)

实数教案(精选3则)实数教案实数教案(一):初中数学教案----实数一、资料特点在知识与方法上类似于数系的第一次扩张。
也是后继资料学习的基础。
资料定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路[]整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于资料的始终。
学习对象----实数概念及其运算;学习过程----透过拼图活动引进无理数,透过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。
具体过程:首先透过拼图活动和计算器探索活动,给出无理数的概念,然后透过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
第一节:数怎样又不够用了:透过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会决定一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常透过估算来求它的近似值,为此这一节资料介绍估算的方法,包括透过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的潜力。
第六节:实数。
总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些推荐1.注重概念的构成过程,让学生在概念的构成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的好处理解。
实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标1. 知识与技能:(1)理解和掌握实数的定义及分类,包括有理数和无理数;(2)熟练运用实数的基本性质,如加、减、乘、除、乘方等;(3)掌握实数的运算规则,如负数的运算、分数的运算、根式的运算等。
2. 过程与方法:(1)通过复习和练习,提高学生对实数的认识和理解;(2)培养学生运用实数解决实际问题的能力;(3)引导学生运用数形结合的方法,加深对实数概念的理解。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生的团队合作精神,提高学生沟通交流能力;(3)引导学生认识数学在生活中的重要性,培养学生的数学应用意识。
二、教学内容1. 实数的定义及分类;2. 实数的基本性质;3. 实数的运算规则;4. 实数在实际问题中的应用。
三、教学重点与难点1. 教学重点:实数的定义及分类,实数的基本性质和运算规则,实数在实际问题中的应用。
2. 教学难点:实数的概念理解和运用,实数的运算规则,实数在实际问题中的运用。
四、教学方法1. 采用讲解法,引导学生理解和掌握实数的定义及分类,实数的基本性质和运算规则;2. 采用案例分析法,分析实数在实际问题中的应用,培养学生的数学应用意识;3. 采用小组讨论法,激发学生的思考,提高学生的团队合作精神;4. 采用练习法,巩固学生对实数的理解和运用。
五、教学过程1. 引入:通过数轴,引导学生回顾实数的概念,理解实数的定义及分类;2. 讲解:讲解实数的基本性质和运算规则,结合实际例子,让学生深刻理解;3. 案例分析:分析实数在实际问题中的应用,让学生体会数学的价值;4. 小组讨论:引导学生进行小组讨论,分享各自的思考和理解,提高团队合作精神;5. 练习:布置练习题,巩固学生对实数的理解和运用。
六、教学评价1. 课堂表现评价:观察学生在课堂中的参与程度、提问回答情况,以及小组讨论的表现,了解学生的学习状态和理解程度。
2. 练习题评价:对学生的练习题进行批改,评估学生对实数的理解和运用能力,发现并纠正学生的错误。
七年级数学上册《实数》教案、教学设计

3.介绍实数的四则运算,特别是乘除运算的化简方法。通过讲解和举例,让学生掌握实数运算的规则。
4.引导学生探究实数在数轴上的表示方法,让学生通过实际操作,体验实数与数轴的关系,培养数形结合的思维方式。
(三)学生小组讨论
8.课后辅导和拓展,针对学生在课堂上遗留的问题,进行个别辅导;同时,提供丰富的拓展资源,满足学有余力学生的需求。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个正方形和一条对角线,提出问题:“同学们,你们知道这个正方形的对角线有多长吗?”引导学生回顾勾股定理,计算出对角线的长度为$\sqrt{2}$。
1.将学生分成小组,讨论以下问题:
a.举例说明无理数在实际生活中的应用。
b.如何判断一个数是否为无理数?
c.实数在数轴上如何表示?
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成。题目包括:
a.判断以下数是否为无理数:$\sqrt{5}$、$\pi$、$\frac{22}{7}$。
在教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过本章节的学习,使学生全面掌握实数的知识与技能,形成良好的学习方法和情感态度,为今后的数学学习打下坚实的基础。
二、学情分析
七年级的学生正处于青春期,思维活跃,好奇心强,但注意力容易分散。在数学学习方面,他们已经掌握了有理数的概念和运算,具备了一定的数学基础。然而,对于实数的认识尚处于模糊阶段,特别是对无理数的理解和运用存在一定难度。因此,在教学过程中,应关注以下几点:
2.提问:“$\sqrt{2}$是一个什么类型的数?”让学生回顾有理数的概念,进而引出无理数的概念,为新课的学习做好铺垫。
《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容本节课的教学内容选自人教版高中数学必修一第三章《实数》的第三节“实数的运算”。
本节内容主要包括实数的加法、减法、乘法、除法运算,以及实数的乘方和开方运算。
二、教学目标1. 理解实数运算的定义和性质,掌握实数的加法、减法、乘法、除法、乘方和开方运算的方法。
2. 能够运用实数运算解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力和团队合作精神。
三、教学难点与重点1. 教学难点:实数的乘方和开方运算,以及实数运算在实际问题中的应用。
2. 教学重点:实数的加法、减法、乘法、除法运算,以及实数的乘方和开方运算。
四、教具与学具准备1. 教具:黑板、粉笔、投影仪、PPT课件。
2. 学具:笔记本、橡皮、直尺、圆规。
五、教学过程1. 实践情景引入:设计一个实际问题,如“某商店进行打折活动,原价为100元的商品打8折,求打折后的价格。
”让学生思考如何用实数运算解决问题。
2. 知识点讲解:利用PPT课件,逐个讲解实数的加法、减法、乘法、除法、乘方和开方运算的定义和性质。
3. 例题讲解:挑选几个典型的例题,如“已知实数a、b,求(a+b)、(ab)、(a×b)、(a÷b)、(a²)、(√a)的值。
”进行讲解,让学生跟随步骤一起解答。
4. 随堂练习:设计一些实数运算的练习题,让学生在课堂上独立完成,及时巩固所学知识。
5. 小组讨论:将学生分成小组,讨论实数运算在实际问题中的应用,分享解题方法和心得。
六、板书设计板书实数运算的定义和性质,以及关键的步骤和公式。
七、作业设计1. 题目:已知实数a、b,求(a+b)、(ab)、(a×b)、(a÷b)、(a²)、(√a)的值。
2. 答案:(a+b) = a + b(ab) = a b(a×b) = a × b(a÷b) = a ÷ b(a²) = a × a(√a) = √a八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解实数运算的应用,通过例题讲解和随堂练习,让学生掌握实数运算的方法。
初中七年级下册《实数》教案优质范文五篇

初中七年级下册《实数》教案优质范文五篇教师要以东风化雨之情,春泥护花之意,培育人类的花朵,绘制灿烂的春天。
今天小编为大家带来的是初中七年级下册《实数》教案优质范文,供大家阅读。
初中七年级下册《实数》教案优质范文一教学目标1.知道有效数字的概念;2.会按要求进行近似数的运算教学过程一、创设情境,导入新课1.什么叫实数?实数怎么分类?2.在有理数范围内学过的概念、运算法则、运算定律、性质,在实数范围内还适应吗?3.做一做如果正方形ABCD的面积为3平方厘米,正方形EFGH的面积为5平方厘米,这两个正方形的边长的和大约是多少厘米(精确到小数点后面第一位)?二、合作交流,探究新知1 交流上面问题的做法(1)估计同学们会有两种做法:用计算器分别求的近似值,用四舍五入取到小数点后面第一位,然后相加,得:(厘米)(2)用计算器直接求出的近似值,用四舍五入取到小数点后面第一位,得:如果没有两种做法,也要想办法引出这两种做法两种做法的答案不同,哪一种答案正确呢?请同学们把第一种做法修改一下:将的近似值分别取到小数点后第二位,然后相加。
你发现了什么?这时两种做法的答案就一样了。
从这个例子看出,在进行实数的加减运算时,如果要求答案取到小数点后面第一位,那么参与运算的每一个实数的近似值应当多一位,即取到第二位,最后结果才取到小数点后面第一位。
2、引入有效数字的概念在上面运算中1.73是的近似值,它是用四舍五入得到的,1、7、3叫近似数1.73的三个有效数字。
什么叫近似数的有效数字呢?先思考:0.010256精确到小数点后面第三位,等于多少呢?0.0102560.0103近似数0.0103有三个有效数字1、0、3现在你能说说,什么叫近似数的有效数字吗?从第一个不是零点数字起到最后一个不数字止的所有数字叫近似数的有效数字。
考考你:1 近似数0.03350有几个有效数字,分别是______________________.2 125万保留两个有效数字等于__________3 有_______个有效数字。
八年级数学实数教案

八年级数学实数教案第一章:实数的概念与分类教学目标:1. 理解实数的定义及其分类;2. 掌握有理数和无理数的特点;3. 能够正确区分有理数和无理数。
教学内容:1. 实数的定义;2. 有理数和无理数的分类;3. 实数的性质。
教学步骤:1. 引入实数的概念,让学生回顾以前学过的数,如整数、分数等;2. 讲解实数的分类,解释有理数和无理数的含义及特点;3. 通过例题让学生区分有理数和无理数;教学评价:1. 课堂讲解是否清晰明了,学生是否能理解实数的定义;2. 学生是否能正确区分有理数和无理数;3. 学生是否能掌握实数的性质。
第二章:实数的运算教学目标:1. 掌握实数的加减乘除法运算;2. 能够运用实数运算解决实际问题。
教学内容:1. 实数的加减法运算;2. 实数的乘除法运算;3. 实数的运算律。
教学步骤:1. 回顾实数的加减法运算,讲解规则;2. 通过例题让学生练习实数的加减法运算;3. 讲解实数的乘除法运算,让学生掌握运算规则;4. 运用例题让学生练习实数的乘除法运算;5. 介绍实数的运算律,如交换律、结合律等。
教学评价:1. 学生是否能掌握实数的加减法运算;2. 学生是否能掌握实数的乘除法运算;3. 学生是否能理解实数的运算律并运用到实际问题中。
第三章:实数的倒数与绝对值教学目标:1. 理解实数的倒数的概念;2. 掌握实数的绝对值的定义及其性质;3. 能够运用倒数和绝对值解决实际问题。
教学内容:1. 实数的倒数的概念;2. 实数的绝对值的定义及其性质;3. 倒数和绝对值的应用。
教学步骤:1. 讲解实数的倒数的概念,让学生理解倒数的含义;2. 通过例题让学生练习实数的倒数运算;3. 讲解实数的绝对值的定义及其性质,让学生掌握绝对值的计算方法;4. 运用例题让学生练习实数的绝对值运算;5. 介绍倒数和绝对值在实际问题中的应用。
教学评价:1. 学生是否能理解实数的倒数的概念;2. 学生是否能掌握实数的绝对值的定义及其性质;3. 学生是否能运用倒数和绝对值解决实际问题。
《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容本节课选自教材第十二章《实数》的第一节,内容包括实数的定义、性质及分类。
详细内容如下:1. 实数的定义:有理数和无理数的统称,包括整数、分数、π、e等。
2. 实数的性质:实数具有有序性、稠密性、传递性等。
3. 实数的分类:实数可以分为有理数和无理数,有理数又可分为整数和分数。
二、教学目标1. 理解实数的定义,掌握实数的性质和分类。
2. 学会运用实数进行计算,提高运算能力。
3. 培养学生的数学思维能力和解决问题的能力。
三、教学难点与重点难点:实数的性质和分类。
重点:实数的定义及其在数学运算中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:练习本、草稿纸、计算器。
五、教学过程1. 导入:通过实际情景引入实数概念,如测量物体长度、计算面积等。
2. 新课导入:讲解实数的定义、性质和分类。
3. 例题讲解:讲解实数运算的例题,如加减乘除、开方等。
4. 随堂练习:让学生进行实数运算的练习,巩固所学知识。
5. 知识拓展:介绍实数在生活中的应用,如科学计算、工程技术等。
六、板书设计1. 实数的定义2. 实数的性质3. 实数的分类4. 实数运算例题5. 课堂练习七、作业设计1. 作业题目:(1)计算下列各题,并说明其结果是有理数还是无理数:a. √9 + √16b. √7 √3(2)比较下列各组实数的大小:a. 3/2,2b. √5,32. 答案:(1)a. 5(有理数)b. √7 √3(无理数)(2)a. 3/2 < 2 b. √5 < 3八、课后反思及拓展延伸1. 反思:本节课学生对实数的定义和性质掌握情况,以及对实数运算的熟练程度。
2. 拓展延伸:引导学生探索实数在生活中的应用,如测量、计算等,提高学生的数学应用意识。
同时,为学生提供一些实数的高级运算题目,如幂运算、对数运算等,激发学生的学习兴趣。
重点和难点解析1. 实数的定义及性质的教学2. 实数运算的例题讲解3. 课堂练习的设计与指导4. 作业设计中的题目难度和答案解析5. 课后反思与拓展延伸的深度和广度详细补充和说明:一、实数的定义及性质的教学1. 有序性:任意两个实数可以比较大小。
实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的特点。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会实数的运算方法,包括加、减、乘、除、乘方等。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实数运算方法,培养学生解决实际问题的能力。
3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。
二、教学重点与难点:1. 教学重点:(1)实数的定义及分类。
(2)实数的性质和运算方法。
2. 教学难点:(1)实数分类的理解和运用。
(2)实数运算的灵活应用。
三、教学过程:1. 导入新课:回顾实数的定义,引导学生思考实数的分类和性质。
2. 知识讲解:(1)讲解实数的分类,包括有理数和无理数。
(2)阐述实数的性质,如相反数、绝对值、平方等。
(3)介绍实数的运算方法,如加、减、乘、除、乘方等。
3. 例题解析:选取典型例题,讲解实数的运算方法和应用。
4. 课堂练习:设计练习题,让学生巩固实数的分类、性质和运算方法。
5. 总结提升:对本节课的内容进行总结,强调实数在数学中的重要性。
四、课后作业:1. 复习实数的定义、分类和性质。
2. 练习实数的运算方法,解决实际问题。
3. 总结实数在实际生活中的应用。
五、教学评价:1. 学生对实数的定义、分类和性质的掌握程度。
2. 学生实数运算方法的运用能力。
3. 学生解决实际问题的能力。
4. 学生对数学学科的兴趣和积极性。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探究实数的性质和运算方法。
2. 通过小组讨论,培养学生合作学习的能力。
3. 利用信息技术辅助教学,如数学软件、网络资源等。
4. 设计富有挑战性的数学问题,激发学生的创新思维。
七、教学实践与拓展:1. 结合实际生活中的问题,让学生运用实数知识和方法解决问题。
2. 开展数学竞赛,提高学生的学习积极性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
借助数轴对无理数进行研究,从形的角度,再一次体会无理数。同时也感受实数与数轴上点的一一对应关系,进一步体会数形结合思想。通过对实数进行分类,让学生进一步领会分类的思想,培养学生从多角度思考问题的能力,为他们以后更好地学习新知识作准备。 通过学生互相的讨论和交流,可以深刻地体验知识之间的内在联系,初步形成对实数整体性的认识。
[活动3 ]
(1)你能对我们学过的数进行合理的分类吗?
(2)把下列各数分别填入相应的集合里:
正有理数{ }负有理数{ }
正无理数{ }负无理数{ }
(3)下列实数中是无理数的为( )
A. 0 B. C. D.
(4)下列各数中,是无理数的是( )
A. B. C. D.
(5)已知四个命题,正确的有( )
a.有理数与无理数之ቤተ መጻሕፍቲ ባይዱ是无理数 b.有理数与无理数之积是无理数
c.无理数与无理数之积是无理数 d.无理数与无理数之和是无理数
A. 1个 B. 2个 C. 3个 D.4个
[活动4 ]
(1)小结:通过这节课的学习,你有那些收获?
(2)布置作业:
教科书习题13.3第 第1,2题。
思考题:当数从有理数扩充到实数后,相反数和绝对值的意义及运算法则是否同样适用于实数?
学生之间互相交流,教师给学生不断启发,让学生在这种多向互动中获取知识,形成技能,提高解决问题的能力.不断地鼓励学生参与讨论,并表达自己的看法.
教学预设:
以单位长度1为边长画一个正方形,以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示,与负半轴的交点就表示.
总结:事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,当数从有理数扩充到实数后,实数与数轴上的点就是一一对应关系,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。
设计依据与意图:
依据八年级学生对有理数的理解,将一些有理数转化为小数,与以前学过的无限不循环小数作对比,为给出无理数概念作准备。
依据新课标要求学习内容有利于学生主动地进行观察、实验.通过让学生参与无理数的概念的建立和发现数系扩充必要性的过程,促进学生对数学学习的兴趣培养学生初步的发现能力。本次活动从学生已有的知识水平出发,找到数轴上表示 的点的位置,体会无理数也可以用数轴上的点表示。
学习重点:了解无理数和实数的概念 、实数的分类
学习难点:对无理数的认识
教学模式或方法:采用自我探究,自我总结的方法
教学手段:课件辅助
教 学 流 程 设 计
教学预设:
[活动1]
(1)探究 使用计算器计算,把下列有理数写成小数的形式,它们有什么特征?
3 , , , , ,
(2)我们所学过的数是否都具有(1)中数的特征?
依据新课标要学生了解无理数的要求, 通过对实数分类的练习与巩固,加深学生对各种数的认识,加深对实数概念的理解。
使学生能回顾、总结、梳理所学的知识,将所学的知识与已有的知识进行紧密联系,改善学习的学习方式。
学生通过课后完成作业巩固本节知识。
思考题学生留有继续学习的空间和兴趣。
非预设性生成:
在对实数进行分类的过程中可能出现分类标准不清的各种情况,对特殊数字的分类容易混淆。
非预设性生成:
对于“任何一个分数都可以写成有限小数或无限循环小数的形式;反之,任何一个有限小数或无限小数都可以化为分数.如果把整数视为分母为1的分数,那么,我们学过的有理数实际上都是分数,反之分数也都是有理数”可能有部分学生不能理解。讲解时根据具体情况有针对性的点拨。
反思与评价:
强调概念的实际背景,帮助学生进一步理解概念,改变机械记忆概念的学习习惯.
在小结时不同的学生可能出现不同的漏洞,视情况补充。
反思与评价:
要不断地引导学生主动地从事观察、推理、分析、类比、交流等数学活动,帮助学生克服单纯地依赖、模仿与记忆的学习方式.
练习的类型要有针对性和拔高性。
实数教案设计
学习目标、学习重点、学习难点。教学流程、设计依据与意图
课题及课时:13.3实数(1)
课型:新授课
学习目标: 1、了解无理数和实数的概念以及实数的分类;知道实数与数轴上的点具有一一对应关系。
2、经历对实数进行分类的过程,发展学生的分类意识;
3、通过了解数系扩充体会数系扩充对人类发展的作用,并能有意识地运用已有知识解决新问题。
发现3、 、 ,可以写成有限小数的形式; 、 、 可以写成无限循环小数的形式.
归纳 :任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数(给出无理数的概念)
[活动2]
我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示 π、的点吗?我们设想直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?