天津市南开翔宇学校七年级下册数学全册单元期末试卷及答案-百度文库
【3套打包】天津市南开翔宇学校七年级下册数学期末考试试题(含答案)

新七年级(下)数学期末考试试题(含答案)一、填空题(本大题共6个小题,每小题3分,满分18分) 1.9的平方根是 .2.如果水位升高2m 时水位变化记作m 2+,那么水位下降3m 时的水位变化记 作 m .3. 点P 在第四象限内,点P 到x 轴的距离是1,到y 轴的距离是2,那么点P 的坐标为 .4. 若1-=x 是关于x 的方程22=+a x 的解,则a 的值为 .5.如图,AB ∥CD ,AD ⊥BD ,∠A =56°, 则∠BDC 的度数为__________.6.某次知识竞赛共有道25题,每一道题答对得5分,答错或不答扣3分,在这次竞赛中小明的得分超过了100分,他至少答对 题. 二、选择题(本大题共8个小题,每小题4分,满分32分) 7.下列各点中,在第二象限的点是( ). A .(-4,2) B .(-2,0) C .(3,5)D .(2,-3)8.据统计,今年全国共有10310000名考生参加高考,10310000用科学记数法可表示为( ).A .4101031⨯B .61031.10⨯C .710031.1⨯ D .810031.1⨯9.如图,已知直线a //b ,∠1=100°,则∠2等于( ). A .60° B .70° C .80° D .100° 10.下列调查中,适宜采用全面调查方式的是( ). A .了解我县中学生每周使用手机所用的时间 B .了解一批手机电池的使用寿命 C .调查端午节期间市场上粽子质量情况D .调查某校七年级(三)班45名学生视力情况 11.下列不等式中一定成立的是( ).ABCDA .a 5>a 4B .a ->a 2-C .a 2<a3D .2+a <3+a 12.不等式5--x ≤0的解集在数轴上表示正确的是( ).13. 已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB 于点O , ∠BOD =35°.则∠COE 的度数为( ). A .35° B .55° C .65° D .70°14.如图,已知点A ,B 的坐标分别为(3,0),(0,4),将线段AB 平移到CD ,若点A 的对应点C 的坐标为(4,2),则B 的对应 点D 的坐标为( ).A .(1,6)B .(2,5)C .(6,1)D .(4,6)三、解答题(本大题共9个小题,满分70分) 15. (本小题6分)计算:168)2(32-+-3223---16. (本小题10分) (1)解方程组⎩⎨⎧=+=-24352y x y x(2)不等式组4+6,23x x x x ⎧⎪+⎨⎪⎩>≥, 并写出它的所有整数解.17.(本小题6分)某班去看演出,甲种票每张25元,乙种票每张20元.如果 40名学生购票恰好用去880元,甲乙两种票各买了多少张?ABCDx① ②① ②18.(本小题7分)如图,已知, OA ⊥OB , 点C 在射线OB 上,经过C 点的直线DF ∥OE ,∠BCF =60°.求∠AOE 的度数.19.(本小题7分)完成下列推理结论及推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE . 证明:∵∠B +∠BCD =180°(已知) ∴AB ∥CD ( ) ∴∠B = ( ) 又∵∠B =∠D (已知)= (等量代换)∴AD ∥BE ( ) ∴∠E =∠DFE ( )20.(本小题8分)如图所示,△ABC 在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,三个顶点的坐标分别是A (﹣2,0),B (﹣5,﹣2),C (-3,﹣4),先将△ABC 向右平移4个单位长度,再向上平移3个单位长度,得到△111C B A . (1)在图中画出△111C B A ;(2)写出△111C B A 的三个顶点 的坐标;ABCDEF-1 -4 1 2 3 4 5 -2 -3 -4 -5 1-3-20 2 3 4-1-1 xy65 -5-6 AB CAOEC DFB(3)求△111C B A 的面积.21. (本小题7分) 如图,已知: DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FGA B C .311D .3.142.在平面直角坐标系中,点P (-5,0)在( )A .第二象限B .第四象限C .x 轴上D .y 轴上3.不等式组111x x -≥-⎧⎨⎩>的解集在数轴上表示正确的是( )A .B .C .D .4.下列命题中,是真命题的是( )A .两条直线被第三条直线所截,内错角相等B .邻补角互补C .相等的角是对顶角D .两个锐角的和是钝角5.已知a >b ,下列不等式成立的是( )A.a-2<b-2 B.-3a>-3b C.a2>b2 D.a-b>06.为了解2018年某市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是()A.21000名学生是总体B.上述调查是普查C.每名学生是总体的一个个体D.该1000名学生的视力是总体的一个样本7.如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是()A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格8.为了了解某校七年级学生的体能情况,随机调查了其中100名学生,测试学生在1分钟内跳绳的次数,并绘制成如图所示的频数分布直方图.请根据图形计算,跳绳次数(x)在120≤x<200范围内人数占抽查学生总人数的百分比为()A.43% B.50% C.57% D.73%9.如图,下列能判定AB∥EF的条件有()①∠B+∠BFE=180°②∠1=∠2③∠3=∠4④∠B=∠5.A.1个B.2个C.3个D.4个10.如图,将正方形ABCD的一角折叠,折痕为AE,点B恰好落在点B'处,∠BAD比∠BAE大48°.设∠BAE和∠BAD的度数分别为x°和y°,那么所适合的一个方程组是()A .4890y x y x -+⎧⎨⎩==B . 482y x y x ⎨⎩-⎧==C .48290x y y x ⎨⎩-+⎧==D .48290y x y x ⎨⎩-+⎧==14.如图,直线AB ,CD 相交于点O ,OM ⊥AB 于O ,若∠MOD=35°,则∠COB= 度.16.如图,把一张长方形纸片ABCD 沿EF 折叠后,点A 与点A′重合(点A 在BC 边上),点B 落在点B′的位置上,若∠DEA′=40°,则∠1+∠2= °.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:21.某区举办科技比赛,某校参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图如图.(1)该校参加机器人的人数是人;“航模”所在扇形的圆心角的度数是°;(2)补全条形统计图;(3)从全区参加科技比赛选手中随机抽取80人,其中有16人获奖,已知全区参加科技比赛人数共有3215人,请你估算全区参加科技比赛的获奖人数约是多少人?22.如图,已知Rt△ABC的三个顶点分别为A(-3,2),B(-3,-2),C(3,-2).将△ABC 平移,使点A与点M(2,3)重合,得到△MNP.(1)将△ABC向平移个单位长度,然后再向平移个单位长度,可以得到△MNP.(2)画出△MNP.(3)在(1)的平移过程中,线段AC扫过的面积为(只需填入数值,不必写单位).五、解答题(三)(本大题共3小题,每小题9分,共27分)23.在荔枝种植基地有A、B两个品种的树苗出售,已知A种比B种每株多20元,买1株A种树苗和2株B种树苗共需200元.(1)问A、B两种树苗每株分别是多少元?(2)为扩大种植,某农户准备购买A、B两种树苗共36株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.24.如图,已知四边形ABCD,AB∥CD,点E是BC延长线上一点,连接AC、AE,AE 交CD于点F,∠1=∠2,∠3=∠4.证明:(1)∠BAE=∠DAC;(2)∠3=∠BAE;(3)AD∥BE.25.如图1,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)点C的坐标为,点D的坐标为,四边形ABDC的面积为.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.参考答案及试题解析1.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A是整数,是有理数,选项错误;B是无理数,选项正确;C、311是分数,是有理数,选项错误;D、3.14是有限小数是有理数,选项错误.故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【分析】根据点的坐标特点判断即可.【解答】解:在平面直角坐标系中,点P(-5,0)在x轴上,故选:C.【点评】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:111xx-≥⎨-⎧⎩>①②,解不等式①,得x>2.所以原不等式组的解集为x>2.故选:A.【点评】本题主要考查了不等式组的解法,注意在表示解集x>a时,a用空心的点,而x≥a,则a用实心的点.4.【分析】利用平行线的性质、邻补角的定义及对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;B、邻补角互补,正确,是真命题;C、相等的角不一定是对顶角,故错误,是假命题;D、两个锐角的和不一定是钝角,故错误,是假命题,故选:B.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及对顶角的定义等知识,难度不大.5.【分析】依据不等式的性质求解即可.【解答】解:A、由不等式的性质1可知,A错误,与要求不符;B、由不等式的性质3可知,B错误,与要求不符;C、此选项无法判断,与要求不符;D、由不等式的性质1可知,D正确,与要求相符.故选:D.【点评】本题主要考查的是不等式的性质,掌握不等式的性质是解题的关键.6.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、21000名学生的视力是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的视力是总体的一个个体,故此选项错误;D、1000名学生的视力是总体的一个样本,故此选项正确;故选:D.【点评】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点.易错易混点:学生易对总体和个体的意义理解不清而错选.7.【分析】根据图形A与下方图形中空白部分的位置解答即可.【解答】解:由图可知,正确的平移方式向右平移4格,再向下平移4格.故选:A.【点评】本题考查了平移的性质,比较简单,准确识图是解题的关键.8.【分析】用120≤x<200范围内人数除以总人数即可.【解答】解:总人数为10+33+40+17=100人,120≤x<200范围内人数为40+17=57人,在120≤x<200范围内人数占抽查学生总人数的百分比为57100=57%.故选:C.【点评】本题考查了频数分布直方图,把图分析透彻是解题的关键.9.【分析】根据平行线的判定定理对各小题进行逐一判断即可.【解答】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.10.【分析】设∠BAE和∠BAD的度数分别为x,y,根据将正方形ABCD的一角折叠,折痕为AE,∠BAD比∠BAE大48°可列出方程组.【解答】解:设∠BAE和∠BAD的度数分别为x°和y°,根据题意可得:48290 y xy x⎨⎩-+⎧==.故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,以及翻折变换的问题,关键知道正方形的四个角都是直角.11.【分析】直接利用二次根式的性质化简求出即可.【解答】.故答案为:5.【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程去括号得:3x=2x+2,解得:x=2.故答案为:x=2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13【分析】先求出不等式的解集,再求出整数解即可.【解答】解:2x+5≤12,2x≤12-5,2x≤7,x≤3.5,所以不等式2x+5≤12的正整数解是1,2,3,故答案为:1,2,3.【点评】本题考查了解一元一次不等式和不等式的整数解,能根据不等式的性质求出不等式的解集是解此题的关键.14.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=35°,∴∠AOD=90°+35°=125°,∴∠COB=125°,故答案为:125.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.15.【分析】两个方程相加即可得出4a+4b的值,再得出a+b的值即可.【解答】解:51234a ba b+-⎧⎨⎩=①=②,①+②得4a+4b=16,则a+b=4.故答案为:4.【点评】考查了二元一次方程组的解,要想求得二元一次方程组里两个未知数的和,有两种方法:求得两个未知数,让其相加;观察后让两个方程式(或整理后的)直接相加或相减.16.【分析】依据平行线的性质以及折叠的性质,即可得到∠2的度数,依据折叠的性质即可得到∠1的度数,进而得出∠1+∠2=70°+50°=120°.【解答】解:∵AD∥BC,∠DEA′=40°,∴∠EA'F=40°,又∵∠B'A'E=∠BAD=90°,∴∠2=90°-40°=50°,由折叠可得,∠1=12∠AEA'=12(180°-∠DEA')=12(180°-40°)=70°,∴∠1+∠2=70°+50°=120°.故答案为:120.【点评】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.【分析】直接利用二次根式的性质以及立方根的性质、绝对值的性质分别化简得出答案.【解答】解:原式=32-()-4-1=32-2+=-51 2+【点评】此题主要考查了实数运算,正确化简各数是解题关键.18. 【分析】方程①中y 的系数是1,用含x 的式子表示y 比较简便.【解答】解:由①,得y=2x-3③,代入②,得3x+4×(2x-3)=10,解得x=2,把x=2代入③,解得y=1.∴原方程组的解为21x y ⎧⎨⎩==【点评】注意观察两个方程的系数特点,选择简便的方法进行代入.19. 【分析】分别求出各不等式的解集,再求出其公共解集,由x 的取值范围即可得出结论.【解答】解:()302133x x x +-+≥⎧⎨⎩>①②,由①得x >-3;由②得x≤1故此不等式组的解集为:-3<x≤1,所以-1不是该不等式组的解.【点评】本题考查的是解一元一次不等式组及估算无理数的大小,根据题意求出x 的取值范围是解答此题的关键.20. 【分析】首先根据平行线的性质可得∠1=∠B ,∠2=∠C ,再根据AD 是∠EAC 的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD ∥BC ,∴∠1=∠B ,∠2=∠C ,又∵AD 平分∠EAC ,∴∠1=∠2,∴∠C=∠B=30°.【点评】此题主要考查了平行线的性质,以及角平分线的性质,关键是掌握平行线性质定理: 定理1:两直线平行,同位角相等;定理2:两直线平行,同旁内角互补;定理3:两直线平行,内错角相等.21. 【分析】(1)由条形图可得机器人人数,用360°乘以建模对应百分比可得;(2)先求出总人数,再根据各类别人数之和等于总人数求得电子百拼人数即可补全图形;(3)总人数乘以获奖人数所占比例可得.【解答】解:(1)该校参加机器人的人数是4,“航模”所在扇形的圆心角的度数是360°×25%=90°,故答案为:4、90;(2)∵被调查的总人数为6÷25%=24人,∴电子百拼的人数为24-(6+4+6)=8人,补全图形如下:(3)估算全区参加科技比赛的获奖人数约是3215×1680=643人. 【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22. 【分析】(1)利用网格特点和平移的性质得出答案;(2)再利用(1)中平移的性质得出△MNP ;(3)先由AC 平移到A 1C 1,再由A 1C 1平移到MP ,所以线段AC 扫过的部分为两个平行四边形,于是根据平行四边形的面积公式可计算出线段AC 扫过的面积.【解答】解:(1)将△ABC 向右平移5个单位长度,然后再向上平移1个单位长度,可以得到△MNP ;故答案为:右,5,上,1;(2)如图所示:△MNP ,即为所求;(3)线段AC 扫过的面积为:4×5+1×6=26.故答案为:26.【点评】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离;作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形23. 【分析】(1)设A 种树苗每株x 元,B 种树苗每株y 元,根据条件“A 种比B 种每株多20元,买1株A 种树苗和2株B 种树苗共需200元”建立方程求出其解即可;(2)设A 种树苗购买a 株,则B 种树苗购买(36-a )株,根据条件A 种树苗数量不少于B 种数量的一半建立不等式,求出其解即可.【解答】解:(1)设A 种树苗每株x 元,B 种树苗每株y 元,由题意,得202200x y x y ⎨⎩-+⎧==, 解得8060x y ⎧⎨⎩==, 答:A 种树苗每株80元,B 种树苗每株60元.(2)设购买A 种树苗a 株,由题意得: x≥12(36-a ), 解得:a≥12,∵A 种树苗价格高,∴尽量少买a 种树苗,新七年级下学期期末考试数学试题及答案人教版七年级下学期期末考试数学试题(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B考点:实数的概念。
七年级下册天津数学期末试卷测试卷(含答案解析) (2)

七年级下册天津数学期末试卷测试卷(含答案解析)一、选择题1.如图所示,B 与2∠是一对( )A .同位角B .内错角C .同旁内角D .对顶角 2.下列图案中,是通过下图平移得到的是( )A .B .C .D . 3.在下列所给出坐标的点中,在第二象限的是( )A .(0,3)B .(-2,1)C .(1,-2)D .(-1,-2)4.下列语句中,是假命题的是( )A .有理数和无理数统称实数B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两个锐角的和是锐角5.如图,C 为AOB ∠的边OA 上一点,过点C 作//CD OB 交AOB ∠的平分线OE 于点F ,作CH OB ⊥交BO 的延长线于点H ,若EFD α∠=,现有以下结论:①COF α∠=;②1802AOH α∠=︒-;③CH CD ⊥;④290OCH α∠=-︒.结论正确的个数是( )A .1个B .2个C .3个D .4个6.如图,下列各数中,数轴上点A 表示的可能是( )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 7.如图,直线//a b ,三角板ABC 的直角顶点C 在直线b 上,126∠=︒,则2∠=( )A .26°B .54°C .64°D .66°8.如图,在平面直角坐标系上有点1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,点A 第124次跳动至124A 的坐标为( )A .()63,62B .()62,63C .()62,62-D .()124,123二、填空题9.4的算术平方根为_______;10.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____. 11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,在△ABC 中,∠ACB =90°,∠A <∠B ,点D 为AB 边上一点且不与A 、B 重合,将△ACD 沿CD 翻折得到△ECD ,直线CE 与直线AB 相交于点F .若∠A =α,当△DEF 为等腰三角形时,∠ACD =__________________.(用α的代数式表示∠ACD )14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.如图,点A(1,0),B(2,0),C 是y 轴上一点,且三角形ABC 的面积为2,则点C 的坐标为_____.16.如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点O 出发,按图中箭头所示的方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()2,0,第3次接着运动到点()2,2-,第4次接着运动到点()4,2-,第5次接着运动到点()4,0,第6次接着运动到点()5,2.…按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_________.三、解答题17.计算:(1)()3201931232(1)---+-(2)3339368(1)116-----++18.求下列各式中x 的值:(1)()2125x -=;(2)381250x -=. 19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程.理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ).ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 .(2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 . 20.如图,在平面直角坐标系中,三角形ABC 经过平移得到三角形A 1B 1C 1,结合图形,完成下列问题:(1)三角形ABC 先向左平移 个单位,再向 平移 个单位得到三角形A 1B 1C 1. (2)三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是 .(3)三角形ABC 的面积是 .21.已知234907a b a a -+-=+(1)求实数,a b 的值;(2)若b 的整数部分为x ,小数部分为y①求2x y +的值;②已知103kx m -=+,其中k 是一个整数,且01m <<,求k m -的值.二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.已知//AB CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一动点P .(1)如图1所示时,试问AEP ∠,EPF ∠,PFC ∠满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问AEP ∠,EPF ∠,PFC ∠还可能满足怎样的数量关系?请画图并证明(3)当EPF ∠满足0180EPF ︒<∠<︒,且QE ,QF 分别平分PEB ∠和PFD ∠, ①若60EPF ∠=︒,则EQF ∠=__________°.②猜想EPF ∠与EQF ∠的数量关系.(直接写出结论)24.已知//PQ MN ,将一副三角板中的两块直角三角板如图1放置,90ACB EDF ∠=∠=︒,45ABC BAC ∠=∠=︒,30DFE ∠=︒,60DEF ∠=︒.(1)若三角板如图1摆放时,则α∠=______,β∠=______.(2)现固定ABC 的位置不变,将DEF 沿AC 方向平移至点E 正好落在PQ 上,如图2所示,DF 与PQ 交于点G ,作FGQ ∠和GFA ∠的角平分线交于点H ,求GHF ∠的度数; (3)现固定DEF ,将ABC 绕点A 顺时针旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF 的一条边平行时,请直接写出BAM ∠的度数.25.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON =60°,在射线OM 上取一点A ,过点A 作AB ⊥OM 交ON 于点B ,以A 为端点作射线AD ,交线段OB 于点C (点C 不与O 、B 重合),若∠ACB =80°.判定△AOB 、△AOC 是否是“梦想三角形”,为什么?(3)如图2,点D 在△ABC 的边上,连接DC ,作∠ADC 的平分线交AC 于点E ,在DC 上取一点F ,使得∠EFC +∠BDC =180°,∠DEF =∠B .若△BCD 是“梦想三角形”,求∠B 的度数.26.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积 ;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H,在点B运动过程中HABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围.【参考答案】一、选择题1.B解析:B【分析】根据“同位角、内错角、同旁内角”的意义进行判断即可.【详解】解:∠B与∠2是直线DE和直线BC被直线AB所截得到的内错角,故选:B.【点睛】本题考查“同位角、内错角、同旁内角”的意义,理解和掌握“同位角、内错角、同旁内角”的特征是正确判断的前提.2.C【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变解析:C【分析】根据平移的性质,即可解答.【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现.故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键.3.B【分析】根据平面直角坐标系中点的坐标特征逐项分析即可.【详解】解:A.(0,3)在y轴上,故不符合题意;B.(-2,1)在第二象限,故符合题意;C.(1,-2) 在第四象限,故不符合题意;D.(-1,-2) 在第三象限,故不符合题意;故选B .【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.4.D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如505010090︒+︒=︒>︒,故D 选项是假命题,符合题意 故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.D【分析】根据平行线的性质可得EOB EFD α∠=∠=,结合角平分线的定义可判断①;再由平角的定义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.【详解】解://CD OB ,EFD α∠=,EOB EFD α∴∠=∠=, OE 平分AOB ∠,COF EOB α∴∠=∠=,故①正确;2AOB α∠=,180AOB AOH ∠+∠=︒,1802AOH α∴∠=︒-,故②正确;//CD OB ,CH OB ⊥,CH CD ∴⊥,故③正确;90HCO HOC ∴∠+∠=︒,180AOB HOC ∠+∠=︒,290OCH α∴∠=-︒,故④正确.正确为①②③④,故选:D .【点睛】本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.6.C【详解】解:由题意可知4的算术平方根是2,4的立方根是3434<2, 8的算术平方根是22,2<22<3,8的立方根是2,故根据数轴可知,故选C7.C【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2.【详解】解:如图,∵∠1=26°,∠ACB=90°,∴∠3=90°-∠1=64°,∵直线a∥b,∴∠2=∠3=64°,故选:C.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.8.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标解析:A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第124次跳动至点的坐标是(63,62).故选:A.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.二、填空题9.【分析】先求出的值,然后再化简求值即可.【详解】解:∵,∴2的算术平方根是,∴的算术平方根是.故答案为.【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答【分析】【详解】解:∵2,∴2,∴..【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关10.-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x,y的二元一次方程组,解值即可.【详解】解:∵点,点关于x 轴对称,∴;解得:,∴,故答案为-6.【点睛】本题考查平面直解析:-6【分析】让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.【详解】解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,∴3654150x y y x -=⎧⎨++=⎩; 解得:33x y =-⎧⎨=-⎩, ∴=-6+x y ,故答案为-6.【点睛】本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.11.101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°解析:101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD 是△ABC 的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.或或【分析】若为等腰三角形,则,根据三角形外角的性质以及三角形内角和定理即可求得结果.【详解】解:由翻折的性质可知,,如图1,当时,则,,,,,当时,为等腰三角形,故答案 解析:3902α︒-或3454α︒-或3904α︒- 【分析】若DEF ∆为等腰三角形,则EDF E α∠=∠=,根据三角形外角的性质以及三角形内角和定理即可求得结果.【详解】解:由翻折的性质可知E A α∠=∠=,CDE ADC ∠=∠,如图1,当EF DF =时,则EDF E α∠=∠=,EDF CDE CDB ∠=∠-∠,CDB A ACD ∠=∠+∠,()ADC A ACD α∴=∠-∠+∠1802()A ACD =︒-∠+∠1802()ACD α=︒-+∠,3902ACD α∴∠=︒-, ∴当3902ACD α∠=︒-时,DEF ∆为等腰三角形, 故答案为3902α︒-. 当ED EF =时,18019022DEF EDF EFD α︒-∠∠=∠==︒-; 121802702ADC EDF α∴∠=︒+∠=︒-, 11354ADC α∴∠=︒-, 11801801354ACD A ADC a α∴∠=︒-∠-∠=︒--︒+,3454α=︒-; DFE A ACF ∠=∠+∠,DFE DEF ∴∠≠∠,如图2,当DE EF =时,12EDF EFD α∠=∠=;11801802ACF A EFD αα∴∠=︒-∠-∠=︒--,31802α=︒-, 139024ACD ACF α∴∠=∠=︒-; ∴当3902ACD α∠=︒-或3454α︒-或3904α︒-时,DEF ∆为等腰三角形, 故答案为:3902α︒-或3454α︒-或3904α︒-. 【点睛】本题考查翻折变换、等腰三角形的性质、三角形外角的性质以及三角形内角和定理等知识,解题的关键是熟练掌握三角形外角的性质以及三角形内角和定理.14.﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a <﹣,0<b <,故|﹣b|+|a+|+=﹣b ﹣(a+)﹣a=﹣b ﹣a ﹣﹣a=﹣2a ﹣b解析:﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a 30<b 3故3b |+|a 32a 3b ﹣(a 3a 3b ﹣a 3a=﹣2a ﹣b .故答案为:﹣2a ﹣b .【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),解析:(0,4)或(0,-4).【分析】设△ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答.【详解】解:设△ABC边AB上的高为h,∵A(1,0),B(2,0),∴AB=2-1=1,∴△ABC的面积=1×1•h=2,2解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4).故答案为:(0,4)或(0,-4).【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键.16.(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,…,每5次一轮这一规律,进而求出即可.【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+4,…∴第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,…∴第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,∵2021÷5=404…1,∴经过2021次运动横坐标为=4×404+1=1617,经过2021次运动纵坐标为2,∴经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2).故答案为:(1617,2).【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.三、解答题17.(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式=;(2)原式=解析:(1)-5;(2)7 4 -【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式1315-=-;(2)原式= -6+2+1+54=74-.故答案为:(1)-5;(2)7 4 - .【点睛】本题考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义. 18.(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵,∴,∴,∴或;(2)∵,∴,∴.【点睛】本题主解析:(1)6x =或4x =-;(2)52x =【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可.【详解】解:(1)∵()2125x -=,∴15x -=±,∴15x =±,∴6x =或4x =-;(2)∵381250x -=, ∴31258x =, ∴52x =. 【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)5,下,4;(2)(,);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图解析:(1)5,下,4;(2)(5x -,4y -);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图可知,三角形ABC 先向左平移5个单位,再向下平移4个单位得到三角形A 1B 1C 1;故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是(5x -,4y -),故答案是:(5x -,4y -);(3)11144142423162437222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=, 故答案是:7.【点睛】本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.21.(1);;(2)①;②【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b 的值,可得的整数部分和小数部分,①将x 和y 的值代入解析:(1)7a =;21b =;(2)①4;【分析】(1)根据分式的值为0,分子为0且分母不能为02490a -=和70a +≠,再依据“0+0”型可求得a 和b 的值;(2)根据(1)中b 的整数部分和小数部分,①将x 和y 的值代入2x y +即可求值;②估算10k 是一个整数,且01m <<,可得k 和m 的值,由此可得k m -的值.【详解】解:(1)∵0=,∴2490a -=且70a +≠, ∴30a b -=,2490a -=且70a +≠, 即7,21a b ;(2)∵162125, ∴45<的整数部分为44,①244)4x y +=+=;②∵12<<, ∴8109<<,又∵104kx m k m =+=+,k 是一个整数,且01m <<, ∴2,10242k m ==⨯=∴2(2k m -=-=【点睛】本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性质,绝对值和算术平方根的非负性.(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4×12×2×2=8;正方形的边长【点睛】本题考查了算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x叫做a 二十三、解答题23.(1)∠AEP+∠PFC=∠EPF ;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间解析:(1)∠AEP +∠PFC =∠EPF ;(2)∠AEP +∠EPF +∠PFC =360°;(3)①150°或30;②∠EPF +2∠EQF =360°或∠EPF =2∠EQF【分析】(1)由于点P 是平行线AB ,CD 之间有一动点,因此需要对点P 的位置进行分类讨论:如图1,当P 点在EF 的左侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:EPF AEP PFC ∠=∠+∠;(2)当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;(3)①若当P 点在EF 的左侧时,150EQF BEQ QFD ∠=∠+∠=︒;当P 点在EF 的右侧时,可求得30BEQ QFD ∠+∠=︒;②结合①可得180218023602()EPF BEQ DFQ BEQ PFD ∠=︒-∠+︒-∠=︒-∠+∠,由EQF BEQ DFQ ∠=∠+∠,得出2360EPF EQF ∠+∠=︒;可得EPF BEP PFD =∠+∠,由BEQ DFQ EQF∠+∠=∠,得出2∠=∠.EPF EQF【详解】PG AB,解:(1)如图1,过点P作//PG AB,//∴∠=∠,EPG AEP//AB CD,∴,//PG CD∴∠=∠,FPG PFC∴∠+∠=∠;AEP PFC EPF∠满足数量关系为:(2)如图2,当P点在EF的右侧时,AEP∠,EPF∠,PFC∠+∠+∠=︒;AEP EPF PFC360PG AB,过点P作////PG AB,∴∠+∠=︒,180EPG AEPAB CD,//∴,PG CD//FPG PFC∴∠+∠=︒,180∴∠+∠+∠=︒;AEP EPF PFC360(3)①如图3,若当P点在EF的左侧时,∠=︒,EPF60PEB PFD∴∠+∠=︒-︒=︒,36060300EQ,FQ分别平分PEB∠和PFD∠,12BEQ PEB ∴∠=∠,12QFD PFD ∠=∠, 11()30015022EQF BEQ QFD PEB PFD ∴∠=∠+∠=∠+∠=⨯︒=︒; 如图4,当P 点在EF 的右侧时,60EPF ∠=︒,60PEB PFD ∴∠+∠=︒,11()603022BEQ QFD PEB PFD ∴∠+∠=∠+∠=⨯︒=︒; 故答案为:150︒或30;②由①可知:11()(360)22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=︒-∠,2360EPF EQF ∴∠+∠=︒; 11()22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=∠, 2EPF EQF ∴∠=∠.综合以上可得EPF ∠与EQF ∠的数量关系为:2360EPF EQF ∠+∠=︒或2EPF EQF ∠=∠.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.24.(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15°;150°;(2)67.5°;(3)30°或90°或120°【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BC ∥DE 时,当BC ∥EF 时,当BC ∥DF 时,三种情况进行解答即可.【详解】解:(1)作EI ∥PQ ,如图,∵PQ∥MN,则PQ∥EI∥MN,∴∠α=∠DEI,∠IEA=∠BAC,∴∠DEA=∠α+∠BAC,∴α= DEA -∠BAC=60°-45°=15°,∵E、C、A三点共线,∴∠β=180°-∠DFE=180°-30°=150°;故答案为:15°;150°;(2)∵PQ∥MN,∴∠GEF=∠CAB=45°,∴∠FGQ=45°+30°=75°,∵GH,FH分别平分∠FGQ和∠GFA,∴∠FGH=37.5°,∠GFH=75°,∴∠FHG=180°-37.5°-75°=67.5°;(3)当BC∥DE时,如图1,∵∠D=∠C=90 ,∴AC∥DF,∴∠CAE=∠DFE=30°,∴∠BAM+∠BAC=∠MAE+∠CAE,∠BAM=∠MAE+∠CAE-∠BAC=45°+30°-45°=30°;当BC∥EF时,如图2,此时∠BAE=∠ABC=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°;当BC∥DF时,如图3,此时,AC∥DE,∠CAN=∠DEG=15°,∴∠BAM=∠MAN-∠CAN-∠BAC=180°-15°-45°=120°.综上所述,∠BAM的度数为30°或90°或120°.【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.25.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=5407().【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.26.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD=CD•OC ,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD =12CD •OC ,(2)利用∠CFE +∠CBF =90°,∠OBE +∠OEB =90°,求出∠CEF =∠CFE .(3)由∠ABC +∠ACB =2∠DAC ,∠H +∠HCA =∠DAC ,∠ACB =2∠HCA ,求出∠ABC =2∠H ,即可得答案.详解:(1)S △BCD =12CD •OC =12×3×2=3. (2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴H ABC ∠∠=12.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解.。
2020-2021天津市南开翔宇学校初一数学下期末一模试卷带答案

2020-2021天津市南开翔宇学校初一数学下期末一模试卷带答案一、选择题1.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD 的周长为()A.20cm B.22cmC.24cm D.26cm2.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)4.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE5.如图,如果AB∥CD,那么下面说法错误的是()A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠86.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-37.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 8.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)9.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)10.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,411.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,012.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )A .453560(2)35x y x y -=⎧⎨-=-⎩B .453560(2)35x y x y =-⎧⎨-+=⎩C .453560(1)35x yx y +=⎧⎨-+=⎩D .453560(2)35x y y x =+⎧⎨--=⎩二、填空题13.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________14.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论: ①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降 ③音乐手机4月份的销售额比3月份有所下降 ④今年1-4月中,音乐手机销售额最低的是3月 其中正确的结论是________(填写序号).15.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年2468…h/m2.63.2 3.84.4 …16.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________.17.64立方根是__________. 18.若不等式组1x x a ⎧⎨⎩><有解,则a 的取值范围是______. 19.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.20.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC P 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数. 22.如图,直线AB 与CD 相交于点O ,∠BOE=∠DOF=90°.(1)写出图中与∠COE 互补的所有的角(不用说明理由). (2)问:∠COE 与∠AOF 相等吗?请说明理由; (3)如果∠AOC=15∠EOF ,求∠AOC 的度数. 23.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值24.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息: 营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元;假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件? (3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD =BE =3,DF =AC ,DE =AB ,EF =BC ,所以: 四边形ABFD 的周长为:AB +BF +FD +DA=AB +BE +EF +DF +AD =AB +BC +CA +2AD =20+2×3 =26. 故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.B解析:B 【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.3.C解析:C 【解析】 【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50. 故选:C . 【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.4.D解析:D 【解析】 【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.6.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A7.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.8.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.9.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.10.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D (7,4); 故选:C. 【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.11.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.B解析:B 【解析】 根据题意,易得B.二、填空题13.6【解析】【分析】把x 与y 的值代入方程组求出a 的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6 【解析】 【分析】把x 与y 的值代入方程组求出a 的值,代入原式计算即可求出值. 【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.14.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.15.h=03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h=kn+b将n=2h=2解析:h=0.3n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式.【详解】设该函数的解析式为h=kn+b,将n=2,h=2.6以及n=4,h=3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩, ∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2.故答案为:h =0.3n+2.【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.16.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12x y =⎧⎨=⎩代入方程,得 a-2=3解得a=5,故答案为5.17.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】,再计算8的立方根即可.【详解】,2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.18.a>1【解析】【分析】根据题意利用不等式组取解集的方法即可得到a 的范围【详解】∵不等式组有解∴a>1故答案为:a>1【点睛】此题考查不等式的解集解题关键在于掌握运算法则解析:a>1.【解析】【分析】根据题意,利用不等式组取解集的方法即可得到a 的范围.【详解】∵不等式组1x x a ⎧⎨⎩><有解, ∴a>1,故答案为:a>1.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则.19.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB ⊥lPB=5cm ∴P 到l 的距离是垂线段PB 的长度5c m 故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB ⊥l ,PB=5cm ,∴P 到l 的距离是垂线段PB 的长度5cm ,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.20.(±30)【解析】解:若x 轴上的点P 到y 轴的距离为3则∴x=±3故P 的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x 轴上的点P 到y 轴的距离为3,则3x =,∴x =±3.故P 的坐标为(±3,0).故答案为:(±3,0).三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF P ,∠=∠,∴2BCD∠=∠,∵12∠=∠,∴1BCDP;∴DG BC(2)解:在Rt△BEF中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC∥DG,∴∠=∠=∠+∠=+=ACB ACD BCD︒︒︒3353671【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD;(2)找出∠3=∠ACB=∠ACD+∠BCD.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.(1)∠DOE,∠BOF;(2) 相等;(3)∠AOC=30°.【解析】试题分析:(1)由题意易得∠COE+∠DOE=180°,由∠BOE=∠DOF=90°可得∠DOE=∠BOF,从而可得∠COE的补角是∠DOE和∠BOF;(2)由∠BOE=∠DOF=90°易得∠AOE=∠COF=90°,从而可得∠COE=∠AOF;(3)设∠AOC=x,则可得∠EOF=5x,结合∠COE=∠AOF可得∠COE=2x,由∠AOC+∠COE=∠AOE=90°列出关于x的方程,解方程求得x的值即可.试题解析;(1)∵直线AB与CD相交于点O,∴∠COE+∠DOE=180°,即∠DOE是∠COE的补角,∵∠BOE=∠DOF=90°,∴∠BOE+∠BOD=∠DOF+∠BOD,即:∠DOE=∠BOF,∴与∠COE互补的角有:∠DOE,∠BOF;(2)∠COE与∠AOF相等,理由:∵直线AB、CD相交于点O,∴∠AOE+∠BOE=180°,∠COF+∠DOF=180°,又∵∠BOE=∠DOF=90°,∴∠AOE=∠COF=90°,∴∠AOE﹣∠AOC=∠COF﹣∠AOC,∴∠COE=∠AOF;(3)设∠AOC=x,则∠EOF=5x,∴∠COE+∠AOF=∠EOF-∠AOC=5x-x=4x,∵∠COE=∠AOF,∴∠COE=∠AOF=2x,∵∠AOE=90°,∴x+2x=90°,∴x=30°,∴∠AOC=30°.点睛:(1)有公共顶点,且部分重合的两个直角,其公共部分两侧的两个角相等(如本题中的∠COE=∠AOF);(2)解第3小题的关键是:当设∠AOC=x时,利用已知条件把∠COE用含“x”的式子表达出来,这样即可由∠AOC+∠COE=∠AOE=90°,列出关于“x”的方程,解方程即可得到所求答案了.23.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【解析】【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP⊥PB,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD)=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC∥QB、QP⊥PB结合(1)(2)的结论分别求出∠DAC、∠ACB、∠CBE的度数.24.﹣2<x≤1.【解析】【分析】【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2) xxx x-⎧++⎪⎨⎪--<-⎩…,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.25.(1)18003xy=⎧⎨=⎩;(2) 434;(3) 180.【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥ 14333m ≥ 14333m ≥的最小整数是434 答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元. 则3235023370a b c a b c ++=⎧⎨++=⎩∴ 444720a b c ++=∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.。
天津市南开翔宇学校数学有理数单元试卷(word版含答案)

(a≠0)记作 aⓝ , 读作“a 的圈 n 次
直接写出计算结果:2③=________,(- )⑤=________; (2)【深入思考】 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理 数的除方运算如何转化为乘方运算呢? Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.
(2)1;-3 (3)−1⩽x⩽2
【解析】【解答】解:(1)、|2−5|=|−3|=3; |−2−(−5)|=|−2+5|=3;
|1−(−3)|=|4|=4; ( 2 )、|x−(−1)|=|x+1|,由|x+1|=2,得 x+1=2 或 x+1=−2,
所以 x=1 或 x=−3; ( 3 )、数形结合,若|x+1|+|x−2|取最小值,那么表示 x 的点在−1 和 2 之间的线段上,
(4)6
【解析】【解答】解: 数轴上表示 4 和 1 的两点之间的距离是:
和 两点之间的距离是:
故答案为:
或
或
故答案为: 或 (3)
或
或
当
时,则 两点间的最大距离是 ,
当 a=5,b=-1 时,A、B 两点间的距离是 6, 当 a=1,b=-3 时,A、B 两点间的距离是 4,
当
时,则 两点间的最小距离是 ,
;
③将第二问的规律代入计算,注意运算顺序.
4.如图,已知数轴上点 表示的数为 , 是数轴上位于点 左侧一点,且 AB=20,动点 从 点出发,以每秒 个单位长度的速度沿数轴向左匀速运动,设运动时间 t(t>0)秒.
(1)写出数轴上点 表示的数________;点 表示的数________(用含 的代数式表示)
天津市南开翔宇学校2023-2024学年七年级下学期期末数学复习模拟(四)

2023-2024年度七年级第二学期期末复习——模拟(四)一.选择题(共12小题)1.为了解我市九年级学生每天的睡眠时间,对其中800名学生进行了随机调查,则下列说法不正确的是()A.以上调查属于全面调查B.800名学生的睡眠时间是总体的一个样本C.样本容量是800D.随机调查的每个学生的睡眠时间是个体2.在实数、、﹣3π、、1.4141441中,无理数有()A.1个B.2个C.3个D.4个3.若m=﹣1,则估计m的值所在范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<54.若点M在第二象限,且点M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣1,2)5.对于x,y定义一种新运算“*”:x*y=ax+by,其中a,b为常数,等式右边是通常的加法和乘法运算.已知:3*5=15,4*7=28,那么1*2运算的结果为()A.2 B.﹣2 C.13 D.16.下列叙述正确的是()A.若a>b,则ac2>bc2B.若﹣<0,则x>﹣3C.若a>b,则a﹣c>b﹣c D.若a>b,则﹣3a>﹣3b7.下列说法正确的是()A.64的立方根是±4 B.的相反数是C.平方根等于本身的数有0和1 D.的绝对值是8.在频数分布直方图中,各小长方形的高等于相应组的()A.组距B.组数C.频数D.频率9.某批服装每件进价为200元,标价为300元,现商店准备将这批服装降价处理,按标价打x折出售,使得每件衣服的利润不低于5%,根据题意可列出来的不等式为()A.300x﹣200≥200×5% B.C.D.300x≥200×(1+5%)10.如图,∠1与∠2是同位角的共有()个A.1个B.2个C.3个D.4个11.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°12.如图①,有一个长方形纸条ABCD,AB∥CD,AD∥BC.如图②,将长方形ABCD沿EF折叠,ED与BF交于点G,如图③,将四边形CDGF沿GF向上折叠,DG与EF交于点H,若∠GEF=16°,则∠DHF的度数为()A.32°B.48°C.60°D.64°二.填空题(共6小题)13.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,在铁路线上选一点来建火车站,应建在点.理由:.14.如图,已知AB∥CD,BE平分∠ABC且交CD于D点,∠CDB=30°,则∠C=°.15.已知P(2﹣a,2a+1),且点P在y轴上,则点P的坐标是.16.如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则道路的面积为.17.关于x的不等式2x﹣a<4有2个正整数解,则a的取值范围是.18.如图,在平面直角坐标系中,一动点A从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),则点A9的坐标为,点A2018的坐标为,点A4n+3(n是自然数)的坐标为.三.解答题(共6小题)19.解不等式组,请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)将不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20.已知x+12的算术平方根是4,2x+y﹣6的立方根是3.(1)求x,y的值;(2)求4xy的平方根.21.初中生立定跳远是体育课程中的一项,为了解八年级学生立定跳远成绩的情况,某校体育组随机抽取了部分学生的跳远成绩x(米)进行处理分析,制成频数分布图表如下:成绩x(米)频数百分数1.3<x≤1.465%1.4<x≤15a10%1.5<x≤1.63025%1.6<x≤1.748b1.7<x≤1.81815%1.8<x≤1.965%根据表中提供的信息解答下列问题:(1)a=,b=,补全频数分布直方图;(2)若将抽取的学生跳远成绩绘制成扇形统计图,求扇形统计图中跳远成绩范围1.8<x≤1.9所在扇形对应圆心角的度数;(3)该年级有800名学生参加测试,请估计该年级立定跳远成绩为优秀(1.7米以上)的人数.22.如图,已知BD⊥AC,EF⊥AC,点D,F是垂足,∠1=∠2,(1)求证:∠ADG=∠C.(2)若BD平分∠ABC,∠C=50°,求∠BGD的度数.23.推进农村土地集约式管理,提高土地的使用效率,是新农村建设的一项重要举措.庐江县某村在小城镇建设中集约了1000亩土地,计划对其进行平整,经投标,由甲,乙两个工程队来完成平整任务,甲工程队每天平可平整土地30亩,乙工程队每天可平整土地25亩,已知甲乙两工程队每天的工程费合计为4200元,而且甲工程队11天所需工程费与乙工程队10天所需工程费刚好相同.(1)甲乙两工程队每天各需工程费多少元?(2)现由甲乙两工人队共同参与土地平整,已知两个工程队工作天数均为正整数,且所有土地刚好平整完,总费用不超过7.6万元.写出费用最少时,甲工程队工作________天,乙工程队工作_______天,最低费用为____________.24.已知,在平面直角坐标系中,AB⊥x轴于点B,A(a,b)满足,平移线段AB使点A与原点重合,点B的对应点为点C,OA∥CB.(1)填空:a=,b=,点C的坐标为;(2)如图1,点P(x,y)在线段BC上,求x,y满足的关系式;(3)如图2,点E是OB一动点,以OB为边作∠BOG=∠AOB交BC于点G,连CE交OG于点F,当点E在OB 上运动时,的值是否发生变化?若变化,请说明理由;若不变,请求出其值.。
2020-2021学年天津市南开区七年级(下)期末数学试卷及答案解析

2020-2021学年天津市南开区七年级(下)期末数学试卷一、选择题:本大题共12小题,每道题3分,共36分,再每小题给出的四个选项中,只有一个项是符合题目要求的。
1.(3分)下列命题中的真命题是()A.在所有连接两点的线中直线最短B.经过两点有且只有一条直线C.内错角互补则两直线平行D.空间中,如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直2.(3分)下列调查中,适合普查的是()A.一批手机电池的使用寿命B.中国公民保护环境的意识C.你所在学校的男女同学的人数D.了解全国人民对建设高铁的意见3.(3分)已知a<b,则下列不等式变形不正确的是()A.4a<4b B.﹣2a+4<﹣2b+4C.﹣4a>﹣4b D.3a﹣4<3b﹣44.(3分)如图,在下列图形中,最具有稳定性的是()A.B.C.D.5.(3分)的算术平方根是()A.±4B.4C.±2D.26.(3分)不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤17.(3分)如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD()A.∠1=∠2B.∠3=∠4C.∠D=∠DCE D.∠D+∠ACD=180°8.(3分)若一个三角形三个内角度数的比为2:5:8,那么这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形9.(3分)长度分别为3cm,5cm,7cm,9cm的四根木棒,能搭成(首尾连接)三角形的个数为()A.1B.2C.3D.410.(3分)如果剪掉四边形的一个角,那么所得多边形的内角和的度数不可能是()A.180°B.270°C.360°D.540°11.(3分)已知点A(a,b)位于第二象限,并且b≤3a+7,a,b均为整数,则满足条件的点A个数有()A.4个B.5个C.6个D.7个12.(3分)按如图所示的运算程序,输出y的值为11的是()A.x=﹣3B.x=0C.x=5D.x=﹣1二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上13.(3分)计算:(﹣3a3)2=.14.(3分)若直角三角形的一个锐角为15°,则另一个锐角等于.15.(3分)一个长方形花园,长为a,宽为b,中间有两条互相垂直的宽为c的路,则可种花的面积为.16.(3分)如图,△ABC中,点E是BC上的一点,CE=2BE,点D是AC中点,若S△ABC ﹣S△BEF=.=12,则S△ADF17.(3分)已知5a=2b=10,那么的值为.18.(3分)将一副三角板中的两个直角顶点C叠放在一起,其中∠A=30°,∠B=60°,∠D=∠E=45°.若按住三角板ABC不动,绕顶点C转动三角板DCE,在旋转过程中始终要求点E在直线BC上方,当三角板DCE运动中,有一边和AB平行时,则∠BCE 的度数为.三、解答题(共46分)19.学习强国推出了“青年大学习”专题学习,让广大青少年通过丰富多彩的学习形式,形成大格局、富有大智慧.某校为了解学生对此次专题学习的关注程度,抽取了部分学生做问卷调查,用“A”表示“非常了解”,“B”表示“了解”,“C”表示“有所了解”,“D”表示“不了解”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)设本次问卷调查抽取了n名学生,请直接写出n的值;(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对此次专题学习关注程度“不了解”的约有多少人?20.解不等式组:并把解集在数轴上表示出来.请结合题意填空,完成本题的解答,解不等式①,得.解不等式②,得.把不等式①和②的解集在数轴上表示.所以不等式组的解集为.21.若a n+1•a m+n=a6,且m﹣2n=1,求m n的值.22.如图一,在△ABC中,AD是∠BAC的平分线,AE是BC边上的高,∠ABC=30°,∠ACB=70°.(1)求∠DAE的度数.(2)如图二,若点F为AD延长线上一点,过点F作FG⊥BC于点G,求∠AFG的度数.23.为迎接“七•一”党的生日,某校准备组织师生共310人参加一次大型公益活动,租用4辆大客车和6辆小客车恰好全部坐满,已知每辆大客车的座位数比小客车多15个.(1)求每辆大客车和每辆小客车的座位数;(2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生均有座位,最多租用小客车多少辆?24.已知直线MN与PQ互相垂直,垂足为O,点A在射线OQ上运动,点B在射线OM上运动,点A,B均不与点O重合.(1)如图1,AI平分∠BAO,BI平分∠ABO,则∠AIB=.(2)如图2,AI平分∠BAO交OB于点I,BC平分∠ABM,BC的反向延长线交AI的延长线于点D.①若∠BAO=30°,则∠ADB=°.②在点A,B的运动过程中,∠ADB的大小是否会发生变化?若不变,求出∠ADB的度数;若变化,请说明理由.(3)如图3,已知点E在BA的延长线上,∠BAO的平分线AI,∠OAE的平分线AF与∠BOP的平分线所在的直线分别相交于点D,F.在△ADF中,如果有一个角的度数是另一个角的3倍,请直接写出∠ABO的度数.2020-2021学年天津市南开区七年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每道题3分,共36分,再每小题给出的四个选项中,只有一个项是符合题目要求的。
【单元练】天津市南开翔宇学校七年级数学下册第三单元测试题

一、选择题1.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上D 解析:D【分析】根据题意可得0a =或0b =,利用点的坐标特征即可求解.【详解】解:∵0ab =,∴0a =或0b =,∴点P 在坐标轴上,故选:D .【点睛】本题考查坐标轴上点的坐标特征,掌握点的坐标特征是解题的关键.2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- B解析:B【分析】 根据点A 、B 的坐标建立平面直角坐标系,由此即可得.【详解】因为(2,1),(2,3)A B ---,所以将A 向右移2个单位,向下移动1个单位即为坐标原点,建立平面直角坐标系如图所示:由图可知,点C 距x 轴1个单位,距离y 轴2个单位,则(2,1)C -,故选:B .【点睛】本题考查了点坐标,根据已知点的坐标正确建立平面直角坐标系是解题关键. 3.如图,点A 的坐标是()3,1-将四边形ABCD 先向左平移3个单位,再向上平移2个单位,那么点A 的对应点A '的坐标是( )A .()0,1B .()6,1C .()0,3-D .()6,3- A解析:A【分析】 四边形ABCD 与点A 平移相同,据此即可得到点A′的坐标.【详解】四边形ABCD 先向左平移3个单位,再向上平移2个单位,因此点A(3,−1) 也先向左平移3个单位,再向上平移2个单位,故A′坐标为(0,1).故选:A .【点睛】本题考查了坐标与图形的变化−−平移,本题本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.在平面直角坐标系中,点A 的坐标为(-4,3),AB ∥y 轴,AB=5,则点B 的坐标为( )A .(1,3)B .(-4,8)C .(-4,8)或(-4,-2)D .(1,3)或(-9,3)C【分析】线段AB∥x轴,A、B两点横坐标相等,B点可能在A点上边或者下边,根据AB长度,确定B点坐标即可.【详解】∵AB∥y轴,∴A、B两点横坐标都为-5,点A的坐标为(-4,3),又∵AB=5,∴当B点在A点上边时,B(-4,8),当B点在A点下边时,B(-4,-2);故选:C.【点睛】本题考查了坐标与图形的性质,平行于y轴的直线上的点横坐标相等,要求能根据两点相对的位置及两点距离确定点的坐标.5.已知点 M到x轴的距离为 3,到y轴的距离为2,且在第四象限内,则点M的坐标为()A.(-2,3)B.(2,-3)C.(3,2)D.不能确定B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游--,戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)则在第三象限的棋子有()A.1颗B.2颗C.3颗D.4颗A解析:A【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题.由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A .【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--,. 7.若某点A 位于x 轴上方,距x 轴5个单位长,且位于y 轴的左边,距y 轴10个单位长,则点A 的坐标是( )A .(510)-,B .(510)-,C .(105)-,D .(105)-,C 解析:C【分析】 应先判断出点所在的象限,进而利用这个点横纵坐标的绝对值求解.【详解】解:根据题意,则∵点A 位于x 轴上方,且位于y 轴的左边,∴点A 在第二象限,∵点A 距x 轴5个单位长,距y 轴10个单位长,∴点A 的坐标为(105)-,; 故选:C .【点睛】本题主要考查了点在第二象限时坐标的特点,注意到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.8.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限D解析:D【分析】直接利用坐标系中点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A 、若ab=0,则a=0或b=0,所以点P (a ,b )表示在坐标轴上的点,故此选项不符合题意;B 、当a >0时,点(1,a )在第一象限,故此选项不符合题意;C 、已知点A (3,-3)与点B (3,3),A ,B 两点的横坐标相同,则直线AB ∥y 轴,故此选项不符合题意;D 、若ab >0,则a 、b 同号,故点P (a ,b )在第一或三象限,故此选项符合题意. 故选:D .【点睛】此题主要考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键.9.已知点P (m ,n )在第三象限,则点Q (-m ,│n│)在( ).A .第一象限B .第二象限C .第三象限D .第四象限A 解析:A【分析】根据第三象限点的横坐标与纵坐标都是负数,确定-m >0,│n│>0,再判断点Q 所在的象限即可.【详解】∵点P (m ,n )在第三象限,∴m <0,n <0,∴-m >0,│n│>0,∴点Q (-m ,│n│)在第一象限,故选A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限B 解析:B【分析】根据点的坐标特征求解即可.【详解】横坐标是50-<,纵坐标是210a +>,∴点N (5-,21a +)一定在第二象限,故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).二、填空题11.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.(-32)【分析】设点P 的坐标为(xy )由点到轴的距离为2到轴的距离为3得出再根据点P 所在的象限得出答案【详解】设点P 的坐标为(xy )∵点到轴的距离为2到轴的距离为3∴∴∵点在第二象限∴x=-3y=解析:(-3, 2).【分析】设点P 的坐标为(x ,y ),由点P 到x 轴的距离为2,到y 轴的距离为3,得出3,2x y =±=±,再根据点P 所在的象限得出答案.【详解】设点P 的坐标为(x ,y ),∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴3,2x y ==,∴3,2x y =±=±,∵点P 在第二象限,∴x=-3,y=2,∴点P 的坐标是(-3,2)故答案为:(-3,2).【点睛】此题考查直角坐标系中点的坐标,点到坐标轴的距离,根据点所在的象限确定点的坐标,掌握点到坐标轴的距离与点的横纵坐标的关系是解题的关键.12.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.1或【分析】根据纵坐标相同的点平行于x 轴再分点N 在点M 的左边和右边两种情况讨论求解【详解】∵∴M 与N 两点连线与x 轴平行∴即解得:【点睛】本题考查了坐标与图形性质是基础题难点在于要分情况讨论 解析:1或73-【分析】根据纵坐标相同的点平行于x 轴,再分点N 在点M 的左边和右边两种情况讨论求解.【详解】∵2M N y m y =+=,∴M 与N 两点连线与x 轴平行,∴|23(1)|5MN m m =+--=,即|32|5m +=,325m +=±,解得:11m =,273m =-. 【点睛】本题考查了坐标与图形性质,是基础题,难点在于要分情况讨论.13.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.【分析】设点P 的坐标为先根据点P 的位置可得再根据点到坐标轴的距离即可得【详解】设点P 的坐标为点位于轴上方轴左侧点P 距离轴4个单位长度距离轴2个单位长度即则点P 的坐标为故答案为:【点睛】本题考查了点到解析:(2,4)-【分析】设点P 的坐标为(,)a b ,先根据点P 的位置可得0,0a b <>,再根据点到坐标轴的距离即可得.【详解】设点P 的坐标为(,)a b ,点P 位于x 轴上方,y 轴左侧,0,0a b ∴<>,点P 距离x 轴4个单位长度,距离y 轴2个单位长度,4,2b a ∴==,4,2b a ∴=-=,即2,4a b =-=,则点P 的坐标为(2,4)-,故答案为:(2,4)-.【点睛】本题考查了点到坐标轴的距离、点坐标,掌握理解点到坐标轴的距离是解题关键. 14.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____.【分析】根据二四象限角平分线上的点的横纵坐标互为相反数可得解方程求得a的值即可【详解】∵点P ()在第二四象限的角平分线上∴解得故答案为【点睛】本题考查了二四象限角平分线上的点的坐标的特征熟知二四象限 解析:13- 【分析】 根据二四象限角平分线上的点的横纵坐标互为相反数可得12a 2a 033+++=,解方程求得a的值即可.【详解】∵点P (1a 3+,22a 3+)在第二,四象限的角平分线上, ∴ 12a 2a+033++=,解得13a =-. 故答案为13-.【点睛】本题考查了二四象限角平分线上的点的坐标的特征,熟知二四象限角平分线上的点的横纵坐标互为相反数是解决问题的关键.15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____. (ab )【分析】利用已知得出图形的变换规律进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可【详解】解:∵在平面直角坐标系中对△ABC 进行循环往复的轴对称变换∴对应图形4次循解析:(a ,b ).【分析】利用已知得出图形的变换规律,进而得出经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同求出即可.【详解】解:∵在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2020÷4=505,∴经过第2020次变换后所得A 点坐标与第4次变换后的坐标相同,故其坐标为:(a ,b ).故答案为:(a ,b ).【点睛】此题主要考查了关于坐标轴以及原点对称点的性质,得出A 点变化规律是解题关键. 16.直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),……,按这样的运动规律,动点第2021次运动到的点的坐标为____________.(20201)【分析】由图中点的坐标可得:每4次运动为一个循环组循环并且每一个循环组向右运动4个单位用2021除以4再由商和余数的情况确定运动后点的坐标【详解】∵2021÷4=505余1∴第2021解析:(2020,1)【分析】由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,再由商和余数的情况确定运动后点的坐标.【详解】∵2021÷4=505余1,∴第2021次运动为第505循环组的第1次运动,横坐标为505×4=2020,纵坐标为1,∴点的坐标为(2020,1).故答案为:(2020,1).【点睛】考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.17.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.南东35°北西60°【分析】依据地图上的方向辨别方法上北下南左西右东和图示中提高那个的度数进行解答即可判定物体的位置【详解】百鸟馆在老虎馆的南偏东35°方向上大象馆在老虎馆的北偏西60°方向上故答案解析:南东 35°北西 60°【分析】依据地图上的方向辨别方法“上北下南、左西右东“和图示中提高那个的度数进行解答即可判定物体的位置.【详解】百鸟馆在老虎馆的南偏东35°方向上,大象馆在老虎馆的北偏西60°方向上.故答案为:南、东、35°,北、西、60°.【点睛】本题主要考查了依据方向判定物体位置的方法,需要熟记地图上的方向规定. 18.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.(-40)或(60)【分析】设P (m0)利用三角形的面积公式构建绝对值方程求出m 即可;【详解】如图设P (m0)由题意:•|1-m|•2=5∴m=-4或6∴P (-40)或(60)故答案为:(-40)或解析:(-4,0)或(6,0)【分析】设P (m ,0),利用三角形的面积公式构建绝对值方程求出m 即可;【详解】如图,设P (m ,0),由题意:12•|1-m|•2=5, ∴m=-4或6,∴P (-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.19.已知点()1,2A ,//AC x 轴,5AC =,则点C 的坐标是______ .(62)或(42)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标从而得解【详解】∵点A (12)AC ∥x 轴∴点C 的纵坐标为2∵AC=解析:(6,2)或(-4,2)【分析】根据平行于x 轴直线上的点的纵坐标相等求出点C 的纵坐标,再分点C 在点A 的左边与右边两种情况讨论求出点C 的横坐标,从而得解.【详解】∵点A (1,2),AC ∥x 轴,∴点C 的纵坐标为2,∵AC=5,∴点C 在点A 的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2).故答案为(6,2)或(-4,2).【点睛】本题考查了点的坐标,熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.20.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x轴和y轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.(-31)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门建立直角坐标系即可求解【详解】根据右安门的点的坐标为(−2−3)可以确定直角坐标系中原点在正阳门∴西便门的坐标为(−31)故答案解析:(-3,1)【分析】根据右安门的点的坐标可以确定直角坐标系中原点在正阳门,建立直角坐标系即可求解.【详解】根据右安门的点的坐标为(−2,−3),可以确定直角坐标系中原点在正阳门,∴西便门的坐标为(−3,1),故答案为(−3,1);【点睛】此题考查坐标确定位置,解题关键在于建立直角坐标系.三、解答题21.已知在平面直角坐标系中,ABC 三个顶点的坐标分别为:(3,1)A --,(2,4)B --,(1,3)C -.(1)作出ABC ;(2)若将ABC 向上平移3个单位后再向右平移2个单位得到111A B C △,请作出111A B C △.解析:(1)见解析;(2)见解析【分析】(1)先在坐标系分别描出A 、B 、C 三点,再把A 、B 、C 三点首尾相接即可得到△ABC ; (2)先算出A 、B 、C 三点经过平移得到的点坐标,再用(1)的方法即可得到需画三角形.【详解】解:(1)如图,在平面直角坐标系分别描出A 、B 、C 三点,再把A 、B 、C 三点首尾相接即得到△ABC ;(2)如上图,由题意可得点的坐标平移公式为: 1123x x y y =+⎧⎨=+⎩, ∴A 、B 、C 经过平移得到的点分别为: ()()()1111,2,0,1,3,0A B C --,∴分别描出111,,A B C 三点再首尾相接即可得到需画三角形.【点睛】本题考查平移作图及三角形定义的综合应用,熟练掌握根据平移方式确定点坐标的方法及三角形的概念是解题关键.22.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫(A ,B ,C ,D 都在格点上).规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:B →A (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A →C ( , ),B →C ( , ),C →D ( , );(2)若这只甲虫的行走路线为A →B →C →D ,则该甲虫走过的路程是 ;(3)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N→A应记为什么?解析:(1)+4,+4;+3,0;+1,﹣3;(2)12;(3)见解析;(4)(﹣2,﹣2)【分析】(1)根据规定及实例可知A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)按题目所示平移规律,通过平移即可得到点P的坐标,在图中标出即可.(4)根据M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),可知4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A 应记为什么.【详解】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4,+4;+3,0;+1,﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).【点睛】本题主要考查了利用坐标确定点的位置的方法.解题的关键是正确的理解从一个点到另一个点移动时,如何用坐标表示.23.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A(0,3);B(﹣2,4);C(3,﹣4);D(﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .解析:(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2; (2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.24.平面直角坐标系中有点A (m +6n ,-1),B (-2,2n -m ),连接AB ,将线段AB 先向上平移,再向右平移,得到其对应线段A 'B '(点A '和点A 对应,点B '和点B 对应),两个端点分别为A '(2m +5n ,5),B '(2,m +2n ).分别求出点A '、B '的坐标.解析:(1,5)A ',(2,1)B '【分析】根据点的平移规律:横坐标,右加左减;纵坐标,上加下减.据此可以求出平移后点的表示,列方程即可求出m 、n ,得出点A '、B '的坐标.【详解】解:由题意得2626425n m m n m n m n -+=+⎧⎨++=+⎩解得31m n =⎧⎨=-⎩, 即:(1,5)A '、(2,1)B '.【点睛】本题的重点在于掌握点在坐标系中平移的规律,与一次函数图像的平移规律有出入,不要记混.25.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3)求A B C ''的面积是多少?解析:(1)见解析;(2)见解析;(3)8.【分析】(1)根据图形平移的性质画出△A′B′C′即可;(2)取线段AB 的中点D ,连接CD ,过点A 作AE ⊥BC 的延长线与点E 即可;(3)根据S △A′B′C =S △ABC 代入三角形公式计算即可.【详解】(1)如图,A B C '''即为所求;(2)如图,线段CD 和线段AE 即为所求;(3)1144822A B C ABC S S BC AE '''==⋅⋅=⨯⨯= 【点睛】本题考查的是平移变换,掌握图形平移但图形的形状不变是解答本题的关键.26.国庆假期到了,八年级(1)班的同学到某梦幻王国游玩,在景区示意图前面,李强和王磊进行了如下对话:李强说:“魔幻城堡的坐标是()4,2-.”王磊说:“丛林飞龙的坐标是()2,1--.”若他们二人所说的位置都正确.(1)在图中建立适当的平面直角坐标系xOy ;(2)用坐标描述西游传说和华夏五千年的位置.解析:(1)见解析;(2)西游传说(3,3),华夏五千年(1,4)--.【分析】(1)以太空飞梭为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系中点的坐标的写法写出即可.【详解】解:(1)如图所示:(2)西游传说(3,3),华夏五千年(1,4)--.【点睛】本题考查了坐标确定位置,根据已知条件确定出坐标原点的位置是解题的关键. 27.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.解析:(1)见解析;(2)点P 的坐标为(21,0)-或(19,0)【分析】(1)直接利用轴对称的性质得出对应点位置进而得出答案;(2)依据三角形的面积公式求解即可.【详解】解:(1)如图所示,△A 1B 1C 1即为所求:(2)ABC 1S =54=102∆⨯⨯, 设点P 的坐标为(m ,0),则ABP 1S=m-(-1)1=102⨯⨯,解得:m =-21或19, ∴点P 的坐标(﹣21,0)或(19,0)【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.28.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置;(3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.解析:(1)见解析;(2)见解析;(3)10【分析】(1)根据点A 的坐标,向左1个单位,向下2个单位为坐标原点,建立平面直角坐标系即可;(2)根据平面直角坐标系标注体育馆和食堂即可;(3)根据四边形所在的矩形的面积减去四周四个小直角三角形的面积列式计算即可得解.【详解】解:(1)建立平面直角坐标系如图所示;(2)体育馆(1,3)C ,食堂(2,0)D 如图所示;(3)四边形ABCD的面积1111 4533231312 2222=⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯,20 4.53 1.51=----,2010=-,10=.【点睛】本题考查了坐标确定位置,平面直角坐标系的定义,网格结构中不规则四边形的面积的求解,熟记概念并熟练运用网格结构是解题的关键.。
天津市南开中学七年级下册数学期末试卷达标检测卷(Word版 含解析)

天津市南开中学七年级下册数学期末试卷达标检测卷(Word 版 含解析) 一、解答题1.如图①,将一张长方形纸片沿EF 对折,使AB 落在''A B 的位置;(1)若1∠的度数为a ,试求2∠的度数(用含a 的代数式表示); (2)如图②,再将纸片沿GH 对折,使得CD 落在''C D 的位置.①若//'EF C G ,1∠的度数为a ,试求3∠的度数(用含a 的代数式表示); ②若''B F C G ⊥,3∠的度数比1∠的度数大20︒,试计算1∠的度数. 2.已知//AB CD ,点E 在AB 与CD 之间. (1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.3.已知:如图(1)直线AB 、CD 被直线MN 所截,∠1=∠2.(1)求证:AB //CD ;(2)如图(2),点E 在AB ,CD 之间的直线MN 上,P 、Q 分别在直线AB 、CD 上,连接PE 、EQ ,PF 平分∠BPE ,QF 平分∠EQD ,则∠PEQ 和∠PFQ 之间有什么数量关系,请直接写出你的结论;(3)如图(3),在(2)的条件下,过P 点作PH //EQ 交CD 于点H ,连接PQ ,若PQ 平分∠EPH ,∠QPF :∠EQF =1:5,求∠PHQ 的度数.4.如图,//MN PQ ,直线AD 与MN 、PQ 分别交于点A 、D ,点B 在直线PQ 上,过点B 作BG AD ⊥,垂足为点G .(1)如图1,求证:90MAG PBG ∠+∠=︒;(2)若点C 在线段AD 上(不与A 、D 、G 重合),连接BC ,MAG ∠和PBC ∠的平分线交于点H 请在图2中补全图形,猜想并证明CBG ∠与AHB ∠的数量关系;5.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?二、解答题6.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E ,F 点,且90ACB ∠=︒.(1)将直角ABC 如图1位置摆放,如果56AOG ∠=︒,则CEF ∠=________; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ∠+∠=︒,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由;(3)将直角ABC 如图3位置摆放,若135GOC ∠=︒,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究,POQ OPQ ∠∠与PQF ∠的数量关系,请直接写出结论.7.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.8.为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条AB 、BC 、CD 、DE ,做成折线ABCDE ,如图1,且在折点B 、C 、D 处均可自由转出.(1)如图2,小明将折线调节成50B ∠=︒,85C ∠=︒,35D ∠=︒,判断AB 是否平行于ED ,并说明理由;(2)如图3,若35C D ∠=∠=︒,调整线段AB 、BC 使得//AB CD 求出此时B 的度数,要求画出图形,并写出计算过程.(3)若85C ∠=︒,35D ∠=︒,//AB DE ,请直接写出此时B 的度数.9.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由. 10.如图1,D 是△ABC 延长线上的一点,CE //AB . (1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.三、解答题11.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.(1)如图1,点D在线段CG上运动时,DF平分∠EDB①若∠BAC=100°,∠C=30°,则∠AFD=;若∠B=40°,则∠AFD=;②试探究∠AFD与∠B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由12.如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点Q,在点A,B的运动过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.(2)若AP是∠BAO的邻补角的平分线,BP是∠ABO的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,∠P和∠C的大小是否会发生变化?若不发生变化,请求出∠P和∠C的度数;若发生变化,请说明理由.13.在ABC中,射线AG平分BAC∠交BC于点G,点D在BC边上运动(不与点G重DE AC交AB于点E.合),过点D作//(1)如图1,点D在线段CG上运动时,DF平分EDB∠.①若100BAC ︒∠=,30C ︒∠=,则AFD ∠=_____;若40B ︒∠=,则AFD ∠=_____; ②试探究AFD ∠与B 之间的数量关系?请说明理由;(2)点D 在线段BG 上运动时,BDE ∠的角平分线所在直线与射线AG 交于点F .试探究AFD ∠与B 之间的数量关系,并说明理由.14.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .如图③,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 的度数为 .(3)如图④,已知AB ∥CD ,∠AM 1M 2的角平分线M 1 O 与∠CM n M n -1的角平分线M n O 交于点O ,若∠M 1OM n =m °.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n -1的度数.(用含m 、n 的代数式表示)15.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)【参考答案】一、解答题1.(1) ;(2)① ;② 【分析】(1)由平行线的性质得到,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可; (2) ①由(1)知,,根据平行线的性质得到 ,再由折叠的性质及平角的定义 解析:(1)1902a ︒- ;(2)①1454a ︒+ ;②50︒【分析】(1)由平行线的性质得到4'B FC a ∠=∠=,由折叠的性质可知,∠2=∠BFE ,再根据平角的定义求解即可;(2) ①由(1)知,1902BFE a ∠=︒-,根据平行线的性质得到1BFE C'GB 902a ∠=∠=︒- ,再由折叠的性质及平角的定义求解即可;②由(1)知,∠BFE = 19012EFB '∠=︒-∠,由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,再根据条件和折叠的性质得到''11402190B FC FGC +=∠+∠=∠︒-∠︒,即可求解. 【详解】解:(1)如图,由题意可知'//'A E B F , ∴14a ∠=∠=, ∵//AD BC , ∴4'B FC a ∠=∠=,180BFB a '∴∠=︒-,∴由折叠可知1129022BFE BFB a '∠=∠=∠=︒-.(2)①由题(1)可知1902BFE a ∠=︒- ,∵//'EF C G ,1902BFE C'GB a ∴∠=∠=︒-,再由折叠可知:113180*********HGC C GB a a ⎛⎫∠+∠=︒-∠=︒-︒-=︒+ ⎪⎝⎭',13454HGC a ∴∠=∠=︒+;②由''B F C G ⊥可知:''90B FC FGC ∠+∠=︒,由(1)知19012BFE ∠=︒-∠,11802180290112B FC BFE ⎛⎫'∴∠=︒-∠=︒-︒-∠=∠ ⎪⎝⎭,又3∠的度数比1∠的度数大20︒,∴3=1+20∠∠︒,()18023180212014021FGC '∴∠=︒-∠=︒-∠+︒=︒-∠,''11402190∴∠+∠=∠︒-∠︒,B FC FGC+=∴∠︒.1=50【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键.2.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.3.(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线解析:(1)见解析;(2)∠PEQ+2∠PFQ=360°;(3)30°【分析】(1)首先证明∠1=∠3,易证得AB//CD;(2)如图2中,∠PEQ+2∠PFQ=360°.作EH//AB.理由平行线的性质即可证明;(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,想办法构建方程即可解决问题;【详解】(1)如图1中,∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴AB//CD.(2)结论:如图2中,∠PEQ+2∠PFQ=360°.理由:作EH//AB.∵AB//CD,EH//AB,∴EH//CD,∴∠1=∠2,∠3=∠4,∴∠2+∠3=∠1+∠4,∴∠PEQ=∠1+∠4,同法可证:∠PFQ=∠BPF+∠FQD,∵∠BPE=2∠BPF,∠EQD=2∠FQD,∠1+∠BPE=180°,∠4+∠EQD=180°,∴∠1+∠4+∠EQD+∠BPE=2×180°,即∠PEQ+2(∠FQD+∠BPF)=360°,∴∠PEQ+2∠PFQ=360°.(3)如图3中,设∠QPF=y,∠PHQ=x.∠EPQ=z,则∠EQF=∠FQH=5y,∵EQ//PH,∴∠EQC=∠PHQ=x,∴x+10y=180°,∵AB//CD,∴∠BPH=∠PHQ=x,∵PF 平分∠BPE ,∴∠EPQ +∠FPQ =∠FPH +∠BPH ,∴∠FPH =y +z ﹣x ,∵PQ 平分∠EPH ,∴Z =y +y +z ﹣x ,∴x =2y ,∴12y =180°,∴y =15°,∴x =30°,∴∠PHQ =30°.【点睛】本题考查了平行线的判定与性质,角平分线的定义等知识.(2)中能正确作出辅助线是解题的关键;(3)中能熟练掌握相关性质,找到角度之间的关系是解题的关键. 4.(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,.【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解.【详解】(1)证明:解析:(1)证明见解析;(2)补图见解析;当点C 在AG 上时,290AHB CBG ∠-∠=︒;当点C 在DG 上时,290AHB CBG ∠+∠=︒.【分析】(1)过点G 作//GE MN ,根据平行线的性质即可求解;(2)分两种情况:当点C 在AG 上,当点C 在DG 上,再过点H 作//HF MN 即可求解.【详解】(1)证明:如图,过点G 作//GE MN ,∴MAG AGE ∠=∠,∵//MN PQ ,∴//GE PQ .∴PBG BGE ∠=∠.∵BG AD ⊥,∴90AGB ∠=︒,∴90MAG PBG AGE BGE AGB ∠+∠=∠+∠=∠=︒.(2)补全图形如图2、图3,猜想:290AHB CBG ∠-∠=︒或290AHB CBG ∠+∠=︒.证明:过点H 作//HF MN .∴1AHF ∠=∠.∵//MN PQ ,∴//HF PQ∴2BHF ∠=∠,∴12AHB AHF BHF ∠=∠+∠=∠+∠.∵AH 平分MAG ∠,∴21MAG ∠=∠.如图3,当点C 在AG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠+∠=∠,∵//MN PQ ,∴MAG GDB ∠=∠,2212290AHB MAG PBG CBGGDB PBG CBG CBG∴∠=∠+∠=∠+∠+∠=∠+∠+∠=︒+∠即290AHB CBG ∠-∠=︒.如图2,当点C 在DG 上时,∵BH 平分PBC ∠,∴22PBC PBG CBG ∠=∠-∠=∠.∴2212290AHB MAG PBG CBG CBG ∠=∠+∠=∠+∠-∠=︒-∠.即290AHB CBG ∠+∠=︒.【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系.5.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t 的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t 的值,进而求出的度数;(3)根据灯B 的解析:(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.二、解答题6.(1)146°;(2)∠AOG+∠NEF=90°;(3)见解析【分析】(1)作CP//a ,则CP//a//b ,根据平行线的性质求解.(2)作CP//a ,由平行线的性质及等量代换得∠AOG+∠N解析:(1)146°;(2)∠AOG +∠NEF =90°;(3)见解析【分析】(1)作CP //a ,则CP //a //b ,根据平行线的性质求解.(2)作CP //a ,由平行线的性质及等量代换得∠AOG +∠NEF =∠ACP +∠PCB =90°.(3)分类讨论点P 在线段GF 上或线段GF 延长线上两种情况,过点P 作a ,b 的平行线求解.【详解】解:(1)如图,作CP //a ,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如图,作CP//a,则CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如图,当点P在GF上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如图,当点P在GF延长线上时,作PN//a,连接PQ,OP,则PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【点睛】本题考查平行线的性质的应用,解题关键是熟练掌握平行线的性质,通过添加辅助线及分类讨论的方法求解.7.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN=180°-2t,∴∠BAC=72°-(180°-2t)=2t-108°,又∵∠ABC=108°-t,∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,∴∠BAC:∠BCD=2:1,即∠BAC=2∠BCD,∴∠BAC和∠BCD关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.8.(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得C解析:(1)平行,理由见解析;(2)35°或145°,画图、过程见解析;(3)50°或130°或60°或120°【分析】(1)过点C作CF∥AB,根据∠B=50°,∠C=85°,∠D=35°,即可得CF∥ED,进而可以判断AB平行于ED;(2)根据题意作AB∥CD,即可∠B=∠C=35°;(3)分别画图,根据平行线的性质计算出∠B的度数.【详解】解:(1)AB平行于ED,理由如下:如图2,过点C作CF∥AB,∴∠BCF=∠B=50°,∵∠BCD=85°,∴∠FCD=85°-50°=35°,∵∠D=35°,∴∠FCD=∠D,∴CF∥ED,∵CF∥AB,∴AB∥ED;(2)如图,即为所求作的图形.∵AB∥CD,∴∠ABC=∠C=35°,∴∠B的度数为:35°;∵A′B∥CD,∴∠ABC+∠C=180°,∴∠B的度数为:145°;∴∠B的度数为:35°或145°;(3)如图2,过点C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∴∠B=∠BCF=50°.答:∠B的度数为50°.如图5,过C作CF∥AB,则AB∥CF∥CD,∴∠FCD=∠D=35°,∵∠BCD=85°,∴∠BCF=85°-35°=50°,∵AB∥CF,∴∠B+∠BCF=180°,∴∠B=130°;如图6,∵∠C=85°,∠D=35°,∴∠CFD=180°-85°-35°=60°,∵AB∥DE,∴∠B=∠CFD=60°,如图7,同理得:∠B=35°+85°=120°,综上所述,∠B的度数为50°或130°或60°或120°.【点睛】本题考查了平行线的判定与性质,解决本题的关键是区分平行线的判定与性质,并熟练运用.9.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t),由题意得:180°-(30°+6t)=12( 90°-3t),解得:t=703秒,即经过703秒OC平分∠MOB.【点睛】此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.10.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=12∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD=12∠ECD,∠HAF=12∠HAD,进而得出∠F=12(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD∠=∠,12NQG AQG∠=∠,180MQG QGR∠+∠=︒,再通过等量代换即可得出∠MQN=12∠ACB.【详解】解:(1)∵CE//AB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,FA平分∠HAD,∴∠FCD=12∠ECD,∠HAF=12∠HAD,∴∠F=12∠HAD+12∠ECD=12(∠HAD+∠ECD),∵CH//AB,∴∠ECD=∠B,∵AH//BC,∴∠B+∠HAB =180°, ∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下:GR 平分QGD ∠,12QGR QGD ∴∠=∠.GN 平分AQG ∠,12NQG AQG ∴∠=∠.//QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG =180°﹣∠QGR ﹣∠NQG =180°﹣12(∠AQG+∠QGD )=180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.三、解答题11.(1)①115°;110°;②;理由见解析;(2);理由见解析 【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②1902AFD B ∠=︒+∠;理由见解析;(2)1902AFD B ∠=︒-∠;理由见解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出12BAG BAC ∠=∠,12FDG EDB ∠=∠,由三角形的外角性质即可得出结果;②由①得:∠EDB=∠C ,1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒,由三角形的外角性质得出∠DGF=∠B+∠BAG ,再由三角形的外角性质即可得出结论;(2)由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,由三角形的外角性质和三角形内角和定理即可得出结论. 【详解】(1)①若∠BAC=100°,∠C=30°, 则∠B=180°-100°-30°=50°, ∵DE ∥AC , ∴∠EDB=∠C=30°,∵AG 平分∠BAC ,DF 平分∠EDB ,∴1502BAG BAC ∠=∠=︒,1152FDG EDB ∠=∠=︒, ∴∠DGF=∠B+∠BAG=50°+50°=100°, ∴∠AFD=∠DGF+∠FDG=100°+15°=115°; 若∠B=40°,则∠BAC+∠C=180°-40°=140°, ∵AG 平分∠BAC ,DF 平分∠EDB ,∴12BAG BAC ∠=∠,12FDG EDB ∠=∠,∵∠DGF=∠B+∠BAG ,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ 1401402=︒+⨯︒4070110=︒+︒=︒故答案为:115°;110°; ②1902AFD B ∠=︒+∠;理由如下:由①得:∠EDB=∠C ,12BAG BAC ∠=∠,12FDG EDB ∠=∠,∵∠DGF=∠B+∠BAG , ∴∠AFD=∠DGF+∠FDG =∠B+∠BAG+∠FDG =()12B BAC C ∠+∠+∠ ()11802B B =∠+︒-∠1902B =︒+∠;(2)如图2所示:1902AFD B ∠=︒-∠; 理由如下:由(1)得:∠EDB=∠C ,12BAG BAC ∠=∠,1122BDH EDB C ∠=∠=∠,∵∠AHF=∠B+∠BDH , ∴∠AFD=180°-∠BAG-∠AHF11802BAC B BDH=︒-∠-∠-∠1118022BAC B C =︒-∠-∠-∠()11802B BAC C =︒-∠-∠+∠ ()11801802B B =︒-∠-︒-∠ 1180902B B =︒-∠-︒+∠1902B =︒-∠.【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键.12.(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°. 【分析】第(1)题因垂直可求出∠ABO 与∠BAO 的和,由角平分线和角的和差可求出∠BA解析:(1)∠AQB 的大小不发生变化,∠AQB =135°;(2)∠P 和∠C 的大小不变,∠P=45°,∠C=45°. 【分析】第(1)题因垂直可求出∠ABO 与∠BAO 的和,由角平分线和角的和差可求出∠BAQ 与∠ABQ 的和,最后在△ABQ 中,根据三角形的内角各定理可求∠AQB 的大小.第(2)题求∠P 的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解. 【详解】解:(1)∠AQB 的大小不发生变化,如图1所示,其原因如下:∵m⊥n,∴∠AOB=90°,∵在△ABO中,∠AOB+∠ABO+∠BAO=180°,∴∠ABO+∠BAO=90°,又∵AQ、BQ分别是∠BAO和∠ABO的角平分线,∴∠BAQ=12∠BAC,∠ABQ=12∠ABO,∴∠BAQ+∠ABQ=12 (∠ABO+∠BAO)=190452⨯=又∵在△ABQ中,∠BAQ+∠ABQ+∠AQB=180°,∴∠AQB=180°﹣45°=135°.(2)如图2所示:①∠P的大小不发生变化,其原因如下:∵∠ABF+∠ABO=180°,∠EAB+∠BAO=180°∠BAQ+∠ABQ=90°,∴∠ABF+∠EAB=360°﹣90°=270°,又∵AP、BP分别是∠BAE和∠ABP的角平分线,∴∠PAB=12∠EAB,∠PBA=12∠ABF,∴∠PAB+∠PBA=12 (∠EAB+∠ABF)=12×270°=135°,又∵在△PAB中,∠P+∠PAB+∠PBA=180°,∴∠P=180°﹣135°=45°.②∠C的大小不变,其原因如下:∵∠AQB=135°,∠AQB+∠BQC=180°,∴∠BQC=180°﹣135°,又∵∠FBO=∠OBQ+∠QBA+∠ABP+∠PBF=180°∠ABQ =∠QBO =12∠ABO ,∠PBA =∠PBF =∠ABF ,∴∠PBQ =∠ABQ+∠PBA =90°, 又∵∠PBC =∠PBQ+∠CBQ =180°, ∴∠QBC =180°﹣90°=90°. 又∵∠QBC+∠C+∠BQC =180°, ∴∠C =180°﹣90°﹣45°=45° 【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题.13.(1)①115°,110°;②,证明见解析;(2),证明见解析. 【解析】 【分析】(1)①根据角平分线的定义求得∠CAG=∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②1902AFD B ︒∠=+∠,证明见解析;(2)1902AFD B ︒∠=-∠,证明见解析.【解析】 【分析】(1)①根据角平分线的定义求得∠CAG=12∠BAC=50°;再由平行线的性质可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的内角和定理求得∠AFD 的度数即可;已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;即可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×140°=70°;再由三角形的内角和定理可求得∠AFD=110°;②∠AFD=90°+12∠B ,已知AG 平分∠BAC ,DF 平分∠EDB ,根据角平分线的定义可得∠CAG=12∠BAC ,∠FDM=12∠EDG ;由DE//AC ,根据平行线的性质可得∠EDG=∠C ,∠FMD=∠GAC ;由此可得∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C )=12×(180°-∠B )=90°-12∠B ;再由三角形的内角和定理可得∠AFD=90°+12∠B ;(2)∠AFD=90°-12∠B,已知AG平分∠BAC,DF平分∠EDB,根据角平分线的定义可得∠CAG=12∠BAC,∠NDE=12∠EDB,即可得∠FDM=∠NDE=12∠EDB;由DE//AC,根据平行线的性质可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=12∠C,所以∠FDM+∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;再由三角形外角的性质可得∠AFD=∠FDM +∠FMD=90°-12∠B.【详解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=12∠BAC=50°;∵//DE AC,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=12∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×140°=70°;∴∠AFD=180°-(∠FDM +∠FMD)=180°-70°=110°;故答案为115°,110°;②∠AFD=90°+12∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠FDM=12∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM +∠FMD=12∠EDG +∠GAC=12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=180°-(∠FDM +∠FMD)=180°-(90°-12∠B)=90°+12∠B;(2)∠AFD=90°-12∠B,理由如下:如图,射线ED交AG于点M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=12∠BAC,∠NDE=12∠EDB,∴∠FDM=∠NDE=12∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=12∠C,∴∠FDM +∠FMD =12∠C+12∠BAC=12(∠BAC+∠C)=12×(180°-∠B)=90°-12∠B;∴∠AFD=∠FDM +∠FMD=90°-12∠B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.14.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】【模型】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.15.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津市南开翔宇学校七年级下册数学全册单元期末试卷及答案-百度文库一、选择题1.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12n π⎛⎫⎪⎝⎭ B .14n π⎛⎫⎪⎝⎭ C .2112n π+⎛⎫⎪⎝⎭ D .2112n π-⎛⎫⎪⎝⎭2.下列线段能构成三角形的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,63.32236x y 3x y -分解因式时,应提取的公因式是( )A .3xyB .23x yC .233x yD .223x y4.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米 B .2.62米 C .3.62米 D .4.62米5.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 36.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( )A .1B .-1C .4D .-47.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒8.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( )A .(﹣1,﹣1).B .(﹣1,1)C .(1,1)D .(1,﹣1)9.下列图形中,∠1和∠2是同位角的是( )A .B .C .D .10.七边形的内角和是( )A .360°B .540°C .720°D .900°二、填空题11.一个五边形所有内角都相等,它的每一个内角等于_______.12.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.13.已知方程组,则x+y=_____.14.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.15.已知m a =2,n a =3,则2m n a -=_______________.16.有两个正方形A 、B ,现将B 放在A 的内部得图甲,将A 、B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A ,B 的面积之和为_________.17.已知2x +3y -5=0,则9x •27y 的值为______.18.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.19.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S =,则图中阴影部分的面积是 ________.20.如图,在三角形纸片ABC 中剪去∠C 得到四边形ABDE ,且∠C =40°,则∠1+∠2的度数为_____.三、解答题21.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?22.化简与计算:(1)120 1(3)(2)3π-⎛⎫---+-⎪⎝⎭(2)(﹣2a3)3+(﹣4a)2•a7﹣2a12÷a323.若规定acbd=a﹣b+c﹣3d,计算:223223xy xx---2574xy xxy-+-+的值,其中x=2,y=﹣1.24.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠BAC=60°,∠C=50°,求∠DAC及∠BOA的度数.25.在如图所示的正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)画出△ABC先向右平移5个单位长度,再向上平移2个单位长度所得的△A1B1C1;(2)画出△ABC的中线AD;(3)画出△ABC的高CE所在直线,标出垂足E:(4)在(1)的条件下,线段AA1和CC1的关系是26.定义:对于任何数a,符号[]a表示不大于a的最大整数.(1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x-⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x。
27.已知,关于x、y二元一次方程组237921x y ax y-=-⎧⎨+=-⎩的解满足方程2x-y=13,求a的值.28.如图所示,A(2,0),点B 在y 轴上,将三角形OAB 沿x 轴负方向平移,平移后的图形为三角形DEC,且点C 的坐标为(-6,4) .(1)直接写出点E 的坐标;(2)在四边形ABCD 中,点P 从点B 出发,沿“BC→CD”移动.若点P 的速度为每秒 2 个单位长度,运动时间为t 秒,回答下列问题:①求点P 在运动过程中的坐标,(用含t 的式子表示,写出过程);②当 3 秒<t<5 秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问x,y,z 之间的数量关系能否确定?若能,请用含x,y 的式子表示z,写出过程;若不能,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.2.B【解析】试题分析:A、2+2=4,不能构成三角形,故本选项错误;B、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C、1+2=3,不能构成三角形,故本选项错误;D、2+3<6,不能构成三角形,故本选项错误.故选B.考点:三角形三边关系.3.D解析:D【解析】【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2y2.故选:D.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的. 4.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米,故选:A.【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.5.A解析:A【分析】将已知等式代入22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2可得.【详解】解:∵4m=a,8n=b,∴22m+6n=22m×26n=(22)m•(23)2n=4m•82n=4m•(8n)2故选:A .【点睛】本题主要考查幂的运算,解题的关键是熟练掌握幂的乘方与积的乘方的运算法则.6.A解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x ,∴k=12=1,故选A .【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.7.C解析:C【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可.【详解】解:∵AB ∥CD ,115C ∠=︒,∴115EFB C ∠=∠=︒,∵EFB A E ∠=∠+∠,25A ∠=︒∴1152590E ∠=︒-︒=︒.故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.8.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x ﹣3=3﹣x ,进而得出答案.【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,∴2x ﹣3=3﹣x ,解得:x =2,故2x ﹣3=1,3﹣x =1,则M 点的坐标为:(1,1).故选:C .此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.9.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.【详解】解:根据同位角定义观察图形可知A、B、C选项中的均不符合同位角的定义,只有选项D 中的图形符合,故选D.【点睛】本题考查同位角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.10.D解析:D【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】(7﹣2)×180°=900°.故选D.【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.二、填空题11.【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°解析:108【分析】根据多边形的外角和是360度,再用360°除以边数可得每一个外角度数,进一步得到每一个内角度数.【详解】每一个外角的度数是:360°÷5=72°,每一个内角度数是:180°−72°=108°.故答案为:108°.【点睛】本题主要考查了多边形的外角和定理.注意多边形的外角和不随边数的变化而变化,是一个固定值360°.12.-7【解析】【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x −4x −5=x −4x+4−4−5=(x −2) −9,所以m=2,k=−9,所以解析:-7【解析】【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值.【详解】x 2−4x−5=x 2−4x+4−4−5=(x−2) 2−9,所以m=2,k=−9,所以m+k=2−9=−7.故答案为:-7【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.13.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2. 解析:2 【解析】由题意得,两个方程左右相加可得,,故答案为2.14.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x,解得k=±10.故答案为±1解析:±10【解析】【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 15.【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:am-2n=am÷a2n=am÷(an )2=2÷9=故答案为【点睛】本题考查了同底数幂的除法和幂的 解析:29【分析】根据同底数幂的除法和幂的乘方与积的乘方的运算法则求解即可.【详解】解:a m-2n=a m ÷a 2n=a m ÷(a n )2=2÷9 =29故答案为29【点睛】本题考查了同底数幂的除法和幂的乘方与积的乘方,解答本题的关键在于熟练掌握各知识点的运算法则.16.11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得,即,由图乙得,得2ab=10,解析:11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得222()1a b a b b ---=,即2221a ab b -+=,由图乙得222()10a b a b +--=,得2ab=10,∴2211a b +=,故答案为:11.【点睛】此题考查完全平方公式的几何背景,正确理解图形的面积关系是解题的关键. 17.243【解析】【分析】先将9x•27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x 27y=32x解析:243【解析】【分析】先将9x •27y 变形为32x+3y ,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 18.60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A+∠E=∠C=60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.19.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解:三边的中线AD、BE、CF的公共点为G,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】 本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.20.220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED,∠2=∠C+∠EDC,∴∠1+∠2=∠C+∠CED+∠EDC+∠C,∵∠C+∠CE解析:220°【分析】根据三角形的外角的性质以及三角形内角和定理求解即可.【详解】解:∵∠1=∠C+∠CED ,∠2=∠C+∠EDC ,∴∠1+∠2=∠C+∠CED+∠EDC+∠C ,∵∠C+∠CED+∠EDC =180°,∠C =40°,∴∠1+∠2=180°+40°=220°,故答案为:220°.【点睛】本题考查剪纸问题,三角形内角和定理,三角形的外角的性质等知识,熟悉相关性质是解三、解答题21.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.22.(1)-11;(2)6a 9【分析】(1)根据负指数幂运算法则,零指数幂运算法则进行运算即可求解(2)根据幂的乘方运算法则,同底数幂乘方和除法运算法则,先算乘法,后算乘除即可求解.【详解】(1)1201(3)(2)3π-⎛⎫---+- ⎪⎝⎭=391--+=-11故答案为:-11(2)(﹣2a 3)3+(﹣4a )2•a 7﹣2a 12÷a 3=-8a 9+16a 2•a 7-2a 9=-8a 9+16a 9-2a 9=6a 9故答案为:6a 9本题考查了整式的混合运算,有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.要熟练掌握负指数幂运算法则,零指数幂运算法,幂的乘方运算法则,同底数幂乘法和除法运算法等.23.﹣5x2﹣4xy+18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x与y的值代入计算即可求值.【详解】原式=(3xy﹣2x2)﹣(﹣5xy+x2)+(﹣2x2﹣3)﹣3(﹣7+4xy)=3xy﹣2x2+5xy﹣x2﹣2x2﹣3+21﹣12xy=﹣5x2﹣4xy+18,当x=2,y=﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.24.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,又∵AE、BF分别是∠BAC 和∠ABC的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°,∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.25.(1)见解析;(2)见解析;(3)见解析;(4)平行且相等【分析】(1)利用网格特点和平移的性质画出A、B、C的对应点A1、B1、C1即可;(2)根据三角形中线的定义画出图形即可;(3)根据三角形高的定义画出图形即可;(4)根据平移的性质即可得出结论.【详解】解:(1)如图,△A1B1C1即为所作图形;(2)如图,线段AD即为所作图形;(3)如图,直线CE即为所作图形;(4)∵△A1B1C1是由△ABC平移得到,∴A和A1,C和C1是对应点,∴AA1和CC1的关系是:平行且相等.【点睛】本题考查了平移作图,平移的性质,三角形的高和中线的画法,熟练掌握平移的性质是解题的关键.26.(1)−4;(2)满足条件的所有整数x的值为−3、−2.【分析】(1)根据新定义即可得;(2)由新定义得出2333x-⎡⎤=-⎢⎥⎣⎦,解之可得x的范围,从而得出答案.【详解】解:(1)103⎡⎤-=⎢⎥⎣⎦−4,故答案为:−4;(2)由题意得−3≤233x-<−2,解得:−3≤x<−32,∴满足条件的所有整数x的值为−3、−2.【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.27.a=4【分析】先联立x+2y=−1与2x−y=13解出x,y,再代入2x−3y=7a−9即可求出a值.【详解】依题意得21 213 x yx y+=-⎧⎨-=⎩解得53xy=⎧⎨=-⎩,代入2x−3y=7a−9,得:a=4,故a的值为4.【点睛】此题主要考查二元一次方程组的解,解题的关键是熟知二元一次方程组的解法.28.(1)()4,0- (2)1)点P 在线段BC 上时, (),4P t -,2)点P 在线段CD 上时, ()6,10P t --; (3)能确定,z x y =+,证明见解析【分析】(1)根据平移的性质即可得到结论;(2)①分两种情况:1)点P 在线段BC 上时,2)点P 在线段CD 上时;②如图,作P 作//PE BC 交于AB 于E ,则//PE AD ,根据平行线的性质即可得到结论.【详解】(1)∵点B 的横坐标为0,点C 的横坐标为-6,∴将A (2,0)向左平移6个单位长度得到点E∴()4,0E -;(2)①∵6,4BC CD ==∴1)点P 在线段BC 上时,PB t =(),4P t -;2)点P 在线段CD 上时,()4610PD t t =--=-()6,10P t --;②能确定如图,作P 作//PE BC 交于AB 于E ,则//PE AD∴1,2CBP x DAP y ==︒==︒∠∠∠∠ ∴1+2BPA x y z ==︒+︒=︒∠∠∠ ∴z x y =+.【点睛】本题考查了平行线的问题,掌握平移的性质、代数式的用法、平行线的性质以及判定定理是解题的关键.。