离散数学课后答案(第1-2-4章)武汉大学出版社
02324离散数学(课后习题解答(详细)

离散数学~习题1.11.下列句子中,哪些是命题?哪些不是命题?如果是命题,指出它的真值。
⑴中国有四大发明。
⑵计算机有空吗?⑶不存在最大素数。
⑷21+3<5。
⑸老王是山东人或河北人。
⑹2与3都是偶数。
⑺小李在宿舍里。
⑻这朵玫瑰花多美丽呀!⑼请勿随地吐痰!⑽圆的面积等于半径的平方乘以 。
⑾只有6是偶数,3才能是2的倍数。
⑿雪是黑色的当且仅当太阳从东方升起。
⒀如果天下大雨,他就乘班车上班。
解:⑴⑶⑷⑸⑹⑺⑽⑾⑿⒀是命题,其中⑴⑶⑽⑾是真命题,⑷⑹⑿是假命题,⑸⑺⒀的真值目前无法确定;⑵⑻⑼不是命题。
2. 将下列复合命题分成若干原子命题。
⑴李辛与李末是兄弟。
⑵因为天气冷,所以我穿了羽绒服。
⑶天正在下雨或湿度很高。
⑷刘英与李进上山。
⑸王强与刘威都学过法语。
⑹如果你不看电影,那么我也不看电影。
⑺我既不看电视也不外出,我在睡觉。
⑻除非天下大雨,否则他不乘班车上班。
解:⑴本命题为原子命题;⑵p:天气冷;q:我穿羽绒服;⑶p:天在下雨;q:湿度很高;⑷p:刘英上山;q:李进上山;⑸p:王强学过法语;q:刘威学过法语;⑹p:你看电影;q:我看电影;⑺p:我看电视;q:我外出;r:我睡觉;⑻p:天下大雨;q:他乘班车上班。
3. 将下列命题符号化。
⑴他一面吃饭,一面听音乐。
⑵3是素数或2是素数。
⑶若地球上没有树木,则人类不能生存。
⑷8是偶数的充分必要条件是8能被3整除。
⑸停机的原因在于语法错误或程序错误。
⑹四边形ABCD是平行四边形当且仅当它的对边平行。
⑺如果a和b是偶数,则a+b是偶数。
解:⑴p:他吃饭;q:他听音乐;原命题符号化为:p∧q⑵p:3是素数;q:2是素数;原命题符号化为:p∨q⑶p:地球上有树木;q:人类能生存;原命题符号化为:⌝p→⌝q⑷p:8是偶数;q:8能被3整除;原命题符号化为:p↔q⑸p:停机;q:语法错误;r:程序错误;原命题符号化为:q∨r→p⑹p:四边形ABCD是平行四边形;q:四边形ABCD的对边平行;原命题符号化为:p↔q。
离散数学课后答案

离散数学课后答案1.21.分析下列语句哪些是命题,哪些不是命题;如果是命题,指出其真值:a) 北京是中国的⾸都。
b) 上海是全国⼈⼝最多的城市。
c) 今天天⽓多么好啊d) 11+1=100.e) 雪是⿊⾊的,当且仅当5>0.f) 全体起⽴!g) 不存在最⼤素数。
h) x+6≥16.i) ⽩⾊加红⾊可以调成粉红⾊。
j) 明天你去看电影吗?k) ⽕星上有⽣物。
答:a)的真值为T;b)的真值为T;c)不是命题;d)的真值为F;e)F;f)不是命题;g)F;h)不是命题;i)T;j)不是命题;k)F。
3.将下列命题符号化。
a) ⼩李不但聪明⽽且⽤功。
b) 昨天晚⾃习时⼩赵做了⼆三⼗道数学题。
c) 如果天下⼤⾬,他就在体育馆内锻炼。
d):::::4.将下列复合命题分成若⼲原⼦命题。
a) 今天天⽓炎热,且有雷阵⾬。
b) 如果你不去⽐赛,那么我也不去⽐赛。
c) 我既不看电视,也不去看电影,我准备做作业。
d) 四边形ABCD是平⾏四边形,当且仅当它的对边平⾏。
答:a)原⼦命题为:今天天⽓炎热;今天有雷阵⾬b)原⼦命题为:你去⽐赛;我去⽐赛;c)原⼦命题为:我看电视;我看电影;我做作业;d)原⼦命题为:四边形ABCD是平⾏四边形;四边形的对边平⾏;1.31.判别下列公式哪些是合式公式,哪些不是合式公式。
a) (Q→R∧S);b) (P←→(R→S));c) ((|P→Q)→(Q→P));d) (RS→K);e) ((P→(Q→R))→((P→Q)→(P→R)));答: a) 不是合式公式。
b) 是合式公式。
c) 是合式公式。
d) 不是合式公式。
e) 是合式公式2.根据定义,说明下列公式如何形成合式公式。
a) (A→(A∨B));b) ((|A∧B)∧A);c) ((|A→B)∨(B→A));答:a) 由合式公式的定义中的规定(1)A、B本⾝是⼀个合式公式;由规定(3)(A∨B)是⼀个合式公式;由规定(4)再次应⽤(3)可得式(A→(A∨B);b) 由合式公式定义规定(1)A、B本⾝各是⼀合式公式;由规定(2)|A是⼀合式公式;由规定(4)应⽤(3)得(|A∧B)是⼀合式公式;再应⽤(3)得原式是⼀个合式公式。
离散数学第一章部分课后习题参考答案

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)0∨(0∧1) 0(2)(p?r)∧(﹁q∨s) (0?1)∧(1∨1) 0∧10.(3)(p∧q∧r)?(p∧q∧﹁r) (1∧1∧1)? (0∧0∧0)0(4)(r∧s)→(p∧q) (0∧1)→(1∧0) 0→0 117.判断下面一段论述是否为真:“是无理数。
并且,如果3是无理数,则也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: 是无理数 1q: 3是无理数0r: 是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(q→p)(5)(p∧r) (p∧q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q q p q→p (p→q)→(q→p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) (p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)(p∨(p∨q))∨(p∨r)p∨p∨q∨r1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)(p→(q∧r))(4)(p∧q)∨(p∧q)(p∨q) ∧(p∧q)证明(2)(p→q)∧(p→r)(p∨q)∧(p∨r)p∨(q∧r))p→(q∧r)(4)(p∧q)∨(p∧q)(p∨(p∧q)) ∧(q∨(p∧q)(p∨p)∧(p∨q)∧(q∨p) ∧(q∨q)1∧(p∨q)∧(p∧q)∧1(p∨q)∧(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(p→q)→(q∨p)(2)(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(p→q)→(q p)(p q)(q p)(p q)(q p)(p q)(q p)(q p)(p q)(p q)(p q)(p q)(p q)∑(0,2,3)主合取范式:(p→q)→(q p)(p q)(q p)(p q)(q p)(p(q p))(q(q p))1(p q)(p q) M1∏(1)(2) 主合取范式为:(p→q)q r(p q)q r(p q)q r0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p(q r))→(p q r)(p(q r))→(p q r)(p(q r))(p q r)(p(p q r))((q r))(p q r))1 11所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p q,(q r),r结论:p(4)前提:q p,q s,s t,t r结论:p q证明:(2)①(q r) 前提引入②q r ①置换③q r ②蕴含等值式④r 前提引入⑤q ③④拒取式⑥p q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t r 前提引入②t ①化简律③q s 前提引入④s t 前提引入⑤q t ③④等价三段论⑥(q t)(t q) ⑤置换⑦(q t)⑥化简⑧q ②⑥假言推理⑨q p 前提引入⑩p ⑧⑨假言推理(11)p q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p(q r),s p,q结论:s r证明①s 附加前提引入②s p 前提引入③p ①②假言推理④p(q r) 前提引入⑤q r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p q,r q,r s结论:p证明:①p 结论的否定引入②p﹁q 前提引入③﹁q ①②假言推理④¬r q 前提引入⑤¬r ④化简律⑥r¬s 前提引入⑦r ⑥化简律⑧r﹁r ⑤⑦合取由于最后一步r﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为,在(a)中为假命题,在(b)中为真命题。
离散数学课后习题答案

1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}⊆S,{{a},1,3,4}⊂R,R=S,{a}⊆S,{a}⊆R,φ⊆R,φ⊆{{a}}⊆R⊆E,{φ}⊆S,φ∈R,φ⊆{{3},4}。
解:{a}∈S ,{a}∈R ,{a,4,{3}} ⊆ S ,{{a},1,3,4 } ⊂ R ,R = S ,{a}⊆S ,{a}⊆ R ,φ⊆ R ,φ⊆ {{a}} ⊆ R ⊆ E ,{φ} ⊆ S ,φ∈R ,φ⊆ {{3},4 } 2写出下面集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A⊆B当且仅当ρ(A)⊆ρ(B);(2)ρ(A)⋃ρ(B)⊆ρ(A⋃B);(3)ρ(A)⋂ρ(B)=ρ(A⋂B);(4)ρ(A-B) ⊆(ρ(A)-ρ(B)) ⋃{φ}。
举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x⊆A。
由于A⊆B,故x⊆B,从而x∈ρ(B),于是ρ(A)⊆ρ(B)。
充分性,任取x∈A,知{x}⊆A,于是有{x}∈ρ(A)。
由于ρ(A)⊆ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A⊆B。
(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X⊆A或X⊆B∴X⊆(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ⊆ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ⊆ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X⊆A且X⊆B∴X⊆ A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ⊆ρ( A∩B)再证ρ( A∩B) ⊆ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y⊆ A∩B∴Y⊆A且Y⊆B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ⊆ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。
离散数学第2版课后习题答案

离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。
离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。
而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。
本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。
第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。
命题变量用字母表示,代表一个命题。
命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。
括号用于改变命题联结词的优先级。
习题2:列举命题逻辑的基本定律。
答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。
1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
集合的基本运算包括并、交、差和补等。
习题2:列举集合的基本定律。
答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。
第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。
答:命题逻辑的推理规则是用来推导命题的逻辑规则。
常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。
习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。
答:假言推理规则可以用来证明该命题。
根据假言推理规则,如果A成立,则B成立。
又根据假言推理规则,如果B不成立,则A不成立。
2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。
与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。
离散数学第四版课后答案(第2章)

离散数学课后答案第2章习题解答2.1 本题没有给出个体域,因而使用全总个体域. (1) 令x(是鸟F:)x(会飞翔.G:)xx命题符号化为xFx→∀.))G((x)((2)令x(为人.xF:)(爱吃糖G:)xx命题符号化为GxFx→⌝∀(x))()(或者xFx⌝∧∃(xG))(()(3)令xF:)(为人.xG:)(爱看小说.xx命题符号化为xF∃.Gx∧(x()))((4) x(为人.xF:)G:)(爱看电视.xx命题符号化为Fx⌝⌝∃.x∧(x))()G(分析 1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。
(1)-(4)中的)(x F 都是特性谓词。
2° 初学者经常犯的错误是,将类似于(1)中的命题符号化为))()((x G x F x ∧∀即用合取联结词取代蕴含联结词,这是万万不可的。
将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。
”因而符号化应该使用联结词→而不能使用∧。
若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。
”这显然改变了原命题的意义。
3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。
2.2 (1)d (a),(b),(c)中均符号化为)(x xF ∀其中,12)1(:)(22++=+x x x x F 此命题在)(),(),(c b a 中均为真命题。
(2) 在)(),(),(c b a 中均符号化为)(x xG ∃其中02:)(=+x x G ,此命题在(a )中为假命题,在(b)(c)中均为真命题。
(3)在)(),(),(c b a 中均符号化为)xH∃(x其中.1(ba中均为假命题,在(c)中为真H此命题在)(),xx5:)(=命题。
分析 1°命题的真值与个体域有关。
离散数学第四版 课后答案

离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
离散数学课后答案详细

第一章命题逻辑基本概念课后练习题答案4.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.5.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;6.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.7.因为p与q不能同时为真.13.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题1.11、(1)否(2)否(3)是,真值为0(4)否(5)是,真值为12、(1)P:天下雨 Q:我去教室┐P → Q(2)P:你去教室 Q:我去图书馆 P → Q(3)P,Q同(2) Q → P(4)P:2是质数 Q:2是偶数 P∧Q3、(1)0(2)0(3)14、(1)如果明天是晴天,那么我去教室或图书馆。
(2)如果我去教室,那么明天不是晴天,我也不去图书馆。
(3)明天是晴天,并且我不去教室,当且仅当我去图书馆。
习题1.21、(1)是(2)是(3)否(4)是(5)是(6)否2、(1)(P → Q) →R,P → Q,R,P,Q(2)(┐P∨Q) ∨(R∧P),┐P ∨ Q,R∧P,┐P,Q,R,P(3)((P → Q) ∧ (Q → P)) ∨┐(P → Q)),(P → Q) ∧(Q → P),┐(P → Q),P →Q,(Q → P),P → Q,P,Q,Q,P,P,Q3、(1)((P → Q) → (Q → P)) → (P → Q)(2)((P → Q) ∨ ((P → Q) → R))→ ((P → Q) ∧ ((P → Q) → R))(3)(Q → P∧┐P) → (P∧┐P → Q)4、(P → Q) ∨ ((P∧Q) ∨ (┐P∧┐Q)) ∧ (┐P∨Q)习题1.31、(1)I(P∨(Q∧R)) = I(P)∨(I(Q)∧I(R)) = 1∨(1∧0) = 1(2)I((P∧Q∧R)∨(┐(P∨Q)∧┐(R∨S))) = (1∧1∧0)∨(┐(1∨1)∧┐(0∨1)) = 0∨(0∧0) = 0(3)I((P←→R)∧(┐Q→S)) = (1←→0)∧(┐1→1) = 0∧1 = 0(4)I((P∨(Q→R∧┐P))←→(Q∨┐S)) = (1∨(1→(0∧┐1)))←→(1∨┐1) = 1←→1 =(5)I(┐(P∧Q)∨┐R∨((Q←→┐P)→R∨┐S)) = ┐(1∧1)∨┐0∨((1←→┐1)→(0∨┐1)) = 0∨1∨1 = 12、(1)P Q P→Q Q∧(P→Q) Q∧(P→Q)→P0 0 1 0 10 1 1 1 01 0 0 0 11 1 1 1 1(2)P Q R Q∧R ┐(P∨(Q∧R)) P∨Q P∨R (P∨Q)∧(P∨R) 原式0 0 0 0 1 0 0 0 00 0 1 0 1 0 1 0 00 1 0 0 1 1 0 0 00 1 1 1 0 1 1 1 01 0 0 0 0 1 1 1 01 0 1 0 0 1 1 1 01 1 0 0 0 1 1 1 01 1 1 1 0 1 1 1 0(3)P Q R P∨Q Q∧P P∨Q→Q∧P P∧┐R 原式0 0 0 0 0 1 0 00 0 1 0 0 1 0 00 1 0 1 0 0 0 10 1 1 1 0 0 0 11 0 0 1 0 0 1 11 0 1 1 0 0 0 11 1 0 1 1 1 1 11 1 1 1 1 1 0 03、(1)原式 <=> F→Q <=> T 原式为永真式(2)原式 <=> ┐T∨(┐(┐P∨Q)∨(┐┐Q∨┐P)) <=> (P∧┐Q)∨(Q∨┐P)<=> (P∧┐Q)∨┐(P∧┐Q) <=> T 原式为永真式(3)原式 <=> ┐(P∧Q) ←→┐(P∧Q) <=> T 原式为永真式(4)原式 <=> P∧(Q∨R) ←→ P∧(Q∨R) <=> T 原式为永真式(5)原式 <=> ┐(P∨┐Q)∨Q <=> (┐P∧Q)∨Q <=> Q 原式为可满足式(6)原式 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> T 原式为永真式(7)原式 <=> (┐P∨P∨Q)∧┐P <=> (T∨Q)∧┐P<=> T∧┐P <=> ┐P 原式为可满足式(8)原式 <=> ┐((P∨Q) ∧(┐Q∨R))∨(┐P∨R) <=> (P∧┐Q)∨(Q∧┐R)∨(┐P∨R) <=> ((P∧┐Q)∨┐P)∨((Q∧┐R)∨R)<=>(( P∨┐P)∧(┐Q∨┐P))∨(( Q∨R)∧(┐R∨R))<=> (┐Q∧┐P)∨( Q∨R) <=> T 原式为永真式4、(1)左 <=> ┐P∨┐Q∨P <=> ┐┐P∨(┐P∨┐Q) <=> 右(2)左 <=> ┐(┐P∨Q) <=> 右(3)左 <=> ┐(P∧Q)∨P <=> ┐P∨┐Q∨P <=> T∨┐Q <=> 右(4)左 <=> ┐(P→Q)∨┐(Q→P) <=> (P∧┐Q)∨(Q∧┐P) <=> 中<=> ((P∧┐Q)∨Q)∧((P∧┐Q)∨┐P)<=> (P∨Q)∧(┐Q∨Q)∧(P∨┐P)∧(┐Q∨┐P)<=> (P∨Q)∧┐(P∧Q) <=> 右(5)左 ( P Q) ( R Q) (P Q) Q 右5.(1)左 Q P Q 右(2)(P (Q R)) ((P Q) (P R))( P Q R) ( P Q) ( P R)(P Q R) (P Q) P R(P Q R) ((P P) ( Q P)) R(P Q R) ( Q P R)(P Q R) (P Q R)T故P (Q R) (P Q) (P R)(3).(P Q) (P P Q)( P Q) P (P Q)( P Q) ( P P) ( P Q)( P Q) ( P Q)T故P Q P P Q(4).((P Q) Q) P Q( ( P Q) Q) P Q(( P Q) Q) P Q( P Q) (Q Q) P Q(P Q) (P Q)T故(P Q) Q P Q(5).((P P) Q) ((P P) R) (Q R)(( T Q) ( T R)) Q R(Q R) Q RQ R Q RQ TT故((P P) Q) ((P P) R) Q R(6)左 (Q F) (R F)( Q F) ( R F)Q RRR Q 右6.(1)原式 ( P Q R)(2)原式 P Q P (P Q P)(3)原式 P (Q R P) P Q R ( P Q R)7.(1)原式 ( P Q P)(2)原式 ( P Q R) P Q ( ( P Q R) P Q)(3)原式 P Q (R P) (P Q (R P))8. (1) (P Q) (( P ( P Q)) R) P(2)(P Q R) ( P R)(3)(P F) (Q T)习题1.41.(1)原式 ( P Q) (( P Q) (Q P))( P Q) (Q P)(P Q) Q PQ P,既是析取范式又是合取范式(2)原式 (( P Q) ( P Q)) ( ( P Q) ( P Q))(P Q) (P Q) 析取范式P (Q Q)合取范式(3)原式 P Q S ( P Q)析取范式( P ( P Q)) Q SP Q S合取范式(4)原式 P P Q Q R既是析取范式又是合取范式2.(1)原式 P Q R为真的解释是:000,001,011,100,101,110,111故原式的主析取范式为:( P Q R) ( P Q R) ( P Q R) (P Q R) (P QR) (P Q R) (P Q R)(2)原式 (P Q) R(P Q (R R)) ((P P) R)(P Q R) (P Q R) (P Q) ( P R)(P Q R) (P Q R) (P (Q Q) R) ( P (Q Q) R)(P Q R) (P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R)(P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R)为真的解释是101,100,111,011,001(3)原式 ( P (Q R)) (P ( Q R))(( P (Q R)) P) (( P (Q R)) ( Q R))( P P) (Q P R) ( P Q R) (Q R Q R)(P Q R) ( P Q R)为真的解释是:000,111(4)原式 P P Q Q R P Q R为真的解释是:001,010,011,100,101,110,111故原式的主析取范式为:( P Q R) ( P Q R) ( P Q R) (P Q R) (P Q R) (P Q R) (P Q R)3.(1)原式 P Q P Q T主合取范式,无为假的解释。
(2)原式 (P Q R) ( P Q R) ( P Q R) ( P Q R)为真的解释为:111,011,001,000,故为假的解释为:010,100,101,110原式的主合取范式为:(P Q R) ( P Q R) ( P Q R) ( P Q R)(3)由 2.(2)知,原式为真的解释是:101,100,111,011,001,故为假的解释是:000,010,110.故原式的主合取范式为:(P Q R) (P Q R) ( P Q R)(4)由2.(4)知,原式为假的解释是:000,故原式的主合取范式为:P QR4.(1)左式 ( P Q) ( P R)( P Q (R R)) ( P (Q Q) R)( P Q R) ( P Q R) ( P Q R)右式 P (Q R) ( P Q) ( P R)( P Q R) ( P Q R) ( P Q R)故原式成立。
(2)左式(P∧┐Q)∨(P∧Q),右式(P∨P)∧(┐Q∨P) P∧(P∨┐Q) P (P∧┐Q)∨(P∧Q),故原式成立(3)左式(P∧Q)∧┐(P∧Q) F,主析取范式右式┐(P∨Q)∧(P∨Q) F,故原式成立(4)左式 T∨(P∧Q) T,主合取范式右式┐(P∧Q)∨(P∧Q) T,故原式成立习题1.51.(1)①P∧Q 前提②P ①,化简③P→(Q→R) 前提④Q→R ②,③,MP⑤Q ①,化简⑥R ④,⑤,MP(2)①R 前提②┐(Q∧R)前提③┐Q∨┐R ②,E11④┐Q ①,③,析取三段论⑤┐P∨Q 前提⑥┐P ④,⑤,析取三段论(3)①┐S 假设前提②S∨P 前提③P ①,②,析取三段论④(P→Q)∧(P→R)前提⑤P→Q ④,化简⑥P→R ⑤,化简⑦Q ③,⑤,MP⑧R ③,⑥,MP⑨Q∧R ⑦,⑧,合取引入⑩┐(Q∧R)前提⑪(Q∧R)∧┐(Q∧R)⑨,⑩,合取引入⑫F ⑪,E21故原推理成立(4)①┐R 假设前提②(P→Q)→R 前提③┐(P→Q)①,②,拒取式④P∧┐Q ③,E14,E10⑤Q∧T 前提⑥P∧┐Q∧Q∧T ④,⑤,合取引入⑦F ⑥,E21,E17故原推理成立2.(1)①P 附加前提②┐P∨Q 前提③Q ①,②,析取三段论④┐Q∨R 前提⑤R ③,④,析取三段论⑥R→S 前提⑦S ⑤,⑥,MP⑧P→S CP(2)①P 附加前提②P→Q 前提③Q ①,②,MP④P∧Q ①,③,合取引入⑤P→P∧Q CP(3)①P∧Q 附加前提②P ①,化简③P∨Q ②,附加规则④P∨Q→R 前提⑤R ③,④,MP⑥P∧Q→R CP(4)①P 附加前提②Q 附加前提③P→(Q→R)前提④Q→R ①,③,MP⑤R ②,④,MP⑥Q→(R→S)前提⑦R→S ②,⑥,MP⑧S ⑤,⑦,MP⑨P→Q→R CP3.(1)①┐(┐P)假设前提②P ①,E1③P→┐Q 前提④┐Q ②,③,MP⑤Q∨┐R 前提⑥┐R ④,⑤,析取三段论⑦R∧┐S 前提⑧┐R∧R∧┐S ⑥,⑦,合取引入⑨F ⑧,E21,E17故原推理成立(2)①┐(R∨S)假设前提②┐R∧┐S ①,E10③┐R ②,化简④┐S ②,化简⑤P→R 前提⑥Q→S 前提⑦┐P ③,⑤,拒取式⑧┐Q ④,⑥,拒取式⑨┐P∧┐Q ⑦,⑧,合取引入⑩┐(P∨Q)⑨,E10⑪P∨Q 前提⑫┐(P∨Q)∧(P∨Q)⑩,⑪,合取引入⑬F ⑫,E21故原推理成立(3)1.┐(┐S) 假设前提2.S 1,E13.S→┐Q 前提4.┐Q 2, 3,MP5.┐R Q 前提6.(┐R→Q) ∧(R→┐Q) 5,E157.┐R→Q 6,化简8.R 4, 7,拒取式9.┐R 前提10.R∧┐R 8,9,合取引入11.F 10,E21故反推原理正确(4) 1.┐(P Q) 假设前提2.┐(P→Q)∨┐(Q→P) 1,E15,E113.┐(P→Q) →┐(R∨S) 前提4. (Q→P) ∨┐R 前提5.┐(Q→P) →┐R 4,E146.┐(R∨S) ∨┐R 2,3,5构造二难性7.┐((R∨S) ∧R) 6,E118.┐R 7,E139.R 前提10.┐R∧R 8,9合取引入11.F 10,E21故反推原理正确4 (1)先证├┐┐A→A①┐┐A 附加前提②┐┐A→(┐A→┐┐┐A) P31例1.5.7中用┐A置换用┐┐┐A置换A③(┐A→┐┐┐A) ①,②,MP④(┐A→┐┐┐A) →(┐┐A→A) L3中用┐┐A置换B⑤┐┐A→A ③,④,MP⑥A ①,⑤,MP⑦┐┐A→A 演绎定理再证├A→┐┐A①┐┐┐A→┐A 上述结论中用┐A置换A②(┐┐┐A→┐A) →(A→┐┐A) L3中用┐┐A置换A,用A置换B③A→┐┐A ①,②,MP最后证├((B→A) →(┐A→┐┐B))①B→A 附加前提②┐┐B→B 上述结论③┐┐B→A ①,②,HS④A→┐┐A 上述结论⑤┐┐B→┐┐A ③,④,HS⑥(┐┐B→┐┐A) →(┐A→┐B) L3中用┐B置换A,用┐A 置换B⑦┐A→┐B ⑤,⑥,MP⑧(B→A) →(┐A→┐B) 演绎定理(2)先证├┐(A→B) →A①┐(A→B) 附加前提②┐A→(A→B) P31,例1.5.7③(┐A→(A→B)) →(┐(A→B) →┐┐A) (1)④┐(A→B) →┐┐A ②,③,MP⑤┐┐A ①,④,MP⑥┐┐A→┐A 上述结论⑦A ⑤,⑥,MP⑧┐(A→B) →A 演绎定理再证├┐(A→B) →(B→A)①┐(A→B) →A 上述结论②A→(B→A) L1③┐(A→B) →(B→A) ①,②,HS习题1.61. P→Q┐P∨Q(P↓P) ∨Q┐((P↓P) ↓Q) ((P↓P) ↓Q)↓((P↓P) ↓Q)(P∨Q) ∧R┐(┐(P∨Q) ∨┐R) ┐((P↓Q) ∨(R↓R))(P↓Q) ↓(R↓R)2. P∧(Q→R) P∧(┐Q∨R) Û(P∧┐Q) ∨(P∧R) Û┐(P↑┐Q) ∨┐(P↑R) Û┐((P↑(Q↑Q)) ∧(P↑R)) Û(P↑(Q↑Q)) ↑(P↑R)3.(1)左式ÛP∧QÛ┐(┐P∨┐Q) Û右式(2)左式ÛP∨QÛ┐(┐P∧┐Q) Û右式4.(1)否,见P33,例1.6.1(2)否,见P33,例1.6.1(3)是,P→Q Û┐(P Q),P∧QÛ┐(┐P∨┐Q) Û┐(P→┐Q) ÛP ┐Q, P∨QÛ┐P→QÛ┐(┐P Q),P QÛ(P→Q) ∧(Q→P) Û┐(┐(P→Q) ∨┐(Q→P)) Û┐((P→Q) →┐(Q→P)) Û(P→Q) ┐(Q→P) Û┐(P Q) (Q P){┐, }中去掉┐,无法表示否定,去掉,无法表示二元运算(4 ) 否。