化工原理 第一章 概述、流体静力学
2 化工原理_刘雪暖_第1章流体流动流体静力学

⒉压力的单位及换算:
1atm=1.013105 Pa=10.33 mH2O=760mmHg 1at=9.81104Pa=10mH2O=735.6mmHg=1kgf/cm2 1atm=1.033at 1bar=1105Pa 1kgf/m2=1mmH2O
1.2 流体静力学 ⒊压力的表示方法:
以绝对真空(0atm)为基准:绝对压力,真实压力 以当地大气压为基准:表压或真空度 绝压>大气压:压力表→表压力 表压=绝压-大气压力 绝压<大气压:真空表→真空度 真空度=大气压力-绝压 注:①大气压力应从当地气压计上读得; ②对表压和真空度应予以注明。
整理后得:
P P1 P2 ( g ) gR gR
(ρ>>ρg)
1.2 流体静力学 ⒊斜管压差计(Inclined manometer)
采用倾斜 U 型管可在测量较小的压差 p 时, 得到较大的读数 R1 值。
压差计算式:
p 1 p 2 R 1 sin 0 g
1.2 流体静力学
(二)液面测量
• 解:
pa pb p a p o gh
h
p b p o o gR
2 . 72 m
o R
13600 1250 0 . 2
1.2 流体静力学
(三)液封高度的计算
如各种气液分离器的后面、 气体洗涤塔底以及气柜等, 为了防止气体泄漏和安全等 目的,都要采用液封(或称 水封)。
根据流体静力学基本方程式,可得:
P A P1 gZ 1
PB P2 gZ 2 0 gR
P1 gZ 1 P2 gZ
2
0 gR
化工原理-1章流体流动

yi为各物质的摩尔分数,对于理想气体,体积分数与摩尔分数相等。
②混合液体密度计算
假设液体混合物由n种物质组成,混合前后体积
不变,各物质的质量百分比分别为ωi,密度分 别为ρi
n 1 2 混 1 2 n
1
例题1-1 求甲烷在320 K和500 kPa时的密度。
第一节 概述
流体: 指具有流动性的物体,包括液体和气体。
液体:易流动、不可压缩。 气体:易流动、可压缩。 不可压缩流体:流体的体积不随压力及温度变化。
特点:(a) 具有流动性 (b) 受外力作用时内部产生相对运动
流动现象:
① 日常生活中
② 工业生产过程中
煤气
填料塔 孔板流量计
煤气
水封
泵 水池
水
煤 气 洗 涤 塔
组分黏度见---附录9、附录10
1.2.1 流体的压力(Pressure) 一.定义
流体垂直作用于单位面积上的力,称为流体 的压强,工程上一般称压力。
F [N/m2] 或[Pa] P A
式中 P──压力,N/m2即Pa(帕斯卡);
F──垂直作用在面积A上的力,N;
A──作用面积,m2。
工程单位制中,压力的单位是at(工程大气压)或kgf/cm2。 其它常用的压力表示方法还有如下几种: 标准大气压(物理大气压)atm;米水柱 mH2O; 毫米汞柱mmHg; 流体压力特性: (1)流体压力处处与它的作用面垂直,并总是指向流体 的作用面。
液体:T↑,μ↓(T↑,分子间距↑,范德华力↓,内摩擦力↓) 气体:T↑,μ↑(T↑,分子间距有所增大,但对μ影响不大, 但T↑,分子运动速度↑,内摩擦力↑)
压力P 对气体粘度的影响一般不予考虑,只有在极高或极 低的压力下才考虑压力对气体粘度的影响。
化工原理第一章 流体流动

例1-10 20℃的水在内径为 50mm的管内流动,流速为 2m/s,是判断管内流体流动的 型态。
三.流体在圆管内的速度分布
(a)层流
(b)湍流
u umax / 2 u 0.82umax
hf
le
d
u2 2
三.管内流体流动的总摩擦阻力损失计算 总摩擦阻力损失 =直管摩擦阻力损失+局部摩擦阻力损失
hf hf 直 hf局
l u2 ( le u2 z u2 )
d2 d 2
2
[
(
l
d
l
e
)
z
]
u2 2
管内流体流动的总摩擦阻力损失计算 直管管长 管件阀件当量长度法
hf
l
制氮气的流量使观察瓶内产生少许气泡。 已知油品的密度为850 kg/m3。并铡得水 银压强计的读数R为150mm,同贮槽内的 液位 h等于多少?
(三)确定液封高度 h p ρg
H 2O
气体 压力 p(表压)
为了安全, 实际安装
水 的管子插入 液面的深度
h 比上式略低
第二节 流体流动中的基本方程式
截面突然变化的局部摩擦损失
突然扩大
突然缩小
A1 / A2 0
z (1 A1 )2
A2
z 0.5(1 A2 )2
A1
当流体从管路流入截面较 大的容器或气体从管路排 到大气中时z1.0
当流体从容器进入管的入 口,是自很大截面突然缩 小到很小的截面z=0.5
局部阻力系数法
hf
z
u2 2
化工原理第一章流体力学基础

第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP
化工原理第一章 流体流动

§1.3 流体流动的基本方程
质量守恒 三大守恒定律 动量守恒 能量守恒
§1.3.1 基本概念
一.稳态流动与非稳态流动 流动参数都不随时间而变化,就称这种流动为稳态流 动。否则就称为非稳态流动。 本课程介绍的均为稳态流动。
§1.3.1 基本概念
二、流速和流量
kg s 质量流量,用WS表示, 流量 3 体积流量,用 V 表示, m s S
=0 的流体
位能 J/kg
动能 静压能 J/kg J/kg
流体出 2 2
实际流体流动时:
2 2 u1 p1 u2 p gz1 we gz2 2 wf 2 2
摩擦损失 J/kg 永远为正
流体入 ------机械能衡算方程(柏努利方程) 1
z2
有效轴功率J/kg
z1 1
二、 液体的密度
液体的密度基本上不随压强而变化,随温度略有改变。 获得方法:(1)纯液体查物性数据手册
(2)液体混合物用公式计算:
液体混合物:
1
m
xwA
A
xwB
B
xwn
n
三、气体的密度
气体是可压缩流体,其值随温度和压强而变,因此 必须标明其状态。当温度不太低,压强不太高,可当作理
想气体处理。
理想气体密度获得方法: (1)查物性数据手册 (2)公式计算: 或
注:下标0表示标准状态。
对于混合气体,也可用平均摩尔质量Mm代替M。
混合气体的密度,在忽略混合前后质量变化条件下, 可用下式估算(以1 m3混合气体为计算基准):
m A x VA B x VB n x Vn
2
2
气体
化工原理第一章主要内容

化⼯原理第⼀章主要内容第⼀章流体流动流体:⽓体和液体统称流体。
流体的特点:具有流动性;其形状随容器形状⽽变化;受外⼒作⽤时内部产⽣相对运动。
质点:⼤量分⼦构成的集团。
第⼀节流体静⽌的基本⽅程静⽌流体的规律:流体在重⼒作⽤下内部压⼒的变化规律。
⼀、流体的密度ρ1. 定义:单位体积的流体所具有的质量,kg/m 3。
2. 影响ρ的主要因素液体:ρ=f(t),不可压缩流体⽓体:ρ=f(t ,p),可压缩流体3.⽓体密度的计算4.混合物的密度5.与密度相关的⼏个物理量⽐容υ⽐重(相对密度) d ⼆、压⼒p 的表⽰⽅法定义:垂直作⽤于流体单位⾯积上的⼒ 1atm=760mmHg=1.013×105Pa=1.033kgf/cm 2 =10.33mH2O 1at=735.6mmHg=9.807×105Pa =1kgf/cm 2 =10mH20 表压 = 绝对压⼒ - ⼤⽓压⼒真空度 = ⼤⽓压⼒ - 绝对压⼒三、流体静⼒学⽅程特点:各向相等性;内法线⽅向性;在重⼒场中,同⼀⽔平⾯上各点的静压⼒相等,但其值随着点的位置⾼低变化。
1、⽅程的推导 2、⽅程的讨论液体内部压强 P 随 P 0 和 h ⽽改变的; P ∝h ,静⽌的连通的同⼀种液体内同⼀⽔平⾯上各点的压强相等;当P 0改变时,液体内部的压⼒也随之发⽣相同的改变;⽅程成⽴条件为静⽌的、单⼀的、连续的不可压缩流体;h=(P-P 0)/ρg ,液柱⾼可表⽰压差,需指明何种液体。
3、静⼒学⽅程的应⽤ (1)压⼒与压差的测量 U 型管压差计微差压差计(2)液位的测定(3)液封⾼度的计算 m Vρ=(),f t p ρ=4.220M =ρ000T p p T ρρ=PM RT ρ=12121n m n a a a ρρρρ=+++1122......m n nρρ?ρ?ρ?=+++mm PM RTρ=1/νρ=41/,gh p p ρ+=0()12A C P P gR ρρ-=-() gz21A B A gR P P ρρρ+-=-第⼆节流体流动的基本⽅程⼀、基本概念(⼀)流量与流速1.流量:单位时间流过管道任⼀截⾯的流体量。
化工原理知识点总结复习重点(完美版)

无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:
离
心泵的的启动流程:
叶
轮
吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能
泵
轴
排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是
化工原理第一章流体流动知识点总结

第一章流体流动一、流体静力学:压强,密度,静力学方程二、流体基本方程:流速流量,连续性方程,伯努利方程三、流体流动现象:牛顿粘性定律,雷诺数,速度分布四、摩擦阻力损失:直管,局部,总阻力,当量直径五、流量的测定:测速管,孔板流量计,文丘里流量计六、离心泵:概述,特性曲线,气蚀现象和安装高度8■绝对压力:以绝对真空为基准测得的压力。
■表压/真空度 :以大气压为基准测得的压力。
表 压 = 绝对压力 - 大气压力真空度 = 大气压力 - 绝对压力1.1流体静力学1.流体压力/压强表示方法绝对压力绝对压力绝对真空表压真空度1p 2p 大气压标准大气压:1atm = 1.013×105Pa =760mmHg =10.33m H 2O112.流体的密度Vm =ρ①单组分密度),(T p f =ρ■液体:密度仅随温度变化(极高压力除外),其变化关系可从手册中查得。
■气体:当压力不太高、温度不太低时,可按理想气体状态方程计算注意:手册中查得的气体密度均为一定压力与温度下之值,若条件不同,则需进行换算。
②混合物的密度■ 混合气体:各组分在混合前后质量不变,则有nn 2111m φρφρφρρ+++= RTpM m m=ρnn 2211m y M y M y M M +++= ■混合液体:假设各组分在混合前后体积不变,则有nmn12121w w w ρρρρ=+++①表达式—重力场中对液柱进行受力分析:液柱处于静止时,上述三力的合力为零:■下端面所受总压力 A p P 22=方向向上■上端面所受总压力 A p P 11=方向向下■液柱的重力)(21z z gA G -=ρ方向向下p 0p 2p 1z 1z 2G3.流体静力学基本方程式g z p g z p 2211+=+ρρ能量形式)(2112z z g p p -+=ρ压力形式②讨论:■适用范围:适用于重力场中静止、连续的同种不可压缩性流体;■物理意义:在同一静止流体中,处在不同位置流体的位能和静压能各不相同,但二者可以转换,其总和保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019/8/3
1.1.4 连续介质假定
从微观讲,流体是由大量的彼此之间有一定间隙的单个分 子所组成,而且分子总是处于随机运动状态。
工程上,在研究流体流动时,常从宏观出发,将流体视为 由无数流体质点(或微团)组成的连续介质。
质点:是指由大量分子构成的微团,其尺寸远小于设备尺 寸,但却远大于分子自由程。这些质点在流体内部紧紧相连 ,彼此间没有间隙,即流体充满所占空间,为连续介质。
2019/8/3
2019/8/3
1.2 流体静力学
1.2.1 流体的密度 1、密度定义
单位体积的流体所具有的质量,ρ; SI单位kg/m3。
m
V
ρ---流体的密度,kg/m3; m---流体的质量,kg; V---流体的体积,m3。
2019/8/3
2、影响ρ的主要因素
f t, p
i 1
2019/8/3
4、液体的密度
基本上不随压强而变化,随温度略有改变。
常见纯液体的密度值可查有关手册(注意所指温度)。
混合液体的密度,在忽略混合体积变化条件下,可用下式 估算(以1kg混合液为基准),即:
1 w1 w2 ......+ wn n wi
m 1 2
n i1 i
2019/8/3
压 力 表
2019/8/3
2019/8/3
2019/8/3
2019/8/3
2019/8/3
弹簧压力表的内部结构
1.2.3 流体静力学基本方程式 1、方程的推导
在1-1’截面受到垂直向下的压力 F1 p1A
: 在2-2’ 截面受到垂直向上的压力:F2 p2 A
小液柱本身所受的重力:
p1 p2 20% p1
液压传动 所基于的最 基本的原理 就是巴斯噶 原理,就是 说,液体各 处的压强是 一致的。
2019/8/3
液压千斤顶
例:图中开口的容器内盛有油和水,油层高度 h1=0.7m,密度ρ1=800 kg/m3 ,水层高度h2=0.6m,密 度为ρ2 =1000kg/m3 (1)判断下列两关系是 否成立?
2019/8/3
1.1.2 流体的特征 1、流动性,即抗剪抗张的能力很小;
2、无固定形状,易变形(随容器形状),气体能充 满整个密闭容器空间; 3、流动时产生内摩擦,从而构成了流体流动内部结 构的复杂性。
2019/8/3
1.1.3 作用在流体上的力
外界作用于流体上的力有两种,即质量力和表面力。
1、质量力(又称体积力)
表明在重力作用下,静止液体内部压强的变化规律。
2019/8/3
2、方程的讨论
(1)当液体的种类一定时,液体内部压强P是随P0 和h的改变而改变的,即:
P f P0 , h
(2)当容器液面上方压强P0一定时,静止液体内部 的压强P仅与垂直距离h有关,即:
Ph
结论:处于同一水平面上各点的压强相等。
W mg Vg Az1 z2 g
因为小液柱处于静止状态,
F 0
F2 F1 Az1 z1 g 0
2019/8/3
两边同时除A
F2 A
F1 A
gz1
z2
0
p2 p1 gz1 z2 0
p2 p1 gz1 z2
(2)计算水在玻璃管内的高度h
PA PA'
PA和PA’又分别可用流体静力学方程表示 设大气压为Pa
PA Pa 油gh1 水 gh2 PA' 水 gh Pa
2019/8/3
PA PA'
Pa 油gh1 水gh2 Pa 水gh
8000.7 10000.6 1000h
度。
表压强=绝对压强-大气压强 真空度=大气压强-绝对压强=-表压
2019/8/3
表压真空度演示.swf
2019/8/3
绝对压强、真空度、表压强的关系图
真空度 B
绝对压强
A 表 压 强 大气压强线
绝 对 压 强
绝对零压线
当用表压或真空度来表示压强时,应分别注明。 如:4×103Pa(真空度)、200KPa(表压)。
2019/8/3
(3)当液面上方的压强改变时,液体内部的压强也 随之改变,即:液面上所受的压强能以同样大小传 递到液体内部的任一点。【帕斯卡(巴斯噶)原理 】【如:液压千斤顶】
(4)从流体静力学的推导可以看出,它们只能用于 静止的连通着的同一种流体的内部,对于间断的并 非单一流体的内部则不满足这一关系。
2019/8/3
2 、压强的单位
SI制单位:N/m2,即Pa。 其它常用单位有: atm(标准大气压)、工程大气压kgf/cm2、bar;流体柱高度
(mmH2O,mmHg等)。
换算关系为:
1atm 1.033kgf / cm2 760mmHg 10.33mH2O 1.0133bar 1.0133105 Pa
2019/8/3
② 微差压差计的测压原理
可认为即使U管内指示液A 的液面差R 较大,但两扩大室 内指示液C的液面变化微小, 可近似认为维持在同一水平面 。 根据流体静力学方程可以导出:
P1 P2 A C gR
—— 微 差 压 差 计 两 点 间 压 差 计算公式
2019/8/3
2019/8/3
③当P1-P2值较小时,R值也较小,若希望读数R清
晰,可采取措施是:使用倾斜U型管压差计、 微差 压差计。
④当P1-P2值较大时,R值也很大,为了测量的方
便,可采取措施是:使用复式压差计。
2019/8/3
(2)倾斜U型管压差计
当所测量的流体压力
差较小时,可将压差计
倾斜放置,即为斜管压
化工原理 第一章 概述、流体 静力学
2019/8/3
1.1 流体概述
1.1.1 流体的定义和分类 1、定义
凡能在外力的作用下,任意改变形状的物体。 气体(含蒸汽)和液体统称流体。
2019/8/3
2、分类
(1)按状态分为气体、液体和超临界流体。 (2)按可压缩性可分为不可压缩流体和可压缩流体。
(3)依是否可忽略分子间作用力分为理想流体和粘性(实际 )流体。 (4)按流变特性(剪力与速度梯度之间关系)分牛顿型和非 牛顿型流体。
操作条件下(T, P)下的密度:
2019/8/3
0
p p0
T0 T
或
pM
RT
对于混合气体,可用平均摩尔质量Mm代替M。
Mm=M1y1+M2y2+...+Miyi+...+Mnyn
Mi ---各组分的摩尔质量; yi ---各组分的摩尔分率(体积分率或压强分率)。
或
n
m 1 y1 2 y2 ... n yn i yi
质量力作用于流体的每个质点上,并与流体的质量成正比 ,对于均质流体也与流体的体积成正比。
流体在重力场Biblioteka 受到重力、在离心力场中受到的离心力都 是典型的质量力。
2019/8/3
2、表面力(又称接触力或机械力)
表面力与流体的表面积成正比。
作用于流体中任一微小表面上的力又可分为两类,即垂直 于表面的力和平行于表面的力。前者为压力,后者为剪力( 切力)。
pA' p2 gm 0 gR
整理得:
p1 0 g(m R) p2 gm 0 gR
p1 p2 (0 )gR ——两点间压差计算公式
2019/8/3
几点讨论 ①当被测的流体为气体时,ρ0>>ρ,ρ可忽略,则:
P1
P2
gR 0
②若U型管的一端与被测流体相连接,另一端与大 气相通,那么读数R就反映了被测流体的绝对压强与 大气压之差,也就是被测流体的表压。
2019/8/3
微差压差计测压原理.swf
例:用U型管压差计测量气体在水平管路上两 截面的压强差。指示液为水,其密度ρ0为 1000kg/m3,读数为12mm。为了放大读数, 改用微差压差计,指示液A是含40%酒精的水 溶液,密度ρA为920kg/m3,指示液C是煤油,密 度ρC为850kg/m3。问读数可以放大到多少? 若两者之读数误差均为2mm,问相对误差各 为多少?
h 1.16m
2019/8/3
1.2.4 流体静力学方程式的应用 1、压强与压强差的测量 (1)U型管压差计 ①U型管压差计的构造
透明的U型玻璃管; 刻度尺; 指示液。
2019/8/3
2019/8/3
U型管压差计测压原理.swf
②U型管压差计的测压原理
∵
pA pA'
而 pA p1 g(m R)
2019/8/3
(3) 复式压差计 当系统内两处压强差很大
时,将会导致U型管内指示 液的高度差很大,给读数 带来困难。此时,可使用 复式压差计。 压差计算公式为:
pa pb g(Hg H2O )[(h1 h2 ) (h3 h4 )]
ρi ---各纯组分的密度,kg/m3; wi ---各纯组分的质量分率。
2019/8/3
5、与密度相关的几个物理量
(1)比体积(比容):单位质量的流体所具有的体积,用v 表示,单位为m3/kg。
在数值上: v V 1
m
(2)比重(相对密度):某物质的密度与4℃下的水的密度的比值 ,用 d 表示。
1工程大气压 1kgf / cm2 735.6mmHg 10mH2O 0.9807bar 9.807 104 Pa
2019/8/3
3、压强的基准
(1)绝对零压(真空) 以绝对零压为基准所测得的压强称为绝对压强。