初四数学试题模拟e分析
山东省济宁市2021-2022学年中考四模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A.监测点A B.监测点B C.监测点C D.监测点D2.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0D.x≠13.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②BD=7③S平行四边形ABCD=AB•AC④OE=14AD⑤S△APO=312,正确的个数是()A.2 B.3 C.4 D.54.如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.5.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)6.如图1所示,甲、乙两车沿直路同向行驶,车速分别为20 m/s和v(m/s),起初甲车在乙车前a (m)处,两车同时出发,当乙车追上甲车时,两车都停止行驶.设x(s)后两车相距y (m),y与x的函数关系如图2所示.有以下结论:①图1中a的值为500;②乙车的速度为35 m/s;;③图1中线段EF应表示为5005x④图2中函数图象与x轴交点的横坐标为1.其中所有的正确结论是()A.①④B.②③C.①②④D.①③④7.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A.B.C.D.8.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个964( )A.-8 B.-4 C.-2 D.不存在10.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.45二、填空题(本大题共6个小题,每小题3分,共18分)11.方程233x x=-的解是.12.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.13.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ绕点P 旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.14.函数y=213xx+-的自变量x的取值范围是_____.15.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.16.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价几何?”意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x人,则可列方程为__________.三、解答题(共8题,共72分)17.(8分)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,求∠OFA的度数18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=mx(m≠0)分别交于点P,与y轴、x轴分别交于点A和点B,且cos∠ABO=55,过P点作x轴的垂线交于点C,连接AC,(1)求一次函数的解析式.(2)若AC是△PCB的中线,求反比例函数的关系式.20.(8分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.58B.38C.1116D.1221.(8分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P 为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为409时,请通过计算说明圆P与直线DC的位置关系.22.(10分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.(12分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB=2,AE=2,求∠BAD的大小.24.元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题解析:A、由监测点A监测P时,函数值y随t的增大先减少再增大.故选项A错误;B、由监测点B监测P时,函数值y随t的增大而增大,故选项B错误;C、由监测点C监测P时,函数值y随t的增大先减小再增大,然后再减小,选项C正确;D、由监测点D监测P时,函数值y随t的增大而减小,选项D错误.故选C.2、D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.3、D【解析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE 是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=12AB=12,OE∥AB,根据勾股定理计算2=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=12,12POEAOPSS=,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=12AB=12,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,=∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,=,∴,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=12BC,BC=AD,∴OE=12AB=14AD,故④正确;⑤∵四边形ABCD是平行四边形,∴∴S△AOE=S△EOC =12OE•OC=12×12×3328=,∵OE∥AB,∴12 EP OEAP AB==,∴12POEAOPSS=,∴S△AOP=23S△AOE=2338⨯=312,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.4、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD 的面积的表达式是解题的关键.5、C【解析】根据题意知小李所对应的坐标是(7,4).故选C.6、A【解析】分析:①根据图象2得出结论; ②根据(75,125)可知:75秒时,两车的距离为125m,列方程可得结论; ③根据图1,线段的和与差可表示EF的长;④利用待定系数法求直线的解析式,令y=0可得结论.详解:①y是两车的距离,所以根据图2可知:图1中a的值为500,此选项正确;②由题意得:75×20+500-75y=125,v=25,则乙车的速度为25m/s,故此选项不正确;③图1中:EF=a+20x-vx=500+20x-25x=500-5x.故此选项不正确;④设图2的解析式为:y=kx+b,把(0,500)和(75,125)代入得:50075125bk b=⎧⎨+=⎩,解得5500kb=-⎧⎨=⎩,∴y=-5x+500,当y=0时,-5x+500=0,x=1,即图2中函数图象与x轴交点的横坐标为1,此选项正确;其中所有的正确结论是①④;故选A.点睛:本题考查了一次函数的应用,根据函数图象,读懂题目信息,理解两车间的距离与时间的关系是解题的关键.7、A【解析】由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选A.8、C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=∠C,∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.9、C【解析】分析:首先求出的值,然后根据立方根的计算法则得出答案.详解:∵8=-,()328-=-, ∴的立方根为-2,故选C .点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键. 10、B【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin 1B B +=,∴sinB=35,∵tanB=sin cos B B =34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba 故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、x=1.【解析】根据解分式方程的步骤解答即可.【详解】去分母得:2x=3x ﹣1,解得:x=1,经检验x=1是分式方程的解,故答案为x=1.【点睛】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.12、20 cm .【解析】将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离.根据勾股定理,得A B 20'=(cm ).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.13、1【解析】连接AD,根据PQ∥AB可知∠ADQ=∠DAB,再由点D在∠BAC的平分线上,得出∠DAQ=∠DAB,故∠ADQ=∠DAQ,AQ=DQ.在Rt△CPQ中根据勾股定理可知,AQ=11-4x,故可得出x的值,进而得出结论.【详解】连接AD,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.14、x≥﹣12且x≠1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可.详解:根据题意得2x+1≥0,x-1≠0,解得x≥-12且x≠1.故答案为x≥-12且x≠1.点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.15、52或10【解析】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图①,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在Rt△EQF中,(4-x)2+22=x2,所以x=52.(2)如图②,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在Rt△EQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=52或10.16、8374x x -=+【解析】根据每人出8钱,则剩余3钱;如果每人出7钱,则差4钱,可以列出相应的方程,本题得以解决【详解】解:由题意可设有x 人,列出方程:8374x x +﹣=,故答案为8374x x +﹣=.【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.三、解答题(共8题,共72分)17、25°【解析】先利用正方形的性质得OA=OC ,∠AOC=90°,再根据旋转的性质得OC=OF ,∠COF=40°,则OA=OF ,根据等腰三角形的性质得∠OAF=∠OFA ,然后根据三角形的内角和定理计算∠OFA 的度数.【详解】解:∵四边形OABC 为正方形,∴OA=OC ,∠AOC=90°,∵正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,∴OC=OF ,∠COF=40°,∴OA=OF ,∴∠OAF=∠OFA ,∵∠AOF=∠AOC+∠COF=90°+40°=130°,∴∠OFA=12(180°-130°)=25°. 故答案为25°.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.18、无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x<1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.19、(2)y=2x+2;(2)y=4x.【解析】(2)由cos∠ABO 5tan∠ABO=2,从而可得到k=2;(2)先求得A、B的坐标,然后依据中点坐标公式可求得点P的坐标,将点P的坐标代入反比例函数的解析式可求得m的值.【详解】(2)∵cos∠ABO=55,∴tan∠ABO=2.又∵OA=2∴OB=2.B(-2,0)代入y=kx+2得k=2 ∴一次函数的解析式为y=2x+2.(2)当x=0时,y=2,∴A(0,2).当y=0时,2x+2=0,解得:x=﹣2.∴B(﹣2,0).∵AC是△PCB的中线,∴P(2,4).∴m=xy=2×4=4,∴反例函数的解析式为y=4x.【点睛】本题主要考查的是反比例函数与一次函数的交点、锐角三角函数的定义、中点坐标公式的应用,确定一次函数系数k =tan∠ABO是解题的关键.20、A【解析】分析:根据题意画出树状图,从而可以得到两次两次抽出的卡片所标数字不同的情况及所有等可能发生的情况,进而根据概率公式求出两次抽出的卡片所标数字不同的概率.详解:由题意可得,两次抽出的卡片所标数字不同的概率是:105 168=,故选:A.点睛:本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即m Pn =.21、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=259,得到PA=AB-PB=209,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=169,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,则四边形AECD是矩形,∴CE=AD=1,AE=CD=3,∵AB=BC,∴BE=AB-1,在Rt△ABE中,∵AB2=AE2+BE2,∴AB2=32+(AB-1)2,解得:AB=5;(2)过P作PF⊥BQ于F,∴BF=12BQ=209,∴△PBF∽△ABE,∴PB BF AB BE=,∴20954 PB=,∴PB=259,∴PA=AB-PB=209,过P作PG⊥CD于G交AE于M,∴GM=AD=1,∵DC⊥BC∴PG∥BC∴△APM∽△ABE,∴AP PM AB BE=,∴20954PM=,∴PM=169,∴PG=PM+MG=259=PB,∴圆P与直线DC相切.【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.22、(1)100;(2)补图见解析;(3)570人.【解析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)见解析;(2)60°.【解析】(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=AE=,∠BAF=2∠BAE,AE⊥BF.然后解直角△ABG,求出∠BAG=30°,那么∠BAF=2∠BAE=60°.【详解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)连结BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【点睛】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.24、(1)14;(2)116【解析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.。
山东省潍坊联考2024届中考四模数学试题含解析

山东省潍坊联考2024届中考四模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%2.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB 的度数是( )A .90°B .60°C .45°D .30°3.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3 B .a <﹣3C .a >3D .a≥3 4.下列计算正确的是( )A .a 2•a 3=a 5B .2a+a 2=3a 3C .(﹣a 3)3=a 6D .a 2÷a=2 5.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=( )A .2:5B .2:3C .3:5D .3:26.下列各数中是无理数的是()A.cos60°B.·1.3C.半径为1cm的圆周长D.387.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.63B.62C.33D.328.下列各数中,最小的数是()A.0 B.2C.1D.π-9.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=1810.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°二、填空题(本大题共6个小题,每小题3分,共18分)11.化简:a ba b b a+--22=__________.12.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C 的坐标(﹣54),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A 匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN 的面积为S .则:AB 的长是_____,BC 的长是_____,当t =3时,S 的值是_____.13.如图△ABC 中,AB=AC=8,∠BAC=30°,现将△ABC 绕点A 逆时针旋转30°得到△ACD ,延长AD 、BC 交于点E ,则DE 的长是_____.14.分解因式2x 2﹣4x+2的最终结果是_____.15.计算2x 3·x 2的结果是_______.16.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.三、解答题(共8题,共72分)17.(8分)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y =,我们规定:如果存在点P ,使MNP ∆是以线段MN 为直角边的等腰直角三角形,那么称点P 为点M 、N 的“和谐点”.(1)已知点A 的坐标为()1,3,①若点B 的坐标为()3,3,在直线AB 的上方,存在点A ,B 的“和谐点”C ,直接写出点C 的坐标;②点C 在直线x =5上,且点C 为点A ,B 的“和谐点”,求直线AC 的表达式.(2)⊙O 的半径为r ,点()1,4D 为点()1,2E 、(),F m n 的“和谐点”,且DE =2,若使得DEF ∆与⊙O 有交点,画出示意图直接写出半径r 的取值范围.18.(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m ,平行于墙的边的费用为200元/m ,垂直于墙的边的费用为150元/m ,设平行于墙的边长为x m 设垂直于墙的一边长为y m ,直接写出y 与x 之间的函数关系式;若菜园面积为384m 2,求x 的值;求菜园的最大面积.19.(8分)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP . (2)探究:如图2,在四边形ABCD 中,点P 为AB 上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=1.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A .设点P 的运动时间为t (秒),当DC 的长与△ABD 底边上的高相等时,求t 的值.20.(8分)如图,在ABC 中,90ACB ∠=︒,BC 的垂直平分线DE 交BC 于D ,交AB 于E ,F 在射线DE 上,并且EF AC =.(1)求证:AF CE =;(2)当B ∠的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.21.(8分)路边路灯的灯柱BC 垂直于地面,灯杆BA 的长为2米,灯杆与灯柱BC 成120︒角,锥形灯罩的轴线AD 与灯杆AB 垂直,且灯罩轴线AD 正好通过道路路面的中心线(D 在中心线上).已知点C 与点D 之间的距离为12米,求灯柱BC的高.(结果保留根号)22.(10分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).23.(12分)小明有两双不同的运动鞋放在一起,上学时间到了,他准备穿鞋上学.他随手拿出一只,恰好是右脚鞋的概率为;他随手拿出两只,请用画树状图或列表法求恰好为一双的概率.24.嘉兴市2010~2014年社会消费品零售总额及增速统计图如下:请根据图中信息,解答下列问题:(1)求嘉兴市2010~2014年社会消费品零售总额增速..这组数据的中位数.(2)求嘉兴市近三年(2012~2014年)的社会消费品零售总额....这组数据的平均数.(3)用适当的方法预测嘉兴市2015年社会消费品零售总额(只要求列出算式,不必计算出结果).参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【题目详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2、B【解题分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【题目详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【题目点拨】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.3、A【解题分析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【题目详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【题目点拨】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.4、A【解题分析】直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【题目详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【题目点拨】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.5、B【解题分析】∵四边形ABCD 是平行四边形,∴AB ∥CD∴∠EAB=∠DEF ,∠AFB=∠DFE∴△DEF ∽△BAF∴()2DEF ABF S S DE AB ∆∆=:: ∵DEF ABF S S 425∆∆=::, ∴DE :AB=2:5∵AB=CD ,∴DE :EC=2:3故选B6、C【解题分析】分析:根据“无理数”的定义进行判断即可.详解:A 选项中,因为1cos602=,所以A 选项中的数是有理数,不能选A ; B 选项中,因为·1.3是无限循环小数,属于有理数,所以不能选B ;C 选项中,因为半径为1cm 的圆的周长是2πcm ,2π是个无理数,所以可以选C ;D ,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.7、A【解题分析】试题分析:根据垂径定理先求BC 一半的长,再求BC 的长.解:如图所示,设OA 与BC 相交于D 点.∵AB =OA =OB =6,∴△OAB 是等边三角形.又根据垂径定理可得,OA 平分BC ,利用勾股定理可得BD 226333-=所以BC =2BD =63故选A.点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O 与圆A 的半径相等,从而得出△OAB 是等边三角形,为后继求解打好基础.8、D【解题分析】根据实数大小比较法则判断即可.【题目详解】π-<0<12,故选D .【题目点拨】本题考查了实数的大小比较的应用,掌握正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小是解题的关键.9、B【解题分析】根据前后的时间和是18天,可以列出方程.【题目详解】若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B【题目点拨】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.10、B【解题分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【题目详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【题目点拨】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、a+b【解题分析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
浙江省宁波市九校2022年中考四模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.2.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形3.计算(—2)2-3的值是()A、1B、2C、—1D、—24.下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线不能相等D.正方形的对角线相等且互相垂直5.运用乘法公式计算(4+x)(4﹣x)的结果是()A.x2﹣16 B.16﹣x2C.16﹣8x+x2D.8﹣x2 6.如图是一个空心圆柱体,其俯视图是( )A.B.C.D.7.已知下列命题:①对顶角相等;②若a>b>0,则1a<1b;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A.15B.25C.35D.458.下列交通标志是中心对称图形的为()A.B.C.D.9.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带③去B.带②去C.带①去D.带①②去10.如图,由四个正方体组成的几何体的左视图是()A.B.C.D.11.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.612.下列计算,正确的是()A .222()-=-B .(2)(2)2-⨯-=C .3223-=D .8210+=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,E 是▱ABCD 的边AD 上一点,AE=ED ,CE 与BD 相交于点F ,BD=10,那么DF=__.14.如图为二次函数2y ax bx c =++图象的一部分,其对称轴为直线1x =.若其与x 轴一交点为A(3,0)则由图象可知,不等式20ax bx c ++<的解集是_______.15.将数字37000000用科学记数法表示为_____.16.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=k x的图象上,若点A 的坐标为(﹣2,﹣2),则k 的值为_____.17.如图,在ABCD 中,AB=6cm ,AD=9cm ,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=42,则EF +CF 的长为 cm .18.不解方程,判断方程2x 2+3x ﹣2=0的根的情况是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)关于x 的一元二次方程x 2﹣x ﹣(m +2)=0有两个不相等的实数根.求m 的取值范围;若m 为符合条件的最小整数,求此方程的根.20.(6分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②21.(6分)已知,关于x 的方程x 2+2x -k =0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2是这个方程的两个实数根,求121211x x x x +++的值; (3)根据(2)的结果你能得出什么结论?22.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC (顶点是网格线的交点)的坐标分别是A (﹣2,2),B (﹣3,1),C (﹣1,0).(1)将△ABC 绕点O 逆时针旋转90°得到△DEF ,画出△DEF ;(2)以O 为位似中心,将△ABC 放大为原来的2倍,在网格内画出放大后的△A 1B 1C 1,若P (x ,y )为△ABC 中的任意一点,这次变换后的对应点P 1的坐标为 .23.(8分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.24.(10分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y =80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?25.(1084cos45°+(12)﹣1+|﹣2|.26.(12分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE 为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.27.(12分)在平面直角坐标系中,抛物线23(0)y ax bx a =+-≠经过点A (-1,0)和点B (4,5).(1)求该抛物线的函数表达式.(2)求直线AB 关于x 轴对称的直线的函数表达式.(3)点P 是x 轴上的动点,过点P 作垂直于x 轴的直线l ,直线l 与该抛物线交于点M ,与直线AB 交于点N.当PM < PN 时,求点P 的横坐标p x 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、C【解析】根据全等三角形的判定定理进行判断.【详解】解:A 、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.2、C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。
2021年江苏省宿迁市中考数学第四次模拟考试试卷附解析

2021年江苏省宿迁市中考数学第四次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数2y ax bx c =++的图像如图所示,则点c Q a b ⎛⎫ ⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限 2.正方形具有而矩形不一定具有的特征是( ) A .四个角都是直角B .对角线互相平分C .对角线相等D .对角线互相垂直 3.一个三角形的三条中位线把这个三角形分成面积相等的三角形有( ) A .2个B .3个C .4 个D .5个 4.下列正多边形中,能够铺满地面的是( ) A .正五边形B .正六边形C .正七边形D .正八边形 5.命题“垂直于同一条直线的两条直线互相平行”的题设是( ) A .垂直B .两条直线C .同一条直线D .两条直线垂直于同一条直线6.计算482375+-的结果是( ) A . 3 B .1 C .53 D .6375-7.现规定一种运算a ※b ab a b =+-,其中\a 、b 为实数,则a ※b +()b a -※b 等于( ) A .2a b -B . 2b b -C .2bD .2b a - 8.已知代数式12x a+1y b 与-3x b y a-b 是同类项,那么a 、b 的值分别是( ) A .2,1a b =⎧⎨=-⎩ B .2,1a b =⎧⎨=⎩ C .2,1a b =-⎧⎨=-⎩ D .2,1a b =-⎧⎨=⎩9. 在边长为a 的正方形中挖掉一个边长为b 的小正方形 (a b >),把余下的部分剪拼成 一个矩形 (如图). 根据图示可以验证的等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .2()a ab a a b -=-10.如图所示,A ,B 是数轴上的两点,C 是AB 的中点,则0C 等于( )A .34OB B .1()2OB OA -C .1()2OA OB + D .以上都不对二、填空题11.在Rt △ABC 中,∠C=90°,已知a 边及∠A ,则斜边c 为 .12.圆上各点到圆心的距离都等于 ;到圆心的距离等于半径的点都在 上.13.关于x 的方程2(1)10x k x +--=的一个根为2,那么k 的值为 .14.把方程x 2+6x -2=0化为(x+m )2=n (n ≥0)的形式为 .15.已知22(5)(3)0a b -++=,则点P(a ,b )在第 象限.16.宋体的汉字“王”、“中”、“田”等都是轴对称图形,•请再写出三个这样的汉字:_________.17.华氏温度f 和摄氏温度C 的关系为9325f c =+,当人的体温为 37℃时,华氏温度为 度.解答题18.3227xy z -的次数是 ,系数是 . 19.若 n 表示一个三位数,现把 3 放在它的右边,得到一个四位数,可表示为 ;若把3放在它的左边,则得到的四位数可表示为 .20.已知数a 为负数,且数轴上表示a 的点到原点的距离等于 3,将该点向右移动 6 个单位后得到的数的相反数是 .21. 相反数等于本身的数是 .三、解答题22.如图所示是三个完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几边形?为什么?23. 某校规定:学生的平时作业、期中练习、期未考试三项成绩分别按 40%、20%、40%的比例计入学期总评成绩,小明的平时作业、期中练习、期末考试的数学成绩依次为90分、92分、85分,则小明这学期的总评成绩是多少分?这样计算总评成绩的方法有什么好处(结果保留整数)?24.机关作风整顿领导小组为了了解某单位早上8点准时上班情况,随机调取了该单位某天早上10人的上班时间,得到如下数据:7∶50 8∶00 8∶00 8∶02 8∶04 7∶56 8∶00 8∶02 8∶03 8∶03请回答下列问题(1)该抽样调查的样本容量是_______.(2)这10人的平均上班时间是________.(3)这组数据的中位数是_________.(4)如果该单位共有50人,请你估计有________人上班迟到.25.下列几组数能否作为直角三角形的三边,请说明理由.①7,24,25 ②23,1,54 ③10,24,2626. 先化简,再求值:22[(37)(5)](424)a a a --+÷-,其中150a =27.已知方程组256351648x y x y ax by bx ay +=--=⎧⎧⎨⎨-=-+=-⎩⎩与方程组的解相同,求(2a+b )2008的值.28.下列各个分式中的字母满足什么条件时,分式有意义?(1)251y -;(2)1|1|a -;(3)1||1b -29.四张大小、质地均相同的卡片上分别标有数字 1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的 3 张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之积为奇数的概率是多少.30.有甲、乙两家单位到某商店购买空调,可供选择的空调型号有A 、B 、C 三种:(1)空调价格如下表所示,已知甲单位购买两种不同型号的空调 50 台,用去 90 000元,你知道甲单位购买的是哪两种空调吗?说明你的理由.5 000元,购买A 空调5 台﹑C 空调 1 台共需 8000元. 已知乙单位购买了A 空调20台、B 空调 5 台、C 空调 8 台,共需多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.C4.B5.D6.A7.B8.C9.A10.C二、填空题Ac sin 12. 半径,圆13.12-14. (x+3)2=1115.四16.略17.98.618.4,87- 19.103n +,3000n +20.-321.三、解答题22.正六边形,因为正六边形的每个内角为l20°.根据(n-2)×180°=120°×n 可求出 23.小明这学期的总评成绩是90×40%+92×20%+85×40%=88(分).这样计算学生的总评成绩有利于学校全面衡量学生的学习状况,促使学生注重平时的学习.24.(1)10;(2)8:00;(3)8:01;(4)10.25.①能②不能③能21a -,2425-27.1. 28.(1)1y ≠±;(2)1a ≠;(3)1b ≠±29.(1)(2)1630.(1)①设甲单位购买的是A 、B 两种型号的空调,且购买A 型空调x 台,则购买B 型空调(50x -)台.根据题意,得15002100(50)90000x x +-=,化简得60015000x =,解得 25x =,5025x -=即购买A 、B 两利'空调各25 台.②设甲单位购买的是A 、C 两种型号的空调,且购买A 型空调x 台, 则购买C 空调(50x -)台,根据题意,得15002500(50)90000x x +-=,化简,得100035000x =,解得35x =,5015x -=即分别购买 A .C 两种空调35 台和 15 台.③设甲单位购买的是B 、C 两种型号的空调,且购买B 型空调x 台,则购买 C 型空调(50x -)台,根据题意,得21002500(50)90000x x +-=,化简,得40035000x =,解得87.5x =(不合题意,舍去).答:甲单伟购买的可能是A 、B 两种空调,也可能是A 、C 两种空调.(2)设A 型空调的单价为x 元,则 C 型空调的单价为(80005x -)元,B 型 调的单价为5000(80005)43000x x x ---=-元.所以乙单位购买A 型空调20 台、B 型空调5台、C 型空调8台共需:205(43000)8(80005)202015000640004049000x x x x x x +-+-=+-+-=(元)。
最新浙江省宁波市中考数学第四次模拟考试试卷附解析

浙江省宁波市中考数学第四次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,用半径R=3cm ,r=2cm 的钢球测量口小内大的内孔的直径D .测得钢球顶点与孔口平面的距离分别为a=4cm ,b=2cm ,则内孔直径D 的大小为( ) A .9cm B .8cm C .7cmD .6cm 2.过⊙O 内一点P 的最长的弦长为10cm ,最短的弦长为8cm ,则OP 的长为( )A .3cmB .5cmC .2cmD .3cm3.已知弦AB 把圆周角分成1 : 3的两部分,则弦AB 所对的圆周角的度数为( )A .0452B . 01352C . 900或270D . 450或13504.一个扇形的半径等于一个圆的半径的 2倍,且面积相等,则这个扇形的圆心角是( )A .45°B .60°C .90°D .180°5. 下列各方程中,无解的是( )A 1=-B .3(2)10x -+=C .210x -=D .21xx =- 6.在全等三角形的判定方法中,一般三角形不具有,而直角三形形具有的判定方法是 ( ) A .SSSB .SASC .ASAD .HL7.掷一枚硬币,正面向上的概率为( ) A .1B .12C .13D .148.下列各题:①(-4x 3y 3)÷(-4x 2y )=x 2y 3; ②(-3x 2y 4)÷(-3xy 2)=x 2y 2;③2x 2y 2z÷21x 2y 2=4z ;•④15x 2y 3z 4÷(-5xyz )2=1125yz 2.其中计算正确的是( )A .①②B .①③C .②④D .③④9.下列等式成立的是( )A .22()()x y x y -=--B .22()()x y x y +=--C .222()m n m n -=-D .222()m n m n +=+ 10.下列物体的形状类似于球的是( )A .茶杯B .羽毛球C .乒乓球D .白炽灯泡 11.若关于x 的方程230m mx m ++-=是一元一次方程,则这个方程的解是( )A .1B .-lC .-4D .4二、填空题(图(图AB C12.图1是一张Rt △ABC 纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形(图2),那么在Rt △ABC 中,sin B ∠的值是 .13.已知正方形的面积为4,则正方形的边长为 ,对角线长为 .14.根据题设、 以及 、 等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做 .15. 已知代数式251x x --的值为 5,则代数式23155x x -+的值为 . 16.一水池有2个进水速度相同的进水口,l 个出水口,单开一个进水口每小时可进水2 m 3,单开一个出水口每小时可出水3m 2.某天0 h 到6 h 水池的蓄水量与放水时间的关系如图所示(至少打开一个进水口),给出以下3个论断:①O h 到3 h 只进水不出水;②3 h 到4 h 时不进水只出水;③4 h 到6 h 不进水不出水. 则错误的论断是 (填序号).17.点P(2,-3)到x 轴的距离是 ,到y 轴的距离是 . 18.不等式组47310x -<≤的整数解有_________________.19.如图,将△ABC 绕着点A 按逆时针方向旋转70°后与△ADE 重合,已知∠B=105°,∠E=30°,那么∠BAE= 度.20.若2(2)30a b ++-=,则b a = .21.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1,2,3,4,5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回地从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是 .三、解答题22.已知抛物线y=3x 2-2x- 53 与直线y=2x 有两个交点,如何平移直线y=2x ,使得直线与抛物线只有一个交点.23.巳知点A(a ,b)在反比例函数y = 2x 的图象上,它与原点O 的距离为5,求a+b 的值. ±3.24.如图,边长为 l5m 的正方形池塘的周围全是草地,池塘边A 、B 、C 、D 处各有一棵树,且 AB=BC=CD=3m ,现用长4 m 的绳子将一头羊拴在其中一棵树上,要便羊在草地上活动的区域最大,应将绳子拴在哪棵树上?羊活动的最大面积是多少?25.如图,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形. (1) 用a ,b ,x 表示纸片剩余部分的面积;(2)当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26.一次函数) y kx b =+(k 、b 为常数,且k≠0)的图象经过点A(3,-2)和点B ,其中点`B 是直线21y x =+和4y x =-+的交点,求这个一次函数的解析式,并画出其函数图象.27.规定一种新的运算:1a b a b a b ∆=⋅-++,如3434341∆=⨯-++.请比较大小: (3)4-∆与4(3)∆-.28.计算:(1)(-2x)3·(4x2y) (2)(4×106)(8×104)·105(3)(m3)4+m10·m2+m·m5·m629.从1,2,3,4,5中任取两个数相加.求:(1)和为偶数的概率;(2)和为偶数的概率或和为奇数的概率;(3)和为奇数的概率.30.如图所示,已知△ABC的边AB和BC边上的中线AD,请把△ABC补画完整.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.D3.D4.C5.A6.D7.B8.D9.B10.C11.C二、填空题 12.13.2,14.定义,公理,定理,证明15.2316.②17.3,218.0,119.2520.-821. 25三、解答题 22.y=2x+by=3x2-2x-53,Δ=0得b=-3,即向下平移3个单位; 23.24.拴在B 处,最大面积为2270412360ππ⨯⨯=m 2. 25.解:(1) a b -4x 2;(2)依题意有: a b -4x 2=4x 2 ,将a =6,b =4,代入上式,得x 2=3, 解得)(3,321舍去-==x x .即正方形的边长为3.26.由214y x y x =+⎧⎨=-+⎩,得13x y =⎧⎨=⎩,∴点B(1,3),∴233k b k b -=+⎧⎨=+⎩,解得52112k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴这个一次函数的解析式为51122y x =-+. 图象略.27.(-3)△4>4△(-3)28.(1)-32x 5y ,(2)3.2×1016,(3)3m 1229.(1)25;(2)1;(3)3530.连结BD ,并延长BD 到C ,使DC=BD ,连结AC。
初四数学中考试卷分析

初四数学中考试卷分析中考数学试卷分析一、试卷情况分析本次中考数学试题深浅程度相对较低,题型和题量都和往年一样,总体难度必须比往年高一些,知识点考查面比较广为,没偏题难题,适度掌控运算量,适当加强思索量。
著重考查学生的综合能力和基础知识的掌控。
试题注重以下特点:1、以生为本,回归课本,突出教材的引领作用知识点全面覆盖全面且重点注重,全卷囊括了数学课程标准的大部分知识点,著重考查通性通法.2、源于教材,强化教材在教学改革与实践中的引领作用试题命制十分关注教材中的基本模型和基本图形,大量的题目都取材于课本,通过赋予新的背景或改变问题条件、拓展问题的深度改编而成。
如第5题、第23题等。
3、注重背景技术创新,设置具备人文元素的数学问题,彰显人文关怀。
例如第3题科学记数法的考查挑选了烟台gdp做为背景,富于时代气息;第20题统计数据题则以世界杯为切入点,切合学生的生活实际,纾解考试压力,彰显人文关怀。
4、关注高初中衔接,设置富含数学思想方法的数学问题,着眼学生发展试题侧重于考查了高中阶段自学所必不可少的基础知识,强化了科学知识考查的协调性和整体性。
其中,数与代数部分函数设置了5道有关方程(组)的题目,3道有关不等式(组)的题目,2道考查一次函数的题目,1道考查反比例函数的题目,2道考查二次函数的题目,共10道题目考查“方程与函数”的内容。
方程与函数的相关知识都是高中阶段学习的重要基础知识。
试题著重数学知识间的内在联系,强化各个核心知识点之间的综合考查的同时,全面考查了数学思想方法的运用,为高中阶段自学搞好了铺垫。
第24题牵涉半角,第25题是一道动态几何题,以正方形为几何背景,将全系列等、圆的科学知识方形其中,一共四个问号,前三个问号比较难,最后一个问号相对难度比较小,牵涉到求最大值、最小值的问题,学生首先必须自己图画出来草图,然后再展开水解,难度稍小。
第26题以二次函数为实地考察背景,对点的座标、求解二元一次方程组、二次函数的顶点与对称轴、相近三角形的性质与认定等都有所牵涉,在具体内容的答疑过程中又注重了方程思想、数形融合思想、函数思想、转变思想,存有一定的综合性和灵活性,这些试题都具备较好的区分度,有助于低初中的教学贯通,有助于高中学校选拔优秀学生。
2024届北京市第四中学中考一模数学试题含解析

2024学年北京市第四中学中考一模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.下图是由八个相同的小正方体组合而成的几何体,其左视图是( )A .B .C .D .2.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )A .8.1×106B .8.1×105C .81×105D .81×1043.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为( )A .2B .3C .5D .74.把直线l :y=kx+b 绕着原点旋转180°,再向左平移1个单位长度后,经过点A (-2,0)和点B (0,4),则直线l 的表达式是( )A .y=2x+2B .y=2x-2C .y=-2x+2D .y=-2x-25.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人)5 8 14 19 4 时间(小时)6 7 8 9 10 A .14,9 B .9,9 C .9,8 D .8,96.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( )A .72.510-⨯B .70.2510-⨯C .62.510-⨯D .52510-⨯7.不解方程,判别方程2x 2﹣2x =3的根的情况( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个实数根D .无实数根8.在﹣3,0,4,6这四个数中,最大的数是( )A .﹣3B .0C .4D .69.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A .121x y x y -=⎧⎨-=⎩B .121x y x y -=-⎧⎨-=-⎩C .121x y x y -=-⎧⎨-=⎩D .121x y x y -=⎧⎨-=-⎩ 10.给出下列各数式,①2?--() ②2-- ③2 2- ④22-()计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个二、填空题(本大题共6个小题,每小题3分,共18分)11.,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有____________千米.12.将数轴按如图所示从某一点开始折出一个等边三角形ABC ,设点A 表示的数为x ﹣3,点B 表示的数为2x+1,点C 表示的数为﹣4,若将△ABC 向右滚动,则x 的值等于_____,数字2012对应的点将与△ABC 的顶点_____重合.13.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=1.在边AB 上取一点O ,使BO=BC ,以点O 为旋转中心,把△ABC逆时针旋转90°,得到△A′B′C′(点A 、B 、C 的对应点分别是点A′、B′、C′、),那么△ABC 与△A′B′C′的重叠部分的面积是_________.14.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.15.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.16.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘﹣131,其浓度为0.0000872贝克/立方米.数据“0.0000872”用科学记数法可表示为________.三、解答题(共8题,共72分)17.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.18.(8分)已知顶点为A的抛物线y=a(x-12)2-2经过点B(-32,2),点C(52,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM =∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.19.(8分)平面直角坐标系xOy 中(如图),已知抛物线2y x bx c ++=经过点10(,)A 和30B (,),与y 轴相交于点C ,顶点为P .(1)求这条抛物线的表达式和顶点P 的坐标;(2)点E 在抛物线的对称轴上,且EA EC =,求点E 的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN ,点Q 在直线MN 右侧的抛物线上,MEQ NEB ∠∠=,求点Q 的坐标.20.(8分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点.求证:MD=MC ;若⊙O 的半径为5,AC=45,求MC 的长.21.(8分)“分组合作学习”已成为推动课堂教学改革,打造自主高效课堂的重要措施.某中学从全校学生中随机抽取部分学生对“分组合作学习”实施后的学习兴趣情况进行调查分析,统计图如下:请结合图中信息解答下列问题:求出随机抽取调查的学生人数;补全分组后学生学习兴趣的条形统计图; 分组后学生学习兴趣为“中”的所占的百分比和对应扇形的圆心角.22.(10分)先化简2211a a a a ⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 23.(12分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?24.如图,点A 的坐标为(﹣4,0),点B 的坐标为(0,﹣2),把点A 绕点B 顺时针旋转90°得到的点C 恰好在抛物线y=ax 2上,点P 是抛物线y=ax 2上的一个动点(不与点O 重合),把点P 向下平移2个单位得到动点Q ,则: (1)直接写出AB 所在直线的解析式、点C 的坐标、a 的值;(2)连接OP 、AQ ,当OP+AQ 获得最小值时,求这个最小值及此时点P 的坐标;(3)是否存在这样的点P ,使得∠QPO=∠OBC ,若不存在,请说明理由;若存在,请你直接写出此时P 点的坐标.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.2、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】810 000=8.1×1.故选B.【题目点拨】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、C【解题分析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.4、B【解题分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【题目详解】解:设直线AB 的解析式为y =mx +n .∵A (−2,0),B (0,1), ∴ , 解得 , ∴直线AB 的解析式为y =2x +1.将直线AB 向右平移1个单位长度后得到的解析式为y =2(x−1)+1,即y =2x +2,再将y =2x +2绕着原点旋转180°后得到的解析式为−y =−2x +2,即y =2x−2,所以直线l 的表达式是y =2x−2.故选:B .【题目点拨】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键. 5、C【解题分析】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C .【题目点拨】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.6、A【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】70.00000025 2.510-=⨯,故选:A .【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7、B【解题分析】一元二次方程的根的情况与根的判别式∆有关,24b ac ∆=-2(42(3)=--⨯⨯-420=>,方程有两个不相等的实数根,故选B8、C【解题分析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,在﹣3,0,1这四个数中,﹣3<0<1,最大的数是1.故选C .9、C【解题分析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【题目详解】直线l 1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:121x y x y -=-⎧⎨-=⎩. 故选C .【题目点拨】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.10、B【解题分析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=;∴上述各式中计算结果为负数的有2个.故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、90【解题分析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B 地,设乙车出故障前走了t 1小时,修好后走了t 2小时,根据等量关系甲车用了122133t t ⎛⎫+++ ⎪⎝⎭小时行驶了全程,乙车行驶的路程为60t 1+50t 2=240,列方程组求出t 2,再根据甲车的速度即可知乙车修好时甲车距B 地的路程.【题目详解】甲车先行40分钟(402603=h ),所行路程为30千米, 因此甲车的速度为304523=(千米/时),设乙车的初始速度为V 乙,则有4452103V ⨯=+乙, 解得:60V =乙(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t 1小时,修好后走了t 2小时,则有121260502402145()4524033t t t t +=⎧⎪⎨⨯+++⨯=⎪⎩,解得:12732t t ⎧=⎪⎨⎪=⎩, 45×2=90(千米),故答案为90.【点评】 本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.12、﹣1 C .【解题分析】∵将数轴按如图所示从某一点开始折出一个等边三角形ABC ,设点A 表示的数为x ﹣1,点B 表示的数为2x +1,点C 表示的数为﹣4,∴﹣4﹣(2x +1)=2x +1﹣(x ﹣1);∴﹣1x =9,x=﹣1.故A表示的数为:x﹣1=﹣1﹣1=﹣6,点B表示的数为:2x+1=2×(﹣1)+1=﹣5,即等边三角形ABC边长为1,数字2012对应的点与﹣4的距离为:2012+4=2016,∵2016÷1=672,C从出发到2012点滚动672周,∴数字2012对应的点将与△ABC的顶点C重合.故答案为﹣1,C.点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.13、144 25【解题分析】先求得OD,AE,DE的值,再利用S四边形ODEF=S△AOF-S△ADE即可. 【题目详解】如图,OA’=OA=4,则OD=34OA’=3,OD=3∴AD=1,可得DE=35,AE =45∴S四边形ODEF=S△AOF-S△ADE=12×3×4-12×35×45=14425.故答案为144 25.【题目点拨】本题考查的知识点是三角形的旋转,解题的关键是熟练的掌握三角形的旋转.14、3cm.【解题分析】根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.【题目详解】解:∵四边形ABCD是矩形,AC=6cm∴OA =OC =OB =OD =3cm ,∵∠AOB =60°,∴△AOB 是等边三角形,∴AB =OA =3cm ,故答案为:3cm【题目点拨】本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分. 15、y=2x+1【解题分析】分析:直接根据函数图象平移的法则进行解答即可.详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1.点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.16、58.7210-⨯【解题分析】科学记数法的表示形式为ax10n 的形式,其中1≤lal<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】解:0.0000872=58.7210-⨯故答案为:58.7210-⨯【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.三、解答题(共8题,共72分)17、(1)详见解析;(2)详见解析;(3)图见解析,点P 坐标为(2,0).【解题分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2))找出点A 、B 、C 关于原点O 的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A ′,连接BA ′,与x 轴交点即为P .【题目详解】(1)如图1所示,△A1B1C1,即为所求:(2)如图2所示,△A2B2C2,即为所求:(3)找出A的对称点A′(1,﹣1),连接BA′,与x轴交点即为P;如图3所示,点P即为所求,点P坐标为(2,0).【题目点拨】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.18、(1) y=(x-12)2-2;(2)△POE的面积为115或13;(3)点Q的坐标为(-54,32)或(,2)或,2).【解题分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得OPFA=OEFE=134=43,即OP=43FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【题目详解】解:(1)把点B(-32,2)代入y=a(x-12)2-2,解得a=1,∴抛物线的表达式为y=(x-12)2-2,(2)由y=(x-12)2-2知A(12,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得122322k bk b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得21 kb=-⎧⎨=-⎩,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-74),M(-12,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴OP OE143FA FE34===,∴OP=43FA=43=,设点P(t ,-2t -1),则()225t 2t 13+--=, 解得t 1=-215,t 2=-23, 由对称性知,当t 1=-215时,也满足∠OPM =∠MAF , ∴t 1=-215,t 2=-23都满足条件, ∵△POE 的面积=12OE·|t|, ∴△POE 的面积为115或13; (3)如图,若点Q 在AB 上运动,过N′作直线RS ∥y 轴,交QR 于点R ,交NE 的延长线于点S ,设Q(a ,-2a -1),则NE =-a ,QN =-2a.由翻折知QN′=QN =-2a ,N′E =NE =-a ,由∠QN′E =∠N =90°易知△QRN′∽△N′SE ,∴QR N S '=RN ES '=QN EN '',即QR 1==2a 12a ES a---=-=2, ∴QR =2,ES =2a 12-- , 由NE +ES =NS =QR 可得-a +2a 12--=2, 解得a =-54, ∴Q(-54,32), 如图,若点Q 在BC 上运动,且Q 在y 轴左侧,过N′作直线RS ∥y 轴,交BC 于点R ,交NE 的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=5,SE=5-a.在Rt△SEN′中,(5-a)2+12=a2,解得a=355,∴Q(-355,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR5SE5 a.在Rt△SEN′中,5a)2+12=a2,解得a 35,∴,2).综上,点Q 的坐标为(-54,32)或(,2)或,2). 【题目点拨】 本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.19、(1)243y x x +=﹣,顶点P 的坐标为21(,﹣);(2)E 点坐标为22(,);(3)Q 点的坐标为58(,). 【解题分析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P 的坐标;(2)设2E t (,),根据两点间的距离公式,利用EA EC =得到22222123t t ++(﹣)=(﹣),然后解方程求出t 即可得到E 点坐标;(3)直线2x =交x 轴于F ,作2MH x ⊥直线=于H ,如图,利用12tan NEB ∠=得到12tan MEQ ∠=,设243Q m m m +(,﹣),则2412HE m m QH m +=﹣,=﹣,再在Rt QHE 中利用正切的定义得到H 1tan HE 2Q HEQ ∠==,即24122m m m +﹣=(﹣),然后解方程求出m 即可得到Q 点坐标.【题目详解】解:(1)抛物线解析式为13y x x =(﹣)(﹣), 即243y x x +=﹣, 221y x =(﹣)﹣,∴顶点P 的坐标为21(,﹣); (2)抛物线的对称轴为直线2x =,设2E t (,), EA EC =,22222123t t ∴++(﹣)=(﹣),解得2t =,∴E 点坐标为22(,); (3)直线2x =交x 轴于F ,作MN ⊥直线x=2于H ,如图,MEQ NEB ∠∠=,而BF 1tan EF 2NEB ∠==, 1tan 2MEQ ∴∠=, 设243Q m m m +(,﹣),则22432412HE m m m m QH m ++=﹣﹣=﹣,=﹣, 在Rt QHE 中,H 1tan HE 2Q HEQ ∠==, 24122m m m ∴+﹣=(﹣),整理得2650m m +﹣=,解得11m =(舍去),25m =, ∴Q 点的坐标为58(,).【题目点拨】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.20、(1)证明见解析;(2)MC=154. 【解题分析】【分析】(1)连接OC ,利用切线的性质证明即可;(2)根据相似三角形的判定和性质以及勾股定理解答即可.【题目详解】(1)连接OC ,∵CN 为⊙O 的切线,∴OC ⊥CM ,∠OCA+∠ACM=90°,∵OM ⊥AB ,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,∵AB是⊙O的直径,∴∠ACB=90°,∴∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴OD AOBC AC==,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=154,即MC=154.【题目点拨】本题考查了切线的判定和性质、相似三角形的判定和性质、勾股定理等知识,准确添加辅助线,正确寻找相似三角形是解决问题的关键.21、(1)200人;(2)补图见解析;(3)分组后学生学习兴趣为“中”的所占的百分比为30%;对应扇形的圆心角为108°. 【解题分析】试题分析:(1)用“极高”的人数÷所占的百分比,即可解答;(2)求出“高”的人数,即可补全统计图;(3)用“中”的人数÷调查的学生人数,即可得到所占的百分比,所占的百分比360,⨯即可求出对应的扇形圆心角的度数.试题解析:()15025%200÷=(人).()2学生学习兴趣为“高”的人数为:20050602070---=(人).补全统计图如下:()3分组后学生学习兴趣为“中”的所占的百分比为:60100%30%.200⨯= 学生学习兴趣为“中”对应扇形的圆心角为:30%360108.⨯=22、-1【解题分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【题目详解】 解:2211a a a a ⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【题目点拨】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.23、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y 最小值为2090万元.【解题分析】(1)设甲种套房每套提升费用为x 万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m 套,那么乙种套房提升(80-m )套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m 之间的函数关系式,根据一次函数的性质就可以求出结论.【题目详解】(1)设乙种套房提升费用为x 万元,则甲种套房提升费用为(x ﹣3)万元,则6257003x x=-, 解得x=1.经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a 套,则乙种套房提升(80﹣a )套,则2090≤25a+1(80﹣a )≤2096,解得48≤a≤2.∴共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套.方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套.设提升两种套房所需要的费用为y 万元,则y=25a+1(80﹣a )=﹣3a+2240,∵k=﹣3,∴当a 取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y 最小值为2090万元.【题目点拨】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用.解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程.24、(1)a=12;(2)OP+AQ 的最小值为P 的坐标为(﹣1,12);(3)P (﹣4,8)或(4,8), 【解题分析】(1)利用待定系数法求出直线AB 解析式,根据旋转性质确定出C 的坐标,代入二次函数解析式求出a 的值即可; (2)连接BQ ,可得PQ 与OB 平行,而PQ=OB ,得到四边形PQBO 为平行四边形,当Q 在线段AB 上时,求出OP+AQ 的最小值,并求出此时P 的坐标即可;(3)存在这样的点P ,使得∠QPO=∠OBC ,如备用图所示,延长PQ 交x 轴于点H ,设此时点P 的坐标为(m ,12m 2),根据正切函数定义确定出m 的值,即可确定出P 的坐标.【题目详解】解:(1)设直线AB 解析式为y=kx+b , 把A (﹣4,0),B (0,﹣2)代入得:402k b b -+=⎧⎨=-⎩,解得:122kb⎧=-⎪⎨⎪=-⎩,∴直线AB的解析式为y=﹣12x﹣2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=12;(2)连接BQ,则易得PQ∥OB,且PQ=OB,∴四边形PQBO是平行四边形,∴OP=BQ,∴5(等号成立的条件是点Q在线段AB上),∵直线AB的解析式为y=﹣12x﹣2,∴可设此时点Q的坐标为(t,﹣12t﹣2),于是,此时点P的坐标为(t,﹣12 t),∵点P在抛物线y=12x2上,∴﹣12t=12t2,解得:t=0或t=﹣1,∴当t=0,点P与点O重合,不合题意,应舍去,∴OP+AQ的最小值为5P的坐标为(﹣1,12);(3)P(﹣4,8)或(4,8),如备用图所示,延长PQ交x轴于点H,设此时点P 的坐标为(m ,12m 2), 则tan ∠HPO=2212m OH PH m m ==, 又,易得tan ∠OBC=12, 当tan ∠HPO=tan ∠OBC 时,可使得∠QPO=∠OBC , 于是,得212m =, 解得:m=±4, 所以P (﹣4,8)或(4,8).【题目点拨】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.。
九年级数学第四次模拟考试试卷分析

九年级数学第四次模拟考试试卷分析
卢社娥
本次数学试卷体现了新课程的思想和理念,整体来说较前几次试题容易。
为了学生能够快速、高效的查漏补缺,现将本次考试学生的得与失作如下分析。
一、学生掌握较好的有以下几点:
1、科学记数法的表示(第8题)
2、求简单事件的概率与统计(第
3、18题)
这三题绝大多数学生都能做对,只有极个别学生出现错误。
3、分式的化简与求值(第16题)
4、比较实数的大小(第1题)
5、求一次函数和反比例函数的解析式(第20题)
6、解直角三角形(第19题)
这四个知识点有一半以上学生都能掌握,但是一部分学生做题步骤不规范,导致失分。
二、学生掌握较差的有如下几点:
1、二次函数的有关问题:包括二次函数的性质和图像及其平移(第5、10题)
此知识点大部分学生掌握较差,只有极少数学生做对,学生不理解移动坐标轴相当于坐标轴不动把图像向相反方向移动。
2、动手操作和探索规律题(第14、15题)
学生对n=3理解不透,同时只考虑了一种情况,考虑问题不全面。
3、对分式方程无解的理解有误(第7题)
分式方程无解,学生都误认为方程有增根,其实还有另一情况学生没想到,就是连增根都没有。
4、函数在日常生活中的运用(第21题)
该题提供的情境远离学生的生活,学生不熟悉,特别是第三小题,学生不能理解。
三、失误整体分析
1、解答题中学生书写不规范,
2、填空题中有单位的忘带单位。
四、改进措施
1、以后多规范学生的做题步骤。
2、多练一些有关二次函数的有关问题。
3、教给学生一些探索规律问题的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初四中考数学试题模拟一.选择题1.在0,-2,5,1/4,-0.3中,负数的个数是()A.1 B.2 C.3 D.4等;⑤2DE=(6+2).其中正确的个数是()A.5个B.4个C.3个D.2个7题图8题图9题图10题图二.填空题11.若实数m,n满足(m-1)2+|n+2|=0,则(m+n)2017=____如下结论①DQ=1;②PQ/BQ=3/2;③S△PDQ=1/8;④cos∠ADQ=3/5,其中正确结论是________(填写序号) 16题图18题图的面积;(3)结合图象,写出在第一、四象限内,y1>y3>y2时,x的取值范围.(2)已知乙骑电动车的速度为40千米/小时,求乙出发后多少小时和甲相遇?24.(1)如图,将正方形ABCD与正方形ECGF(CE<AB)拼接在一起,使B、C、G三点在一条直线上,CE 在边CD上,连接AF,若M为AF的中点,连接DM、ME,试证明:DM=ME;(2)如图2,若将正方形CEFG 绕着顶点C逆时针旋转45°,其他条件不变,那么(1)中的结论是否成立?若成立请说明理由,若不成立请直接写出你发现的结论;(3)若将正方形CEFG由图1中的位置绕着顶点C逆时针旋转90°,其他条件不变,请你在图3中画出完整的旋转后的图形,并判定(1)中的结论是否成立.26.如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC的平分线 BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交 AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.点B所用时间为1秒.(1)求A、B两点间的距离;(2)试说明该车是否超过限速.否存在点P,使得以点O、C、P为顶点三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.29.如图1,在正方形ABCD中,延长BC至M,使BM=DN,连接MN交BD延长线于点E.(1)求证:BD+2DE=2BM.(2)如图2,连接BN交AD于点F,连接MF交BD于点G.若AF:FD=1:2,且CM=2,求线段DG长.答案1解:在0,-2,5,1/4,-0.3中,-2,-0.3是负数,共有两个负数,故选:B.2解:A、2a与3b不能合并错误;B、5a-2a=3a正确;C、a2•a3=a5错误;D、(a+b)2=a2+2ab+b2错误;故选B.3解:将23.2亿用科学记数法表示为:2.32×109.故选:B. 4 答案C 5解:得(x+k)(x-1)-k(x+1)=x2-1,解得x=1-2k,∵1-2k<0,且1-2k≠1,1-2k≠-1,∴k>0.5且k≠1.故选:B.6解:由不等式3x-2<2x+3得,x<5,∵不等式2x<4+a与不等式3x-2<2x+3的解集相同,∵由不等式2x<4+a得,x<(a+2)/4,与x<5解集相同,∴(a+2)/2=5,解得a=6.故选B 7解:在Rt△AOB中,AD=2,AD为斜边OB的中线,∴OB=2AD=4,由周长为4+25,得到AB+AO=25,设AB=x,则AO=25-x,根据勾股定理得:AB2+OA2=OB2,即x2+(25-x)2=42,整理得:x2-25x+2=0,解得x1=5+3,x2=5-3,∴AB=5+3,OA=5-3,过D作DE⊥x轴,交x轴于点E,可得E为AO中点,∴OE=0,5OA=0.5(5-3)(假设OA=5+3,若OA=5-3,求出结果相同),在Rt△DEO中,利用勾股定理得:DE=0.5(5+3),∴k=-DE•OE=-0.5(5+3)×0.5(5-3)=-0.5,∴S△AOC=0.5DE•OE=0.5×(5-3)×0.5(5-3)=0.5,故选A 8解:根据图示知,抛物线开口方向向上,抛物线与y轴交与负半轴,对称轴在y轴右侧,则a>0,c<0,b<0,所以abc>0.故①错误;根据图象得对称轴x=1,即-b/2a=1,所以b=-2a,即2a+b=0,故②正确;当x=3时,y=0,即9a+3b+c=0.故③错误;根据图示知,当-1<x<3时,y<,故④正确;根据图示知,当x<0时,y随x的增大而减小,故⑤正确;故选C.9解:对于直线y=kx-3k+4,当x=3时,y=4,故直线y=kx-3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD=5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2×12=24.故选:B.10解:①∵四边形ABCD是正方形,AB=BC,∠ABD=∠CBD=45°, BE=BE,∴△ABE≌△CBE,(SAS)∴AE=CE,∴①正确;②过F作FH⊥BC于H.∵△ABE≌△CBE,∴∠BAE=∠BCE=15°.∵BF=BC=1,∴∠BFC=∠FCB=15°,∴∠FBH=∠BFC+∠FCB=30°,∴FH=0.5BF=0.5,∴②正确;③∵∠BAE=15°,∠ABE=45°,∴∠AEB=120°,∴∠BEC=120°,∴∠BEF=60°,∴∠AEF=60°,故③正确;④∵四边形ABCD 是正方形,点E在对角线BD上,根据图形的轴对称性,易得△ABE≌△CBE,△ADE≌△CDE,△BAD≌△BCD,故④正确;⑤过A作AM⊥BD交于M.在直角△ABM中,∵∠BAD=90°,AB=AD=1,∴BD=2,在直角△ADM中,∵∠AMD=90°,∠ADM=45°,AD=1,∴DM=AM=2/2,在直角△AEM中,∵∠AME=90°,∠AEM=60°,AM=2/2,∴EM=AM/3=6/6,∴DE=DM+EM=2/2+6/6,故⑤错误.故选B.11解:由题意知,m,n满足(m-1)2+=0,∴m=1,n=-2,∴(m+n)5=(1-2)2017=-1.故答案为:-1.12解:x3-2x2+x=x(x2-2x+1)=x(x-1)2.故答案为:x(x-1)2.13解:∵方程组3x+5y =k+2, 2x+3y=k,解得x=2k−6, y=4−k.∵x、y的和为0,则有2k-6+4-k=0,解得k=2.14解:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.故答案为:k<2且k≠1.15解:3−x≥2(x−3)①,(3x+1)/2-(2x-1)/3>-1②,由①得:x≤3,由②得:x>−2.2,不等式组的解集为:-2.2<x≤3,则不等式组的整数解为:-2,-1,0,1,2,3,所有整数解的和:-2-1+0+1+2+3=3.故答案为:3.16解:作CE⊥OB于E,DP⊥OB于P,设OC=2x,则BD=x,∴C(2x•2/2,2x•2/2),P(2-2/2x,2/2x),∵C、P都在反比例函数的图象上,∴(2x)2=(2-2/2x)2/2x,解得x=2/5,∴k=(2×2/5)2=8/25.故答案为8/25.17解:由题意可得:y=-1/12x2+2/3x+5/3=-1/12(x2-8x)+5/3=-1/12(x-4)2+3,故铅球运动过程中最高点离地面的距离为:3m.故答案为:3.18解:正确结论是①②④.提示:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图2.则有CP=0.5,BP=/2.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=/5,则PQ=/2-/5=3/10,∴PQ/BQ=3/2.故②正确;③过点Q作QH⊥DC于H,如图3.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=3/5,∴S△DPQ=0.5DP•QH=0.5×0.5×3/5=3/20.故③错误;④过点Q作QN⊥AD 于N,如图4.易得DP∥NQ∥AB,根据平行线分线段成比例可得DN/AN=PQ/BQ=3/2,则有DN/(1-DN)=3/2,解得:DN=3/5.由DQ=1,得cos∠ADQ=DN/DQ=3/5.故④正确.综上所述:正确结论是①②④.故答案为:①②④.19解:(1)原式=3-4×0.5+1-9=-7;(2)原式=1-(X+2Y)/(X+Y)=-Y/(X+Y),∵|x-2|+(2x-y-3)=0,∴x−2=0, 2x−y=3,解得:∴x 1<0,x 2<0,∴|x 1|+|x 2|=-x 1-x 2=-(x 1+x 2)=2k+1,∵|x 1|+|x 2|=x 1•x 2,∴2k+1=k +1,∴k 1=0,k 2=2,又∵k >3/4,∴k=2. 24解:(1)如图1,延长EM 交AD 于H ,∵AD ∥EF ,∴∠EFM=∠HAM ,在△FME 和△AMH 中,∠EFM =∠HAM,FM =AM,∠FME =∠AMH ,∴△FME ≌△AMH ∴HM=EM ,∵∠HDE=90°,HM=EM ,∴DM=ME ;(2)如图2,连接AE ,∵四边形ABCD 和四边形ECGF 是正方形,∴∠FCE=45°,∠CAD=45°,∴点A 、E 、C 在同一条直线上,∵∠ADF=90°,∠AEF=90°,M 为AF 的中点,∴DM=0.5AF ,EM=0.5AF ,∴DM=ME ;(3)如图3,是画出的完整的旋转后的图形,连接CF ,MG ,作MN ⊥CD 于N ,在△ECM 和△GCM 中,EC =GC,∠ECM =∠GCM,CM =CM ,∴△ECM ≌△GCM ,∴ME=MG ,∵M 为AF 的中点,FG ∥MN ∥AD ,∴GN=ND ,又ME=MG ,∴MD=MG ,∴MD=ME ,∴(1)中的结论成立.25解:(1)30÷0.25=120(人)120×0.2=24(人)36÷120=0.3故频数分布表中的m=24,n=0.3;(3)3÷30=1/10.故其中某位学生被选中的概率是1/10.故答案为:24,0.3;108°;1/10.26(1)证明:连接OM .∵AC=AB ,AE 平分∠BAC ,∴AE ⊥BC ,CE=BE=0.5BC=4,∵OB=OM ,∴∠OBM=∠OMB ,∵BM 平分∠ABC ,∴∠OBM=∠CBM ,∴∠OMB=∠CBM ,∴OM ∥BC 又∵AE ⊥BC ,∴AE ⊥OM ,∴AE 是⊙O 的切线;(2)设⊙O 的半径为R ,∵OM ∥BE ,∴△OMA ∽△BEA ,∴OM/BE=AC/AB 即R/4=(12-R)/12,解得R=3,∴⊙O 的半径为3;(3)过点O 作OH ⊥BG 于点H ,则BG=2BH ,∵∠OME=∠MEH=∠EHO=90°,∴四边形OMEH 是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.27:如图所示:(1)∵PC ⊥l ,PC=60米,tan ∠APC=4/3A=AC/PC ,∴AC=80米,∵∠BPC=45°,∴△BCP 是等腰直角三角形,∴BC=PC=60米,∴AB=AC-BC=20米,答:A 、B 两点间的距离为20米;(2)该车不超过限速;理由如下:由题意得:该车从点A 行驶到点B 所用时间为1秒,∴该车从点A 行驶到点B 的速度为20米/秒=72千米/小时<80千米/小时,∴该车不超过限速.28解:(1)将A 、C 点坐标代入函数解析式,得9a −6a +c =0,c =−3,解得a =1,c =−3,抛物线的解析式为y=x 2+2x-3;(2)y=x 2+2x-3=(x+1)2-4,顶点坐标M 为(-1,-4).又A (-3,0),C (0,-3),AC=32.MC=2,AM=25.∵AC 2+MC 2=AM 2,∴∠ACM=90°,tan ∠MAC=MC/AC=2/3/2=1/3 (3)∠PCO=∠BAC=45°,如图,①当△PCO ∽△BAC 时,PC/BA=CO/AC ,即PC/4=32/2,解得PC=22.过P 作PH ⊥y 轴于H 点,△PHC 为等腰直角三角形,PH=HC=2,-3+2=-1,∴P (-2,-1);②当△PCO ∽△CAB 时,PC/CA=CO/AB ,即PC/32=3/4,解得PC=92/4.过P 作PH ⊥y 轴于H 点,△PHC 为等腰直角三角形,PH=HC=9/4,-3+9/4=-3/4,P (-9/4,-3/4).综上所述:存在点P 使得以点O 、C 、P 为顶点的三角形与△ABC 相似,出P 点的坐标(-2,-1),(-9/4,-3/4).29(1)证明:过点M 作MP ⊥BC 交BD 的延长线于点P ,∵四边形ABCD 是正方形,∴∠BCD=90°,∠DBC=∠BDC=45°,∴PM ∥CN ,∴∠N=∠EMP ,∠BDC=∠MPB=45°,∴BM=PM ,∵BM=DN ,∴DN=MP , 在△DEN 和△PEM 中∠DEN =∠PEM ,∠P =∠NDE =45°,DN =MP ,∴△DEN ≌△PEM ,∴DE=EP ,∵△BMP 是等腰直角三角形∴BP=2BM ,∴BD+2DE=2BM .(2)解:∵AF :FD=1:2,∴DF :BC=2:3,∵△BCN ∽△FDN , ∴DF/BC=DN/CN 设正方形边长为a ,又知CM=2,∴BM=DN=a+2,CN=2a+2∴(a +2)/(2a +2)=2/3,解得:a=2,∴DF=4/3,BM=4,BD=22,又∵△DFG ∽△BMG ,∴DG/BG=DF/BM ,∴DG/(22-DG)=4/3/4,∴DG=2/2.故答案为:2/2。