《信号与系统》总结:第一章(统编)
《信号与系统》第一章 信号与系统

第1-6页
西安邮电大学通信与信息工程学院
信号与系统
第一章 信号与系统
信号的定义及分类 信号的基本运算 阶跃函数和冲激函数 系统的描述和特性
第1-7页
西安邮电大学通信与信息工程学院
信号与系统
1.1 信号与系统基本概念
什么是信号?什么是系统?为什么把这两个概念 连在一起?
一、信号的概念
1. 消息(message):
1.1 信号与系统基本概念
二、系统的概念
系统:由若干相互作用和相互依赖的事物组合而成
的,具有稳定功能的整体。如通信系统、控制系统
和经济系统等。
系统的基本作用:是对输入信号进行加工和处理, 将其转换为所需要的输出信号。
输入信号
系统
输出信号
激励
响应
系统的描述:在数学上系统用微分方程和差分方程
来描述,其功能就是通过由怎样的激励产生怎样的
为随机信号或不确定信号。电子系统中的起伏热噪声、
雷电干扰信号就是两种典型的随机信号。
研究确定信号是研究随机信号的基础。本课程只
讨论确定信号。
第1-13页
西安邮电大学通信与信息工程学院
信号与系统
1.2 信号的分类
2. 连续信号和离散信号 :根据信号定义域划分
(1)连续时间信号: 在信号存在的时间范围内,任意时刻都有定义
的信号称为连续时间信号,简称连续信号。
这里的“连续”指函数的定义域—时间是连续
的,但可含间断点,至于值域可连续也可不连续。
值域连续
f1(t) =sin(πt)
1
o1 -1
2t
第1-14页
f2(t) 1
o1 2 t -1
值域不 连续
信号与系统总结

信号与系统总结信号与系统是电子信息类专业中的一门重要课程,它是电子学、通信学和控制学的基础学科之一。
在学习这门课程过程中,我们主要学习了信号与系统的基本概念、性质以及在实际应用中的分析和处理方法。
以下是我对信号与系统这门课程的总结。
首先,信号是信息的载体。
在信号与系统的学习中,我们对信号进行了分类。
根据信号的特性,可以将信号分为连续时间信号和离散时间信号。
连续时间信号是定义在连续时间域上的函数,而离散时间信号是定义在离散时间点上的序列。
对于连续时间信号,我们学习了信号的时域表示、频域表示以及系统对信号的影响。
在时域上,我们可以通过信号的波形图来观察信号的特性,通过信号的傅里叶变换可以得到信号的频谱。
而对于离散时间信号,我们学习了离散时间信号的表示方法、离散时间傅里叶变换以及系统对离散时间信号的影响。
其次,系统是对信号的处理。
在信号与系统的学习中,我们主要学习了线性时间不变系统(LTI系统)。
线性时间不变系统是指对输入信号进行线性运算并且其输出与输入信号的时间关系不变的系统。
我们通过系统的冲激响应来描述系统的性质,并通过线性卷积来描述系统对输入信号的处理。
此外,我们还学习了系统的频率响应,包括系统的幅频响应和相频响应。
幅频响应描述了系统对不同频率信号的幅度放大或衰减程度,而相频响应描述了系统对不同频率信号的相位延迟或提前程度。
最后,信号与系统的分析和处理方法。
在信号与系统的学习中,我们学习了多种信号与系统的分析和处理方法。
其中,时域分析方法主要包括信号的加法、乘法、移位、数乘和反褶等运算,以及系统的时域特性分析方法,如单位冲激函数、单位阶跃函数、单位斜坡函数、冲击响应和阶跃响应等。
频域分析方法主要包括信号的傅里叶变换、频域性质分析和系统的频率响应分析。
此外,我们还学习了离散时间信号的离散傅里叶变换(DFT)和离散傅里叶级数(DFS),以及系统的差分方程和差分方程的解法。
总的来说,信号与系统是电子信息类专业中一门重要的基础课程,它为我们理解和掌握电子信号的基本原理和处理方法提供了基础。
信号与系统第一章(重点)

-1
图 1.2-1 连续时间信号
离散时间信号:亦称序列, 其自变量n是离散的, 通常为整数。 若是时间信号 (可为非时间信号), 它只在某些不连续的、 规定的瞬时给出确定的函数值, 其它 时间没有定义, 其幅值可以是连续的也可以是离散的, 如图1.2-2所示。
x1(n) 2
1
只能取-1,0,1,2
0
t
-1
6. 单位冲激偶函数δ′(t)
单位冲激函数的导数。
(t)
1 lim
0
u(t
)
2
u(t
2)
(t)
d(t)
dt
1 lim
0
(t
)
2
(t
2)
(1.3-30) (1.3-31)
式(1.3-31)取极限后是两个强度为无限大的冲激函数,
0
t
-k
3. 复指数信号
f(t)=kest
s=σ+jω为复数, σ为实部系数, ω为虚部系数。 借用欧拉公式: kest=ke(σ+jω)t=keσt e jωt=keσt cosωt+jkeσt sinωt 复指数信号可分解为实部与虚部。 实部为振幅随时间变化的余弦函数, 虚部为振幅随时间变化的正弦函数。
第1章 信号与系统
1.1 信号与系统概述 1.2 信号及其分类 1.3 典型信号 1.4 连续信号的运算 1.5 连续信号的分解 1.6 系统及其响应 1.7 系统的分类 1.8 LTI系统分析方法
1.1 信号与系统概述
人们每天都与载有信息的信号密切接触:
听广播、看电视是接收带有信息的消息; 发短信、打电话是传送带有信息的消息。
信号与系统-复习总结

信号与系统-复习总结.doc信号与系统复习总结前言信号与系统是电子工程、通信工程和自动控制等专业的基础课程之一。
它主要研究信号的特性、系统的分析方法以及信号与系统之间的相互作用。
通过对信号与系统的学习,可以为后续课程打下坚实的基础。
以下是我对信号与系统课程的复习总结。
第一部分:信号的基本概念1.1 信号的分类信号可以分为连续时间信号和离散时间信号,根据信号的确定性与否,又可以分为确定性信号和随机信号。
1.2 信号的基本属性信号的基本属性包括幅度、频率、相位和时延等。
这些属性决定了信号的基本特性。
1.3 信号的运算信号的基本运算包括加法、减法、乘法、卷积等。
这些运算是信号处理中的基础。
第二部分:系统的特性2.1 系统的分类系统可以分为线性时不变系统(LTI系统)、线性时变系统、非线性系统等。
2.2 系统的特性系统的特性包括因果性、稳定性、可逆性等。
这些特性决定了系统对信号的处理能力。
2.3 系统的数学模型系统的数学模型通常包括差分方程、状态空间模型、传递函数等。
第三部分:信号与系统的分析方法3.1 时域分析时域分析是直接在时间轴上对信号进行分析的方法,包括信号的时域特性分析和系统的时域响应分析。
3.2 频域分析频域分析是将信号从时间域转换到频率域进行分析的方法,包括傅里叶变换、拉普拉斯变换等。
3.3 复频域分析复频域分析是利用拉普拉斯变换将信号和系统从时域转换到复频域进行分析的方法。
3.4 系统的状态空间分析状态空间分析是一种现代的系统分析方法,它利用状态变量来描述系统的动态行为。
第四部分:信号与系统的实际应用4.1 通信系统信号与系统的知识在通信系统中有着广泛的应用,如信号的调制与解调、信道编码与解码等。
4.2 控制系统在控制系统中,信号与系统的知识用于系统的设计和分析,如PID控制器的设计、系统稳定性分析等。
4.3 滤波器设计滤波器设计是信号处理中的一个重要应用,包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器的设计。
信号与系统 第一章 小结

4. 信号 f ( t ) 分解: • 直流分量与交流分量
• 偶分量与奇分量 1 1 f o ( t ) f ( t ) f ( t ) f e ( t ) f ( t ) f ( t ) 2 2 • 脉冲分量 f (t ) f ( ) (t ) d
第一章
绪论
1. 信号的描述、分类、典型信号 描述:表达式、波形、频谱(门函数为例) 分类:周期非周期、时间连续离散、确定随机信号 典型信号:门函数、指数函数、正弦函数、复指数函 数、抽样函数、高斯(钟形)函数、冲激函 数、阶跃函数 2. 信号的运算及变换 不连续点邻域的积分为0,导数为冲激函数; 信号变换6种方法:例题1-1(P.11)
H s Re( s) 0
ht 收敛或绝对可积
稳定系统:
H s 的极点位于S平面左半开 H j
6. 线性时不变系统的性质:
输入信号 激励
系统
输出信号 响应
e (t ) e (t ) r
1 1 2 2 1
et r f t
et r f t
3. 阶跃函数和冲激函数
(t ) d t 1 (t ) 0 t 0
(t ) ( t )
at
1 t a
(t ) f (t t 0) f (t0 ) (t )
uat ut
f (t ) t t0 f t t0
(k )
1f
(t ) 2 r 2 f (t )e e源自( n)t t
rf rf
(k )
( n)
t t
t r f t h(t )
信号与系统总结报告

信号与系统总结报告信号与系统是一门电子信息类本科阶段的专业基础课。
通过本学期对该课程的学习,我了解了什么是信号,什么是系统,掌握了基本的信号分析的理论和方法和对线性时不变系统的描述方法,并且对求解微分方程有了一定的了解。
最后学习了傅里叶变换和拉普拉斯变换,明白了如何用matlab去求解本课程的问题。
1.1信号与系统信号是一种物理量(电,光,声)的变化,近代中使用的电台发出的电磁波也是一种信号,所以信号本身是带有信息的。
而系统是一组相互有联系的事物并具有特定功能的整体,又分为物理系统和非物理系统,每一个系统都有各自的数学模型,两个不同的系统可能有相同的数学模型。
1.2信号从不同的角度看,信号也有不同的分类。
信号可分为确定性信号和随机性信号,周期信号与非周期信号,连续时间信号与离散时间信号。
还有一种离散信号:采样信号和数字信号。
在该课程中,还有几种类似数学函数的信号,指数信号和正弦信号;其表达式与对应的函数表达式也类似。
另外,如果指数信号的指数因子为一复数,则称为复指数信号,其表达式为 f(t)=Kest,s=σ+jw。
还有一种Sa(t)函数,其表达式为sint/t。
从数学上来讲,它也是一个偶函数。
1.2.1 信号的运算另外,信号也可以像数字那样进行运算,可以进行加减,数乘运算。
信号的运算以图像为基础进行运算;包括反褶运算:f(t)->f(-t),以y轴为轴,将图像对称到另一边,时移运算:f(t)->f(t-t1),该运算移动法则类似数学上的左加右减;尺度变换运算:f(t)->f(2t)表示将图像压缩。
除此之外,信号还有微分,积分运算,运算过后仍然是一个信号。
1.2.2信号的分类单位斜边信号指的是从某一时刻开始随时间正比例增长的信号,表达式为R (t)=t,(t>=0)。
单位阶跃信号从数学上来讲,是一个常数函数图像;单位冲激信号有不同的定义方法,狄拉克提出了一种方法,因此它又叫狄拉克函数;用极限也可以定义它,冲激函数也可以把冲激所在位置处的函数值抽取出来。
《信号与系统》第一章

学习目标
1
掌握信号与系统的基本概念、性质和分类,理解 信号与系统在信息传输、处理和应用中的重要地 位和作用。
2
掌握信号的描述和分析方法,包括时域和频域分 析,理括线性时不变系 统和线性时变系统,理解系统的基本特性、分析 和设计方法。
02
系统的基本概念和分类
阐述了系统的基本概念,系统分类(如线性时不变系统、非线性系统 、离散系统等),以及系统的描述方法。
信号与系统在通信工程中的应用
讨论了信号与系统在通信工程中的重要性,如调制解调、频分复用等 。
信号与系统在控制工程中的应用
探讨了信号与系统在控制工程中的应用,如PID控制器、控制系统稳 定性分析等。
下章预告
傅里叶变换
介绍傅里叶变换的定义、性质 及其在信号处理中的应用。
系统的状态变量分析
通过状态变量法对线性时不变系统 进行分析,包括状态方程的建立、 解法以及系统的稳定性分析。
拉普拉斯变换与Z变换
介绍拉普拉斯变换和Z变换的定 义、性质及其在连续系统和离 散系统分析中的应用。
系统的能控性和能观性
介绍能控性和能观性的概念、 判据以及其在控制系统设计中 的应用。
02
在实际应用中,需要根据具体需求和场景,选择合适的系统和信号处理方法, 以达到最佳的处理效果。
03
深入研究和理解信号与系统之间的相互作用关系,有助于更好地应用信号处理 技术,推动相关领域的发展和创新。
05
CATALOGUE
总结与展望
本章总结
信号的基本概念和分类
介绍了信号的基本概念、信号的分类(如连续信号、离散信号、周期 信号、非周期信号等)以及信号的表示方法。
CATALOGUE
信号的基本概念
信号与系统第1章总结

第一章:信号与系统的基本概念1.1 信号的基本概念一、什么是信号信号是信息的表现形式。
例如,光信号、声信号和电信号等。
二、信号的分类1、确定性信号和随机信号()f t 确定性信号有确定的函数表达式2、周期信号和非周期信号f(t)=f(t+kT) k=1,2,3...周期信号3、连续时间信号和非连续时间信号时间t 连续的是连续时间信号,时间变量t 只取特定值的为离散时间信号4、有始信号和无始信号0t t <若,0()0,f t t =为起始点三、典型的连续时间信号1、正旋信号21()cos(),,,2f t A wt T f w f w T πϕπ=+===AMFMPM A w ϕ不为常数,调幅信号不为常数,调频信号不为常数,调相信号欧拉公式:cos 2sin 2j j e e j j ee jθθθθθθ-+--=⎧⎪⎪⎨⎪⎪⎩=2、指数信号为实数αα,)(t ke t f =3、复指数信号(一种数学模型)(),st f t ke s jw δ==+4、抽样信号sin (),a ts t t t =-∞<<∞性质1、偶函数,随着t 的增大,幅值减小0sin 2()lim 1a x tt t →==性质:t=0,s3sin 0,1, 2...t t k k π=⇒==±±性质:过零点1.2 信号的运算一、信号的时域变换1、平移(时移)000()()()()()()f t f t t f t f t t f t f t t =±→-→+右移,左移2、反转以纵轴为中心,左右反转()()f t f t =-t 3、展缩{011,()(),a a f t f at <<>=,扩展压缩二、信号的相加、相乘、微分和积分1、相加:对应点相加2、相乘:主要用于信号的截取3、微分:t 4∞、积分:指(-,0)上积分t-(),f d t ττ∞⎰为变量t<0()0t 1()t>1()1t t t f d f d tf d ττττττ-∞-∞-∞=<<==⎰⎰⎰当时,当0时,当时,1.3 奇异信号----------------------------------------------------一种数学模型信号的取值或导数出现了奇异值(极大),趋于无穷一、单位阶跃信号{0,01,0()t t t ε<>=t因果信号{0,0(),0()()t f t t f t t ε<>=二、单位冲击信号----------------也是一种数学模型作用时间极短,但幅值极大{()0,0()1,1t t t dt δδ+∞-∞=∀≠=⎰即冲激强度为性质1:抽样性0000001.()()(0)()2.()()(0)()3.()()(0)()(0)4.()()()()()t t t t f t t f t f t t t f t t f t t d f t d f f t t t d f t t t d f t δδδδδδδδ+∞+∞-∞-∞+∞+∞-∞-∞=-=-==-=-=⎰⎰⎰⎰性质2:卷积特性1212()()()()()f t f t f t f f t d τττ+∞-∞=*=-⎰0005.()()()()()6.()()()()()f t t f t d f t f t t t f t t d f t t ττδτδτδτδτ+∞-∞+∞-∞*=-=*-=--=-⎰⎰注:一个信号与冲激信号的卷积就是信号本身三、阶跃、冲激信号的关系 {0,01,0()()()()t t t d t d t t dt δττεεδ<-∞>===⎧⎰⎨⎩注:阶跃信号求导即为冲激信号1.4 信号分解为冲激信号的叠加1.5系统及分类一、分类1.连续时间系统:微分方程离散时间系统:差分方程2.线性系统:叠加性、齐次性f(t)→系统→y(t) kf(t)→系统 →ky(t)f1(t)+f2(t)→系统→y1(t)+y2(t)当齐次和叠加只要有一个不满足则是非线性的3.因果系统:响应不早于激励非因果系统4.时变系统是不变系统:输入输出都做相应的变化,并不随时间变化二、线性时不变系统(LTI 系统)性质1:线性、齐次性、叠加性Yzi(t):零输入响应,外部激励为0,仅在初始状态作用下的响应 Yzs(t):零状态响应,仅在外部激励作用下的响应性质2:是不变性性质3:微分、积分性f(t)→系统→y(t)()y ()f t t ''→→系统t -()()tf t dt y t dt-∞∞→→⎰⎰系统 性质4:因果性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续时间信号
离散时间信号
时间区间 (,)T T -
(,)-∞∞
(,)N N - (,)-∞∞
瞬时功率 2
()f t
能 量
2
()T
T
E f t dt -=⎰
2
2
lim ()()T
T T
E f t dt f t dt →∞-∞
-∞
==⎰
⎰
2
()N
n N
E x n =-=
∑
2
()n E x n ∞
=-∞
=
∑
平均功率
2
12()T
T
T
P f t dt -=
⎰
2
1
2lim
()T
T T
T
P f t dt →∞-=⎰
2
1()21N
n N P x n N =-=+∑ 2
1()21lim N
n N
N P x n N =-→∞=+∑ 周期信号
()()f t f t mT =+ 0,1,2,m =±±⋅⋅⋅⋅⋅⋅ ()()x n x n mn =+ 0,1,2,m =±±⋅⋅⋅⋅⋅⋅
000()j T j t T e e ωω+= 00
2T π
ω=
线 性
11221212()()
()()()()()()()()()()
f t y t af t ay t f t y t f t y t f t f t y t y t ⎧→⎪
→⎪
⎨
→→⎪
⎪+→+⎩
若齐次性则若,可加性则 ⎧⎪
⎨⎪⎩
分解性
线性系统零状态线性零输入线性
0()()()()()()x f n y t y t y t y n y n y n =+=+
判断方法:先线性运算,后经系统的结果=先经系统,后线性运算的结果 时不变性
若()()f f t y t →,则00()()f f t t y t t -→- 若()()x n y n =,则00()()x n n y n n -=-
系统时不变性:
1电路分析:元件的参数值是否随时间而变化 2方程分析:系数是否随时间而变
3输入输出分析:输入激励信号有时移,输出响应信号也同样有时移。
功率信号:0P E <<∞=∞且 能量信号:0E P <<∞=∞且 备注 : Z ⎧⎧⎪⎪
⎧⎪
⎪⎪⎨⎪
⎨⎨⎪
⎪⎪⎪⎩⎩⎪⎪⎩
时域分析频域输入输出系统模型系统模型变换域分析复频域域状态变量系统模型
第一章引论。