放大电路基础知识介绍
放大电路基础知识

第一节 半导体二极管
2.最大反向工作电压URM 最大反向工作电压URM是指二极管工作时两端所允许加的最
大反向电压。为保证二极管安全工作、不被击穿,通常URM 约为反向击穿电压UR的一半。 3.反向电流 反向电流是指二极管加最高反向工作电压时的反向电流。反 向电流越小,管子的单向导电性能越好。常温下,硅管的反 向电流一般只有几微安;锗管的反向电流较大,一般在几十 至几百微安之间。 4.最高工作频率
上-页 下-页 返回
第二节 半导体三极管
由图1-14所示的输出特性曲线可以看出如下三点特性。 曲线的起始部分较陡,且不同的IB曲线的上升部分几乎重合,
表明当UCE较小时,只要UCE略有增大, IC就迅速增加,但 IB几乎不受IC的影响。 当UCE较大(例如大于1 V)后,曲线比较平坦。 曲线是非线性的。由于三极管的输入、输出特性曲线都是非 线性的,所以它是非线性器件。 六、晶体管的主要参数 1.穿透电流 穿透电流ICEO是指基极开路时集一射极之间的电流。
在数字电路中,三极管作为开关元件,主要工作在截止状态 或饱和状态,并在截止状态和饱和状态之间经过短促的放大 状态进行快速转换和过渡。
上-页 下-页 返回
第二节 半导体三极管
(1)截止状态 当开关S接位置1时,三极管发射结电压 UBE<UT,相当于开关断开状态,等效电路如图1-11 (b) 所示。
是具有电流放大作用。三极管按其结构不同,分为NPN型和 PNP型两种。相应的结构示意图及电路符号如图1-8所示。 在制作三极管时,其内部的结构特点是: 发射区掺杂浓度高; 基区很薄,且掺杂浓度低; 集电结面积大于发射结面积。 以上特点是三极管实现放大作用的内部条件。 另外,三极管按其所用半导体材料不同,分为硅管和锗管; 按用途不同,分为放大管、开关管和功率管;按工作频率不 同,分为低频管和高频管;按耗散功率大小不同,分为小功
3 放大电路基本知识

共基极放大电路
RB1
一、求“Q”(略)
二、性能指标分析 uo ib RL RL Au ui ib r be rbe ib rbe r be ui Ri ie (1 )ib 1 rbe Ri RE // (1 ) Ro = RC
+ Rs
RE
交流通路
IBQ = (VCC – UBEQ) / [RB +(1+ RE]
ICQ = I BQ
UCEQ = VCC – ICQ RE
二、性能指标分析
ii + Rs
ib
RB
ic
ii
R
ib
ic
RE
+ R uo
L
+
us
s
rbe ib RB + RE RL uo
RL = RE // RL
UCEQ 15 2(3 1.5) 6 (V)
RB1 C1 + RS RB2 us
RC
+VCC C2
+
I BQ 20 (A)
2)求 Au,Ri,Ro , Aus
+
RL
+
RE
+ uo
CE
r be 200 26 / I BQ 200 26 / 0.02 1 500
电压放大倍数:
] RB // [rbe (1 ) RL
ii
ib
ic
ii
R
s
ib
rbe RB RE
ic
输出电阻:
+
电子技术基础与技能13.放大电路的基本知识

【解析】 a) 三极管的发射结正偏,集电结反偏,管子处于放大状态。 b) 三极管发射结和集电结均反偏,管子处于截止状态。 c) 三极管的发射结和集电结均正偏,管子处于饱和状态。晶体三极管的主要参数参数电流放大
系数
反向
ICBO
饱和
电流
ICEO
ICM
极限
参数
PCM
U(BR)CEO
电路放大器; 4、按用途分,可分为电压放大器、电流放大器和功率放大
器。 注:本章所学的是低频小信号放大器。
【组成】放大器由信号源、放大电路、直流电源和 负载四部分组成。
【方框图】其中信号源代表被放大的弱小电信号; 负载代表实际用电设备(例如扬声器、显像管等)。
(a)组成框图
(b)内部结构
放大电路的主要性能指标
名称
直流 放大系数
交流 放大系数
集电极—基极 反向饱和电流
集电极—发射极 反向饱和电流 (穿透电流)
集电极最大 允许电流
集电极最大 允许耗散功率
集电极-发射极 反向击穿电压
说
明
反映晶体管电流放大能力强弱的参数 = Ic IB
反正映弦晶信体号管时电,流可放用大正能弦力量的的参 瞬数 时值表= 示IIBc 。当 = i输c 入
(1)放大倍数:衡量放大电路放大能力的指标,用字母A表
示。它是在输出波形不失真的情况下输出端电量与输入端 电量的比值。
(2)输入电阻:为放大器输入端(不含信号源内阻Rs)的 交流等效电阻。
(3)输出电阻:为放大器输出端(不含外接负载电阻RL)的 交流等效电阻。
(1)放大倍数:衡量放大电路放大能力的指标,用字母A表
AP
电工电子技术-放大电路基础知识

10.1.1 共射极基本放大电路的组成
如右图所示为典型的共射 极放大电路。电路中各元件的 作用如下。
三 极 管 VT : 它 是 放 大 电 路的核心,是能量转换控制器 件,起电流放大作用,即
ΔiC=βΔiB 集电极电源电压UCC:除为输出信号提供能量外,它还保 证集电结处于反向偏置,以使三极管起到放大作用。UCC一般 为几伏到几十伏。
基极偏置电阻RB:它和电源UCC一起给基极提供一个合适 的基极电流IB,并保证发射结处于正向偏置,使三极管工作在 放大区。
集电极负载电阻RC:它一方面提供直流通路,使UCC对三 极管的集电极反向偏置;另一方面将集电极电流的变化变换为 电压的变化,以实现电压放大。
耦合电容C1和C2:它们的作用是“隔直流、通交流”,即 把信号源与放大电路之间、放大电路与负载之间的直流隔开, 而保证交流信号畅通无阻。耦合电容一般采用电解电容。使用 时,应注意它的极性与加在它两端的工作电压极性相一致。
uCE等表示。
负载电阻RL:是放大电路的负载。
10.1.2 放大电路中电压、电流符号的规定
(1)直流分量用IB、IC、UBE、UCE等表示; (2)交流分量的瞬时值用ib、ic、ube、uce等表示; (3)交流分量的有效值用Ib、Ic、Ube、Uce等表示; (4)总量(即直流分量和交流分量的叠加)用iB、iC、uBE、
放大电路的四种基本类型

放大电路的四种基本类型
1.直流耦合放大电路
直流耦合放大电路是一种常用的放大电路。
它可以将输入信号通过一个放大器进行放大,并输出到负载中。
这种电路适用于需要高增益和线性度的应用,比如音频放大器。
2.电容耦合放大电路
电容耦合放大电路也是一种常用的放大电路。
它使用电容将输入信号传递到放大器的输入端,并将放大后的信号输出到负载中。
这种电路适用于对低频响应要求不高的应用,比如射频放大器。
3.变压器耦合放大电路
变压器耦合放大电路是一种少见但重要的放大电路。
它使用变压器将输入信号传递到放大器中,并将放大后的信号输出到负载中。
这种电路适用于需要隔离输入和输出信号、同时保持宽带性能的应用,比如视频放大器。
4.光耦合放大电路
光耦合放大电路是一种特殊的放大电路。
它使用光耦进行信号传输和隔离,可以有效地避免共模干扰和地回路干扰。
这种电路适用于需要隔离输入和输出信号、同时保持较高带宽等优秀性能的应用,比如光纤收发器。
运算放大器学习的12个基础知识点

运算放大器学习的12个基础知识点一、一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么?1、为芯片内部的晶体管提供一个合适的静态偏置,芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点。
但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了。
因为芯片内部的晶体管无法抬高地线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分析。
2、消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡,这也是其得名的原因。
二、同相比例运算放大器,在反馈电阻上并一个电容的作用是什么?1、反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。
2、防止自激。
三、运算放大器同相放大电路如果不接平衡电阻有什么后果?烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。
四、在运算放大器输入端上拉电容,下拉电阻能起到什么作用?是为了获得正反馈和负反馈,这要看具体连接,比如我把现在输入电压信号,输出电压信号,再在输出端取出一根线连到输入段。
那么由于上面的那个电阻,部分输出信号通过该电阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。
因为信号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。
五、运算放大器接成积分器,在积分电容的两端并联电阻RF的作用是什么?用于防止输出电压失控。
六、为什么一般都在运算放大器输入端串联电阻和电容?如果你非常熟悉运算放大器的内部电路的话,你就会知道,不论什么运算放大器都是由几个晶体管或是mos管组成。
在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时候,会输出近似于正电压的电平,反之也一样。
但这样运放似乎没有什么太大的用处,只有在外接电路的时候,构成反馈形式,才会使运放有放大功能。
七、运算放大器同相放大电路如果平衡电阻不对有什么后果?1、同相反相端不平衡,输入为0时也会有输出,输入信号时输出值总比理论输出值大或小一个固定的数。
放大电路的基本原理和分析方法

(一)、直流电路的画法 1.交直流共存的电路
Rb
C1
+ UI _
RC C2 T
+VCC
+ U0
_
2.静态电路的画法 (1)电容在直流通路中相当于开路 (电感在直流通路中相当于短路)
在画直流通路时,电容c1左边的部分相当于断开、c2右边 的部分也相当于断开,去掉断开的部分则直流通路就画出 来了如图
载提供的最大输出功率,用Pom表示。 2.指放大电流的最大输出功率Pom与直流电源消耗的功率Pv之比,即 η= Pom/ Pv
六、失真系数 定义:各次谐波总量与基波分量之比,即 D=√B22+B32+····/B1 (B1,B2,B3····分别为输出信号的基波、 二次谐波、三次谐波····的幅值)
七、通频带 定义:放大倍数下降到中频放大倍数的0.707倍的两点所限定的频率
范围。
1.4放大电路的基本分析方法
定性分析放大电路的工作分为两方面的内容: 1.静态分析,即计算不加输入信号时放大电路的工作状态,估算静态 工作点。 2.动态分析,即u,输入电阻Ri,输出电阻R0
(2)整理,因为三极管的发射极接地是地,同时理想电压接 地,他们可以共地。如下图
+
UI
Rb
_
+
T
RC
U0
_
Rb IBQ
RC
ICQ
T
+
VCEQ
-
+VCC
3.静态分析 定义:即分析只有直流电压VCC作用时电路中的电流和电压。亦即求 IBQ、ICQ、VCEQ 一般来说三极管的基极和发射极的电压为VBEQ=0.7V 则:IBQ=(VCC -VBEQ)/Rb ICQ=βIBQ VCEQ=VCC-ICQ*RC
放大电路基本知识

IE
UE IB
UBE
由输入特性曲线
详细
本质:加了 形成了负反馈 本质:加了Re形成了负反馈
Re 的作用
T(℃)↑→IC↑→UE ↑→UBE↓(UB基本不变)→ IB ↓→ IC↓ ℃ ( 基本不变) 反馈的一些概念: 反馈的一些概念: 将输出量通过一定的方式引回输入回路影响输入量的措 施称为反馈。 施称为反馈。 直流通路中的反馈称为直流反馈。 直流通路中的反馈称为直流反馈。 反馈的结果使输出量的变化减小的称为负反馈, 反馈的结果使输出量的变化减小的称为负反馈,反之称 为正反馈。 为正反馈。 IC通过 e转换为 E影响 BE 通过R 转换为∆U 影响U 温度升高I 增大, 温度升高 C增大,反馈的结果使之减小 Re起直流负反馈作用,其值越大,反馈越强,Q点越稳定 起直流负反馈作用,其值越大,反馈越强, 点越稳定 Re有上限值吗? 有上限值吗?
-
ui = ib rbe
′ uo = − βib RL
.
′ uo RL ′ RL = RC // RL Au = = −β ui rbe
负载电阻越大, 负载电阻越大,放大倍数越大
<引申级联:100×100 = 10000?> 引申级联: × 引申级联 ?
继续
.
3 、求 R i
由定义: 由定义:
Ri =
ii
+
(放大能力) 放大能力)
io
+
RS uS 信号源
+
+
+
ui +
放大电路
uo +
RL
负载
(1)电压放大倍数 )电压放大倍数:
(2)电流放大倍数 )电流放大倍数: (3)互阻增益 )互阻增益: (4)互导增益 )互导增益:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输入信号为零时,运放两输入端的基极静态电流不相等,其差值称为输入失调电流
。数值越小,表明输入级管子的对称性越好。
(4)共模抑制比
开环情况下,差模放大倍数 与共模放大倍数 之比, 越大,运放对零漂的抑制能力越强。
(5)输出电压峰峰值
放大器在空载情况下,输出的最大不失真电压的峰峰值。
3.理想集成运放
缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。
改进电路如图(b)所示。在两管发射极接入稳流电阻 。使其即有高的差模放大
倍数,又保持了对共模信号或零漂强抑制能力的优点。
在实际电路中,一般都采用正负两个电源供电,如图所示(c)所示。
输入信号(v)
Vi1=0
Vi1=0.01
Vi1=-0.01
Vi1=0.01
Vi1=0.03
Vi1=-0.01
Vi1=0.03
Vi2=0
Vi2=-0.01
Vi2=0.01
Vi2=0.01
Vi2=-0.01
Vi2=0.03
Vi2=0.03
VOdA1
1.032
-1.027
2.071
-2.046
VOdA2
-1.027
(2)阻塞
现象:运放工作于闭环状态下,输出电压接近正电源或负电源电压极限值,不能调零,信号无法输入。
原因:输入信号过大或干扰信号过强,使运放内的某些管子进入饱和或截止状态。
排除方法:断开电源再重新接通,或将两个输入端短接一下即能恢复正常。
(3)自激
现象:工作不稳定,当人体或金属物靠近它时,表现更为显著。
1.032
2.046
2.071
VOdA3
-2.056
2.061
4.115
4.119
VOcA1
2.249mv
12.249mv
32.248 mv
VOcA2
2.249mv
12.249mv
32.248 mv
VOcA3
2.044mv
2.044mv
2.043mv
KCMRR
输出信号(v)
输入信号(v)
Vi1=0.01V,F=1KHz
理想运放的条件:
(1)开环电压放大倍数 ;
(2)输入电阻 ;
(3)输出阻抗 0;
()共模抑制比 。
结论:
①理想运放的两输入端电位差趋于零。
②理想运放的输入电流趋于零。
3集成运算放大器构成的基本运算电路
1.反相比例运算放大器
(1)电路结构
反相比例运算放大器电路及其等效电路如图所示。
引入电压负反馈。
虚短:N、P两点电位相同,相当于短路,但内部并未短路,称为“虚假短路”。
保护电路如图所示。
若输入端出现过高电压,集成运放输出端电压将受到稳压管稳压值的限制,将其稳定在安全范围内。
2.集成运放常见故障分析
(1)不能调零
出现这种故障是输出电压处于极限状态,或接近正电源,或接近负电源。如果这是开环调试,则属正常情况。当接成闭环后,若输出电压仍在某一极限值,调零也不起作用,则可能是接线错误、电路上有虚焊点、或运放组件损坏。
正弦信号
Vi2=0.01V,F=1KHz,相位与Vi1相反
正弦信号
四.实验仪器及主要器件
1.仪器
示波器
低频信号发生器
直流稳压电源
2.元器件
集成运放OP07 3只
电阻若干
()中间级:由高增益的电压放大电路组成。
()输出级:由三极管射极输出器互补电路组成。
()偏置电路:为集成运放各级电路提供合适而稳定的静态工作点。
集成运放电路符号如图所示。
新标准旧标准
2.集成运放的主要参数
(1)开环差模电压放大倍数
无反馈时集成运放的放大倍数。
(2)输入失调电压
当输入电压为零时,为了使放大器输出电压为零,在输入端外加的补偿电压,反映了运放的失调程度。 越小,输入级对称性越好。
Avd=(RP+2R1)/RP
先定RP,通常在1KΩ~10KΩ内,这里取RP=1KΩ,则可由上式求得R1=99RP/2=49.5KΩ
取标称值51KΩ。通常RS1和RS2不要超过RP/2,这里选RS1= RS2=510,用于保护运放输入级。
A1和A2应选用低温飘、高KCMRR的运放,性能一致性要好。
三.实验内容
因为 ,则 ,
于是有
和
上式中
和
因 ,故
为使电路平衡,选择 , ,得
③结论:输出电压正比于两个输入电压之差,该电路完成了减法运算。
该电路又可以看成差分运放电路。可由图(b)和(c)输出电压可看成是两个输入电压分别作用于差分式减法运算器又叠加而成。
如果 = ,则
故电路又称为减法器。
例集成运算能作为反相器或电压跟随器使用吗?
1差分放大电路
(1)对共模信号的抑制作用
差分放大电路如图所示。
特点:左右电路完全对称。
原理:温度变化时,两集电极电流增量相等,即 ,使集电极电压变化量相等, ,则输出电压变化量 ,电路有效地抑制了零点漂移。若电源电压升高时,仍有 ,因此,该电路能有效抑制零漂。
共模信号:大小相等,极性相同的输入信号称为共模信号。
(1)不能调零
出现这种故障是输出电压处于极限状态,或接近正电源,或接近负电源。如果这是开环调试,则属正常情况。当接成闭环后,若输出电压仍在某一极限值,调零也不起作用,则可能是接线错误、电路上有虚焊点、或运放组件损坏。
(2)阻塞
现象:运放工作于闭环状态下,输出电压接近正电源或负电源电压极限值,不能调零,信号无法输入。
(2)在保证有关电阻严格对称的条件下,各电阻阻值的误差对该电路的共模抑制比KCMRR没有影响;
(3)电路对共模信号几乎没有放大作用,共模电压增益接近零。
因为电路中R1=R2、 R3=R4、 R5=R6 ,故可导出两级差模总增益为:
通常,第一级增益要尽量高,第二级增益一般为1~2倍,这里第一级选择100倍,第二级为1倍。则取R3=R4=R5=R6=10KΩ,要求匹配性好,一般用金属膜精密电阻,阻值可在10KΩ~几百KΩ间选择。则
引入电压串联负反馈。
(2)闭环放大倍数
(3)结论:同相输入比例运算电路的放大倍数与 无关,只取决于 与 的比值;输出电压与输入电压同相且成比例关系。
4)集成运算放大器使用常识
1.集成运放的保护措施
(1)电源极性接反的保护
如图所示。主要用于高电源电压的场合。
保护原理:利用二极管的单向导电性,当电源极性为正时,它正常导通;一旦电源极性接反,二极管反偏截止,电源不通,保护了运放。
原因:输入信号过大或干扰信号过强,使运放内的某些管子进入饱和或截止状态。
排除方法:断开电源再重新接通,或将两个输入端短接一下即能恢复正常。
(3)自激
现象:工作不稳定,当人体或金属物靠近它时,表现更为显著。
原因:RC补偿元件参数不恰当,输出端有容性负载或接线太长等。
排除方法:可重新调整RC补偿元件参数,加强正、负电源退耦合或在反馈电阻两端并联电容等。
解集成运放能作为反相器使用,如图(a)所示。集成运放也可作为电压跟随器,如图(b)所示。
2.信号转换电路
(1)电压/电流转换器
①电路组成
同相输入式电压/电流转换器电路如图所示。
为输入端电阻; 为负载电阻; 为平衡电阻。
4)集ห้องสมุดไป่ตู้运算放大器使用常识
1.集成运放的保护措施
(1)电源极性接反的保护
如图所示。主要用于高电源电压的场合。
保护原理:利用二极管的单向导电性,当电源极性为正时,它正常导通;一旦电源极性接反,二极管反偏截止,电源不通,保护了运放。
(2)输入保护
保护如图所示。
无论是输入信号的极性是正是负只要超过二极管导通电压,则 或 中就会有一个导通,导通压降为0.7 V从而限制了输入信号的幅度,起到了保护作用。
(3)输出保护
4 运算电路
(1)加法运算电路(加法器)
①电路组成
②加法运算关系
在虚地点N,因
所以有
整理可得
若取 ,则
如果 =R,则
③结论:电路的输出电压等于各输入电压之和,完成了加法运算。
(2)减法运算电路(减法器)
①电路组成
减法运算电路是一个既有反相输入信号又有同相输入信号的双端输入的运算放大器电路。
②减法运算关系
(2)输入保护
保护如图所示。
无论是输入信号的极性是正是负只要超过二极管导通电压,则 或 中就会有一个导通,导通压降为0.7 V从而限制了输入信号的幅度,起到了保护作用。
(3)输出保护
保护电路如图所示。
若输入端出现过高电压,集成运放输出端电压将受到稳压管稳压值的限制,将其稳定在安全范围内。
2.集成运放常见故障分析
1.搭接电路
2.静态调试
要求运放各管脚在零输入时,电位正常,与估算值基本吻合。
3.动态调试
根据电路给定的参数,进行高阻抗差分放大电路的输出测量。可分为差模、共模方式输入,自拟实验测试表格,将测试结果记录在表格中。
1实验数据测量
改变输入信号,测量高阻抗差分放大电路的输出。输入数据表格如下:
输出信号(v)
原因:RC补偿元件参数不恰当,输出端有容性负载或接线太长等。
排除方法:可重新调整RC补偿元件参数,加强正、负电源退耦合或在反馈电阻两端并联电容等。
差分放大电路
一.实验目的:
1.掌握差分放大电路的基本概念;
2.了解零漂差生的原理与抑制零漂的方法;
3.掌握差分放大电路的基本测试方法。
二.实验原理:
1.由运放构成的高阻抗差分放大电路