浙江省绍兴市柯桥区2020-2021学年九年级上学期期末数学试题

合集下载

专练08 方程与函数类应用题(20题)2020~2021学年九年级数学上期末考点必杀题(试题解析)

专练08 方程与函数类应用题(20题)2020~2021学年九年级数学上期末考点必杀题(试题解析)

专练08 方程与函数类应用题(20题)1.(2019·山东九年级期末)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y (万件)与销售单价x (元)之间的函数关系如下表格所示:(1)求每月的利润W (万元)与销售单价x (元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【答案】(1)221321600W x x =-+-;(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.(1)由表格可知,y 与x 之间的函数关系是一次函数, 设y 与x 之间的函数关系式为y kx b =+, 将(30,40)和(40,20)代入得:30404020k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩,则y 与x 之间的函数关系式为2100y x =-+, 因此,(16)(16)(2100)W x y x x =-=--+, 即221321600W x x =-+-;(2)由题意得:221321600480x x -+-=, 整理得:26610400x x -+=, 解得26x =或40x =,答:当销售单价为26元或40元时,厂商每月获得的总利润为480万元; (3)由题意得:48003016y ≤≤=, 则0210030x ≤-+≤, 解得3550x ≤≤,将二次函数221321600W x x =-+-化成顶点式为22(33)578W x =--+, 由二次函数的性质可知,在3550x ≤≤范围内,W 随x 的增大而减小, 则当35x =时,W 取得最大值,最大值为22(3533)578570-⨯-+=(万元), 答:当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元. 【点睛】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、解一元二次方程、解一元一次不等式组等知识点,较难的是题(3),熟练掌握二次函数的性质是解题关键.2.(2020·迁安市迁安镇第一初级中学九年级期末)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x 元,填写下表.(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少; (3)求当4≤x≤6时第二个月销售利润的最大值.【答案】(1)52;52+x ;180;180-10x ;(2)60元;(3)2240元 解:(1)若设第二个月的销售定价每套增加x 元,填写下表:故答案为:52;52+x ;180;180-10x(2)若设第二个月的销售定价每套增加x 元,根据题意得: (52-40)×180+(52+x-40)(180-10x )=4160, 解得:x 1=-2(舍去),x 2=8, 当x=-2时,52+x=50(舍去),当x=8时,52+x=60.答:第二个月销售定价每套应为60元. (3)设第二个月利润为y 元. 由题意得到:y=(52+x-40)(180-10x ) =-10x 2+60x+2160 =-10(x-3)2+2250 ∵-10<0∴当4≤x≤6时,y 随x 的增大而减小, ∴当x=4时,y 取最大值,此时y=2240, ∴52+x=52+4=56,即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是2240元. 【点睛】本题考查了二次函数的应用,解题的关键是明确题意,列出相应的关系式,找出所求问题需要的条件. 3.(2019·山东九年级期末)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA ,顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭;(1)求抛物线的函数关系式,并确定喷水装置OA 的高度; (2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1)2724y x x =-++,74米;(2)114米;(3)至少要1⎛+ ⎝⎭米.(1)由题意,将点157,,2,224B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得:1154227424b c b c ⎧-++=⎪⎪⎨⎪-++=⎪⎩,解得274b c =⎧⎪⎨=⎪⎩,则抛物线的函数关系式为2724y x x =-++, 当0x =时,74y =, 故喷水装置OA 的高度74米; (2)将2724y x x =-++化成顶点式为211(1)4y x =--+,则当1x =时,y 取得最大值,最大值为114,故喷出的水流距水面的最大高度是114米;(3)当0y =时,211(1)04x --+=,解得12x =+或102x =-<(不符题意,舍去),故水池的半径至少要12⎛⎫+⎪ ⎪⎝⎭米,才能使喷出的水流不至于落在池外. 【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.4.(2020·保定市第二十一中学九年级期末)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x (元)()40x >,请你分别用含x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元. (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?【答案】(1)1000-10x ,-10x 2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元. 解:(1)∵根据销售单价每涨1元,就会少售出10件玩具, ∵销售量y (件)为:600-10(x-40)=1000-10x ;销售玩具获得利润w (元)为: [600-10(x-40)](x-30) =-10x 2+1300x-30000 故答案为:1000-10x ,-10x 2+1300x-30000;(2)令-10x 2+1300x-30000=10000,解得:x=50 或x=80答:玩具销售单价为50元或80元时,可获得10000元销售利润; (3)根据题意得:10001054044x x -≥⎧⎨≥⎩解得:44≤x≤46由w=-10x 2+1300x-30000=-10(x-65)2+12250 ∵-10<0,对称轴是直线x=65. ∵当44≤x≤46时,w 随增大而增大 ∵当x=46时,W 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元. 【点睛】本题主要考查了二次函数的应用、不等式组的应用等知识点,灵活运用二次函数的性质以及二次函数求最大值是解答本题的关键.5.(2020·河北九年级期末)某种蔬菜的售价1y (元)与销售月份x 之间的关系如图所示,成本2y (元)与销售月份x 之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价-成本) (2)设每千克该蔬菜销售利润为P ,请列出P 与x 之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?【答案】(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=2110633x x -+-,5月份出售这种蔬菜,每千克的收益最大为73元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克. (1)当x=6时,y 1=3,y 2=1, ∵y 1-y 2=3-1=2,∵6月份出售这种蔬菜每千克的利润是2元; (2)设y 1=mx+n ,y 2=a(x-6)2+1,将(3,5)、(6,3)分别代入y 1=mx+n ,得3563m n m n +=⎧⎨+=⎩, 解得:237m n ⎧=-⎪⎨⎪=⎩,∴1273=-+y x ; 将(3,4)代入y 2=a(x-6)2+1,得, 4=a (3-6)2+1, 解得:a=13, ∵()222116141333y x x x =-+=-+,∵P=12y y -=()2222111017741365333333x x x x x x ⎛⎫-+--+=-+-=--+ ⎪⎝⎭, ∵103-<, ∵当x=5时,P 取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大,最大值为73元; (3)当x=4时,P=2110633x x -+-=2, 设4月份的销售量为t 千克,则5月份的销售量为(t+20000)千克, 根据题意得:()72200002200003t t ++=, 解得:t=40000, ∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克. 【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.6.(2020·福建九年级期末)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元. (1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款; (2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.【答案】(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗. 解:(1)∵50<60, ∵120506000⨯=(元),∵答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为120607200⨯=元8800<元, ∵该中学购买的树苗超过60棵. 又∵120100601000.5-+=,∵购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元, 此时所需支付的树苗款超过10000元,而100008800>, ∵该中学购买的树苗不超过100棵. 设购买了()60100x x <≤棵树苗, 依题意,得()1200.5608800x x --=⎡⎤⎣⎦, 化简,得2300176000x x -+=, 解得1220100x =>(舍去),280x =. 答:这所中学购买了80棵树苗. 【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.7.(2020·四川九年级期末)如图,要利用一面足够长的墙为一边,其余三边用总长33m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计).()1每个生态园的面积为48平方米,求每个生态园的边长;()2每个生态园的面积_ (填“能”或“不能”)达到108平方米.(直接填答案)【答案】(1)每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米;理由见详解(2)不能,理由见详解.(1)解:设每个生态园垂直于墙的边长为x 米, 根据题意得:()33+1.523482x x ⨯-=⨯整理,得:212320x x +=﹣, 解得:1=4x 、2=8x (不合题意,舍去),∴ 当=4x 时,33+1.523363424x ⨯-=-⨯=,∴242=12÷.答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米. (2)由(1)及题意可知:()33+1.5231082x x ⨯-=⨯整理得:212720x x +=﹣()22=41241721440b ac ∆-=--⨯⨯=-<∴原方程无实数根∴每个生态园的面积不能达到108平方米.故答案为:不能. 【点睛】本题主要考查一元二次方程的实际应用,关键是通过题意设出未知数得到平行于墙的边长,要注意每个生态园开有1.5m 的门,然后根据题意列出一元二次方程即可;在解第二问时要注意利用一元二次方程根的判别式来分析.8.(2018·河北新河中学九年级期末)如图,在矩形 ABCD 中,AB =6cm ,BC =8cm ,动点 P 以 2cm /s 的速度从点 A 出发,沿AC 向点 C 移动,同时动点 Q 以 1cm /s 的速度从点 C 出发,沿 CB 向点 B 移动,设 P 、Q 两点移动 ts (0<t <5)后,△CQP 的面积为 Scm 2.在 P 、Q 两点移动的过程中,△CQP 的面积能否等于 3.6cm 2?若能,求出此时 t 的值;若不能,请说明理由.【答案】2 或 3 解:在矩形 ABCD 中, ∵AB =6cm ,BC =8cm ,∴AC =10cm ,AP =2tcm ,PC =(10﹣2t )cm , CQ =tcm ,过点 P 作 PH ⊥BC 于点 H ,易知:PH PC AB AC ==10210t-,∴PH =35(10﹣2t )cm , 根据题意,得12t •35(10﹣2t )=3.6, 解得:t 1=2,t 2=3.答:△CQP 的面积等于 3.6cm 2 时,t 的值为 2 或 3.【点睛】本题考查的是相似三角形的判定与性质,解题关键是对这些知识的熟练掌握及灵活运用.9.(2021·安徽九年级月考)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式; (2)求出图中a 的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?【答案】(1)08x ≤≤时,1020y x =+;8x a <≤时,800y x=;(2)40;(3)7:38到7:50之间 解:(1)当08x ≤≤时,设1y k x b =+,将(0,20),(8,100)的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩, 解得110k =,20b =.∴当08x ≤≤时,1020y x =+. 当8x a <≤时,设2k y x=, 将(8,100)的坐标代入2k y x =, 得2800k =.∴当8x a <≤时,800y x=. 综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =; (2)将20y =代入800y x=,解得40x =, 即40a =; (3)当40y =时,8002040x ==. ∴要想喝到不低于40C ︒的开水,x 需满足820x ≤≤, 即李老师要在7:38到7:50之间接水.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析式是解题关键.10.(2020·内蒙古和林格尔县第三中学九年级月考)某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时)与时间x (小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x ≥时,求出风速y (千米/小时)与时间x (小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.【答案】(1)32,10;(2)640y x=;(3)共有59.5小时 解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =, 解得:640k =. 所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =. (3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =, 得64010x=,解得64x =, 64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】 本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.11.(2020·浙江九年级一模)2020年4月,学校复学后,为确保学生的安全,某校对各教室进行“84”消毒液消毒,如下左图描述了防疫人员消毒阶段室内每立方米空气中含药量()mg y 与时间()min x 的关系:表格记录了消毒结束后室内每立方米空气中含药量()mg y 与时间()min x 的部分数据.(1)求前3分钟消毒阶段y 关于x 的函数表达式;(2)在给出的平面直角坐标系中,根据表中数据画出消毒后y 关于x 的函数图象,并求出该函数表达式;(3)研究表明,当每立方米空气中含药量低于1.2mg 时,对人体无毒害作用,那么在哪个时段学生不能停留在教室里?【答案】(1)y=83x (0≤x≤3);(2)图像见详解,y=24x (x >3);(3)在920分钟到20分钟内不能停留在教室解:(1)设前3分钟消毒阶段的解析式为y=kx ,将(3,8)代入得8=3k ,解得k=83, ∴解析式为:y=83x (0≤x≤3);(2)图像如下:设函数表达式为y=k x, 将(6,4)代入得k=24,∴解析式为:y=24x(x >3); (3)当y=1.2时,在前三分钟内:得1.2=83x (0≤x≤3), 解得x=920, 在后期1.2=24x (x >3), 解得x=20, ∴920<x <20 ∴在920<x <20这段时间内不能回教室. 【点睛】本题考查了反比例函数和一次函数的综合,求出解析式是解题关键.12.(2020·河南九年级其他模拟)某校科技小组进行野外考察,途中遇到一片湿地,为了人员和设备能够安全迅速地通过这片湿地,他们沿着前进路线铺了若干块大小不同的木板,构筑成一条临时通道.根据学习函数的经验,该小组对木板对地面的压强与木板的面积之间的关系进行探究.已知当压力不变时,木板对地面的压强()P Pa 与木板面积()2S m的对应值如下表:(1)求P 与S 之间满足的函数关系式;(2)在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象; (3)结合图形,如果要求压强不超过4000Pa ,木板的面积至少要多大?【答案】(1)600Sp =;(2)见解析;(3)当压强不超过4000Pa 时,木板面积至少20.15m 解:(1)1600154002300600⨯=⨯=⨯=.,600Sp ∴=; (2)如图所示,(3)当4000p =时,20.15s m =.答:当压强不超过4000Pa 时,木板面积至少20.15m .【点睛】本题主要考查反比例函数在实际生活中的应用,解题的关键是从实际问题中整理出函数模型,用反比例函数的知识解决实际问题,要认真观察图象得出正确的结果.13.(2020·广东深圳实验学校九年级期中)如图1,大桥桥型为低塔斜拉桥,图2是从图1抽象出的平面示意图,现测得拉索AB 与水平桥面的夹角是30°,拉索CD 与水平桥面的夹角是60°,两拉索顶端的距离B C 为4米,两拉索底端距离AD 为20米,试求立柱BE 的长.(结果精确到0.1 1.732≈)【答案】立柱BE 的长约为15.3米如图2,设BE=x 米,由BC=4米得CE=(x-4)米,在Rt △ABE 中 ∵tan BE A AE=,∠A=30°∴tan tan 30BE x AE A ===︒米; 在Rt △DCE 中 ∵tan CDE CE DE∠=,∠CDE=60°∴4D 4)tan tan 60CE x E x CDE -===-∠︒米 由AE-DE=20米,得4)20x -=解之得215.3x =≈.答:立柱BE 的长为15.3米.【点睛】此题考查三角函数的实际应用.此题关键是要分别在两个直角形内运用三角函数列关系式,再据题意例方程求解.14.(2020·长春吉大附中力旺实验中学九年级月考)数学爱好小组要测量5G 信号基站高度,一名同学站在距离5G 信号基站30m 的点E 处,测得基站项部的仰角52ACD ∠=°,已知测角仪的高度15m CE =..求这个5G 信号基站的高AB (精确到1m ).(参考数据:sin520.79,cos520.62,tan52 1.28===)【答案】40解:如图,过点C 作CD AB ⊥,垂足为D .则四边形CEBD 是矩形,15m BD CE ==.,在Rt ACD △中,30m,52CD EB ACD ==∠=︒ ∵tan AD ACE CD∠=, ∴tan 30 1.2838.4(m)AD CD ACD ∠=⋅≈⨯=.∴38.4 1.540(m)AB AD BD =+=+≈.答:这个5G 信号基站的高AB 约为40m .【点睛】本题主要考查锐角三角函数的应用.通过做辅助线,分割图形,构建直角三角形,并解直角三角形是解答本题的关键.15.(2020·潍坊市寒亭区教学研究室九年级一模)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45︒,小明从A 点出发沿斜坡走D ,在此处测得树顶端点B 的仰角为31︒,且斜坡AF 的坡比为1:2.(1)求小明从点A 到点D 的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC 的高度?若能,请计算:若不能,请说明理由.(参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)【答案】(1)4米 (2)能;22米解:(1)作DH AE ⊥于H ,如图所示:在Rt ADH ∆中, ∵12DH AH =, ∴2AH DH =,∵222AH DH AD +=,∴()(2222DH DH +=, ∴4DH =.答:小明从点A 到点D 的过程中,他上升的高度为4米.(2)如图所示:过点D 作DG BC ⊥于点G ,设BC xm =,在Rt ABC ∆中,45BAC ∠=︒,∴AC BC x ==,由(1)得28AH DH ==,在矩形DGCH 中,4DH CG ==,8DG CH AH AC x ==+=+,在Rt BDG ∆中,由4tan 0.68BG x BAG DG x ∠-==≈+, 解得:22x =答:大树的高度约为22米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.16.(2020·浙江九年级一模)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.【答案】(1)点D′到BC 的距离为()厘米;(2)E∵E′两点的距离是 解:(1)过点D′作D′H ⊥BC ,垂足为点H ,交AD 于点F ,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFD′=∠BHD′=90°.在Rt △AD′F 中,D′F=AD′•sin ∠DAD′=90×sin60°=453厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(453+70)厘米.答:点D′到BC 的距离为(453+70)厘米.(2)连接AE ,AE′,EE′,如图4所示.由题意,得:AE′=AE ,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE .∵四边形ABCD 是矩形,∴∠ADE=90°.在Rt △ADE 中,AD=90厘米,DE=30厘米, ∴223010AE AD DE =+=厘米,∴EE′=3010厘米.答:E 、E′两点的距离是3010厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F 的长度;(2)利用勾股定理求出AE 的长度.17.(2019·甘州中学九年级月考)如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32º,底部C 的俯角为45º,观测点与楼的水平距离AD 为31m ,则楼BC 的高度大约为多少米?(结果取整数).(参考数据:sin 320.5︒≈,cos320.8︒≈,tan 320.6︒≈)【答案】50.解:在Rt △ABD 中, ∵AD =31,∠BAD =32°, ∴BD =AD ⋅tan32°=31×0.6=18.6, 在Rt △ACD 中, ∵∠DAC =45°, ∴CD =AD =31,∴BC =BD +CD =18.6+31≈50m . 答:楼BC 的高度大约为50米. 【点睛】本题考查了仰角与俯角的知识,注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键. 18.(2020·浙江九年级一模)如图,小区内有一条南北方向的小路MN ,快递员从小路旁的A 处出发沿南偏东53°方向行走200m 将快递送至B 楼,又继续从B 楼沿南偏西30°方向行走120m 将快递送至C 楼,求此时快递员到小路MN 的距离.(计算结果精确到1m .参考数据:sin530.80,cos530.60,tan53 1.33︒≈︒≈︒≈)【答案】120m如图,过B 作BD ⊥MN 于D ,过C 作CE ⊥MN 于E ,过B 作BF ⊥EC 于F , 则四边形DEFB 是矩形, ∴BD =EF ,在Rt △ABD 中,ADB 90∠=︒ ,53DAB ∠=︒,AB =200m , ∴sin532000.8160BD AB =︒=⨯=m ,在Rt △BCF 中,90BFC ∠=︒ ,3CBF 0∠=︒,BC =120m , ∴1602CF BC ==m , ∴16060100CE EF CF =-=-=m , 答:快递员到小路MN 的距离是100m .【点睛】此题主要考查了解直角三角形的应用-方向角问题,正确把握定义是解题关键.19.(2020·浙江省临海市回浦实验中学九年级期中)在我市开展的创建文明城市活动中,某居民小区要在一块一边靠墙(墙长18m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC 边长为()x m ,花园的面积为2()y m(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)满足条件的花园面积能达到2200m 吗?若能,求出此时x 的值;若不能,说明理由; (3)当x 取何值时,花园的面积最大?最大面积为多少?【答案】(1)2240(1120)y x x x =-+≤<;(2)不能,理由见解析;(3)当x 取11米时,花园的面积最大,最大面积是2198m . 解:(1)由题意可得,()2402240y x x x x =⋅-=-+,0040218x x >⎧⎨<-≤⎩解不等式得11≤x <20即2240(1120)y x x x =-+≤<; (2)不能,理由:将200y =代入2240y x x =-+, 得2200240x x =-+, 解得,121011x x ==<,答:花园面积不能达到2200m ;(3)∵222402(10)200y x x x =-+=--+,∴函数图象的顶点为()10,200,开口向下,当10x <时,y 随x 的增大而增大,当10x >时,y 随x 的增大而减小,由题意可知,1120x ≤<,∴当11x =时,y 最大,此时198y =,答:当x 取11米时,花园的面积最大,最大面积是2198m . 【点睛】本题考查了二次函数的应用,结合实际问题并从中抽象出函数模型,借助二次函数解决实际问题是解决本题的关键.20.(2020·浙江九年级其他模拟)如图1,皮皮小朋友燃放一种手持烟花,这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径和爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h (米)随飞行时间t (秒)变化的规律如下表:(1)根据这些数据在图2的直角坐标系中画出相应的点,选择适当的函数表示h (米)与t (秒)之间的关系,并求出相应的函数表达式;(2)当第一发花弹发射2秒后,第二发花弹达到的高度为多少米?(3)为了安全,要求花弹爆炸时的高度不低于18米.皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求?【答案】(1)h=-2(t-3)2+19.8;(2)6.28米;(3)花弹的爆炸高度符合安全要求,理由见详解解:(1)描点如下图所示,其图象近似为抛物线,故可设其解析式为:h=a(t-3)2+19.8,把点(0,1.8)代入得:1.8=a(0-3)2+19.8,∴a=-2,∴h=-2(t-3)2+19.8,故相应的函数解析式为:h=-2(t-3)2+19.8,(2)∵花每隔1.6秒发射一发花弹∴当第一发花弹发射2秒后,第二发已经飞行了0.4秒,∴把t=0.4代入关系式h=-2(t-3)2+19.8即h=-2(0.4-3)2+19.8=6.28米,∴当第一发花弹发射2秒后,第二发花弹达到的高度为6.28米(3)∵这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同,皮皮小朋友发射出的第一发花弹的函数解析式为:h=-2(t-3)2+19.8,∴第二发花弹的函数解析式为:h′=-2(t-4.6)2+19.8,皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,则令h=h′得-2(t-3)2+19.8=-2(t-4.6)2+19.8∴t=3.8秒,此时h=h′=18.52米>18米,答:花弹的爆炸高度不符合安全要求.【点睛】本题是二次函数的应用题,需要先根据表格中数据描点,得出函数图象,再求出其解析式,分析变化趋势,可以代值验算,第三问需要从实际问题分析转变成数学模型,从而得解.。

2025届浙江省绍兴市柯桥区六校联盟九年级数学第一学期期末经典模拟试题含解析

2025届浙江省绍兴市柯桥区六校联盟九年级数学第一学期期末经典模拟试题含解析

2025届浙江省绍兴市柯桥区六校联盟九年级数学第一学期期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,正六边形ABCDEF内接于O,M为EF的中点,连接DM,若O的半径为2,则MD的长度为()A.7B.5C.2 D.12.如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.70°B.45°C.35°D.30°3.下列四幅图案,在设计中用到了中心对称的图形是()A.B.C.D.4.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.5.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.16B.13C.12D.236.点A(﹣3,y1),B(0,y2),C(3,y3)是二次函数y=﹣(x+2)2+m图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1=y3<y2C.y3<y2<y1D.y1<y3<y27.下列命题正确的是()A.三点确定一个圆B.圆中平分弦的直径必垂直于弦C.矩形一定有外接圆D.三角形的内心是三角形三条中线的交点8.如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为( )A.210B.10C.4 D.69.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°10.如图,在△ABC中,中线AD、BE相交于点F,EG∥BC,交AD于点G,则AGAF的值是()A .23B .32C .34D .4311.关于x 的一元二次方程230x x m -+=中有一根是1,另一根为n ,则m 与n 的值分别是( ) A .m=2,n=3B .m=2,n=-3C .m=2,n=2D .m=2,n=-212.如图,在6×6的正方形网格中,△ABC 的顶点都在小正方形的顶点上,则tan ∠BAC 的值是( )A .45B .43C .34D .35二、填空题(每题4分,共24分)13.如图,⊙O 的半径OC=10cm ,直线l ⊥OC ,垂足为H ,交⊙O 于A ,B 两点,AB=16cm ,直线l 平移____________cm 时能与⊙O 相切.14.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是_____. 15.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.16.已知二次函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是__________17.如图,DE 是ABC 的中位线,AF 是BC 边上的中线,DE 交AF 于点M ,下列结论:①ADE ABC △△∽;②MA MF =;③14MD BC =:④14AMD ABC S S =△△,其中正确的是______.(只填序号).18.比较sin30°、sin45°的大小,并用“<”连接为_____. 三、解答题(共78分)19.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”. 如图1,图2,图3中,,AF BE 是ABC ∆的中线,AF BE ⊥,垂足为点P ,像ABC ∆这样的三角形均为“中垂三角形. 设,,BC a AC b AB c ===.(1)如图1,当45,22ABE c ︒∠==a =_________,b =__________; (2)如图2,当30,4ABE c ︒∠==时,则a =_________,b =__________;归纳证明(3)请观察(1)(2)中的计算结果,猜想222,,a b c 三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式; 拓展应用(4)如图4,在ABCD □中,,,E F G 分别是,,AD BC CD 的中点,且BE EG ⊥. 若5AD =,3AB AF ==,求AF 的长.20.(8分)如图,在正方形ABCD 中,5AB cm =,点E 在正方形边上沿B C D →→运动(含端点),连接AE ,以AE 为边,在线段右侧作正方形AEFG ,连接DF 、DG .小颖根据学习函数的经验,在点E 运动过程中,对线段AE 、DF 、DG 的长度之间的关系进行了探究. 下面是小颖的探究过程,请补充完整:(1)对于点E 在BC 、CD 边上的不同位置,画图、测量,得到了线段AE 、DF 、DG 的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7/AE cm 5.00 5.50 6.007.07 5.99 5.50 5.00DF cm 5.00 3.55 3.72 5.00 3.71 3.55 5.00 /DG cm0.00 2.30 3.31 5.00 5.28 5.697.07 /在AE、DF和DG的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数.(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:为等腰三角形时,AE的长约为当GDF21.(8分)如图,在Rt△ABC中,∠C=90°,AB=10cm,BC=6cm.动点P,Q从点A同时出发,点P沿AB向终点B运动;点Q沿AC→CB向终点B运动,速度都是1cm/s.当一个点到达终点时,另一个点同时停止运动.设点P运动的时间为t(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为S(cm2).(1)AC=_________cm;(2)当点P到达终点时,BQ=_______cm;(3)①当t=5时,s=_________;②当t=9时,s=_________;(4)求S与t之间的函数解析式.22.(10分)如图1,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE ,EF 为边作▱DEFG .(1)连接DF ,求DF 的长度; (2)求▱DEFG 周长的最小值;(3)当▱DEFG 为正方形时(如图2),连接BG ,分别交EF ,CD 于点P 、Q ,求BP :QG 的值.23.(10分)某养猪场对猪舍进行喷药消毒.在消毒的过程中,先经过5min 的药物集中喷洒,再封闭猪舍10min ,然后再打开窗户进行通风.已知室内每立方米空气中含药量y (3/mg m )与药物在空气中的持续时间x (min )之间的函数图象如图所示,其中在打开窗户通风前y 与x 分别满足两个一次函数,在通风后y 与x 满足反比例函数.(1)求反比例函数的关系式; (2)当猪舍内空气中含药量不低于35mgm 且持续时间不少于21min ,才能有效杀死病毒,问此次消毒是否有效?24.(10分)解方程:(1)3x 1-6x -1=0; (1)(x -1)1=(1x +1)1.25.(12分)如图,AG 是∠PAQ 的平分线,点E 在AQ 上,以AE 为直径的⊙0交AG 于点D ,过点D 作AP 的垂线,垂足为点C ,交AQ 于点B . (1)求证:直线BC 是⊙O 的切线;(2)若⊙O 的半径为6,AC=2CD ,求BD 的长26.计算:|1﹣3|+()2160tan 30cos --︒-︒0327(253)+-+.参考答案一、选择题(每题4分,共48分) 1、A【解析】连接OM 、OD 、OF ,由正六边形的性质和已知条件得出OM ⊥OD ,OM ⊥EF ,∠MFO=60°,由三角函数求出OM ,再由勾股定理求出MD 即可. 【详解】连接OM 、OD 、OF ,∵正六边形ABCDEF 内接于⊙O ,M 为EF 的中点, ∴OM ⊥OD ,OM ⊥EF ,∠MFO=60°, ∴∠MOD=∠OMF=90°, ∴OM=OF•sin ∠MFO=2×32=3, ∴MD=()2222327OM OD +=+=,故选A .【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键. 2、C【分析】先根据垂径定理得出AB =AC ,再由圆周角定理即可得出结论. 【详解】解:∵OA ⊥BC ,∠AOB =70°, ∴AB =AC ,∴∠ADC=12∠AOB=35°.故选C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.3、D【解析】由题意根据中心对称图形的性质即图形旋转180°与原图形能够完全重合的图形是中心对称图形,依次对选项进行判断即可.【详解】解:A.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;B.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;C.旋转180°,不能与原图形能够完全重合不是中心对称图形;故此选项错误;D.旋转180°,能与原图形能够完全重合是中心对称图形;故此选项正确;故选:D.【点睛】本题主要考查中心对称图形的性质,根据中心对称图形的定义判断图形是解决问题的关键.4、B【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据两边成比例,夹角相等,故两三角形相似,故本选项错误;故选:B.【点睛】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.5、A【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为16,故选A.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6、C【解析】先确定抛物线的对称轴,然后比较三个点到对称轴的距离,再利用二次函数的性质判断对应的函数值的大小.【详解】二次函数y=﹣(x+2)2+m图象的对称轴为直线x=﹣2,又a=-1, 二次函数开口向下,∴x<-2时,y随x增大而增大,x>-2时,y随x增大而减小,而点A(﹣3,y1)到直线x=﹣2的距离最小,点C(3,y3)到直线x=﹣2的距离最大,所以y3<y2<y1.故选:C.【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的图像与性质.7、C【分析】根据确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,进行判断即可.【详解】∵不在一条直线上的三点确定一个圆,∴A错误;∵圆中平分弦(不是直径)的直径必垂直于弦,∴B错误;∵矩形一定有外接圆,∴C正确;∵三角形的内心是三角形三条角平分线的交点,∴D错误;故选:C.【点睛】本题主要考查真假命题的判断,掌握确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,是解题的关键.8、A【解析】试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.∵在直角△OCD中,∠COD=90°,OD=2,OC=6,∴220,26=21∴.∴PD+PA 和的最小值是. 故选A . 9、C【解析】试题分析:∵∠B=35°,∠C=90°,∴∠BAC=90°﹣∠B=90°﹣35°=55°. ∵点C 、A 、B 1在同一条直线上,∴∠BAB′=180°﹣∠BAC=180°﹣55°=125°. ∴旋转角等于125°.故选C . 10、C【分析】先证明AG =GD ,得到GE 为△ADC 的中位线,由三角形的中位线可得GE 12=DC 12=BD ;由EG ∥BC ,可证△GEF ∽△BDF ,由相似三角形的性质,可得12GF GE FD BD ==;设GF =x ,用含x 的式子分别表示出AG 和AF ,则可求得答案.【详解】∵E 为AC 中点,EG ∥BC , ∴AG =GD ,∴GE 为△ADC 的中位线, ∴GE 12=DC 12=BD . ∵EG ∥BC , ∴△GEF ∽△BDF , ∴12GF GE FD BD ==, ∴FD =2GF .设GF =x ,则FD =2x ,AG =GD =GF +FD =x +2x =3x ,AF =AG +GF =3x +x =4x , ∴3344AG x AF x ==. 故选:C . 【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键. 11、C【分析】将根是1代入一元二次方程,即可求出m 的值,再解一元二次方程,可求出两个根,即可求出n 的值. 【详解】解:∵将1代入方程,得到:1-3+m=0,m=2 ∴2320x x -+=∴解得x1=1,x2=2∴n=2故选C.【点睛】本题主要考查了一元二次方程,熟练解满足一元二次方程以及解一元二次方程是解决本题的关键.12、C【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.【详解】如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC=BDAD=34,故选C.【点睛】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A的对边a与邻边b的比叫做∠A的正切.二、填空题(每题4分,共24分)13、4或1【分析】要使直线l与⊙O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线l⊥OC,由垂径定理得AH=BH,在Rt△AOH中,求OH即可.【详解】连结OA∵直线l⊥OC,垂足为H,OC为半径,∴由垂径定理得AH=BH=12AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得2222OA-AH=10-8=6,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直线l 向左平移4cm 时能与⊙O 相切或向右平移1cm 与⊙O 相切.故答案为:4或1.【点睛】本题考查平移直线与与⊙O 相切问题,关键是求弦心距OH ,会利用垂径定理解决AH ,会用勾股定理求OH ,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决.14、75°【解析】已知在△ABC 中°,cos A =12,可得∠A =60°,又因∠B =45,根据三角形的内角和定理可得∠C=75°. 15、y =﹣(x +1)2﹣2【分析】根据坐标平移规律可知平移后的顶点坐标为(﹣1,﹣2),进而可设二次函数为()212y a x +-=,再把点(0,﹣3)代入即可求解a 的值,进而得平移后抛物线的函数表达式.【详解】由题意可知,平移后的函数的顶点为(﹣1,﹣2),设平移后函数的解析式为()212y a x +-=,∵所得的抛物线经过点(0,﹣3),∴﹣3=a ﹣2,解得a =﹣1,∴平移后函数的解析式为()212y x +=--,故答案为()212y x +=--.【点睛】本题考查坐标与图形变化-平移,解题的关键是掌握坐标平移规律:“左右平移时,横坐标左移减右移加,纵坐标不变;上下平移时,横坐标不变,纵坐标上移加下移减”。

浙江省绍兴市柯桥区2022-2023学年九年级上学期期中数学试题

浙江省绍兴市柯桥区2022-2023学年九年级上学期期中数学试题

2022学年第一学期九年级期中教学质量调测试卷(2022.11)数学试卷Ⅰ(选择题,共40分)一、选择题(本题有10小题,每小题4分,共40分)1.若37a b =,则a bb +的值为( ) A .107 B .710C .37D .472.已知⊙O 的半径OA 长为1,OB =)A .B .C .D .3.如图,已知直线a b c ∥∥,分别交直线m ,n 于A ,C ,E ,B ,D ,F ,则下列各式不正确的是( )A .AC BDCE DF =B .AC BDAE BF =C .CE BD AE BF=D .CE DF AE AC BF BD=++ 4.对于二次函数223y x x =-+的图象,下列说法正确的是( ) A .开口向下B .对称轴是直线x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点5.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE 的是( )A .AB BCAD DE=B .AB ACAD AE=C .∠C =∠ED .∠B =∠ADE6.如图,AB 是⊙O 的直径,∠D =32°,则∠AOC 等于( )A .158°B .116°C .64°D .58°7.如图,在平面直角坐标系中,C 为△AOB 的OA 边上一点,:1:2AC OC =,过C 作CD OB ∥交AB 于点D ,C 、D 两点纵坐标分别为1,3,则B 点的纵坐标为( )A .4B .5C .6D .78.已知函数2y x mx =+的对称轴为x =3,则关于x 的方程27x mx +=的根为( ) A .0,6B .1,7C .1,-7D .-1,79.如图,△ABC 中,AB =AC ,∠BAC =92°,△CDE 中,DC =DE ,∠CDE =88°,连结BE ,点F 为BE 中点,连结AF ,DF ,则∠AFD 为( )A .88°B .90°C .92°D .100°10.将抛物线22y x =+依次进行以下三种变换:①沿y 轴向下平移3个单位,②横坐标变为原来的两倍,纵坐标不变.③横坐标不变,纵坐标变为原来的两倍.则变换后的抛物线表达式为( ) A .2114y x =- B .2122y x =- C .221y x =-D .242y x =-试卷Ⅱ(非选择题,共110分)二、填空题(本题有6小题,每小题5分,共30分)11.写出一个对称轴为y 轴,且过点(0,1)的二次函数的表达式______.12.点P 是线段AB 的黄金分割点,若AB =10且PA PB >,则PB 长最接近的整数是______.13.如图,边长为2的等边△ABC ,将边BC 不改变长度,变为弧BC ,得到以A 为圆心,AB 为半径的扇形ABC ,由三角形变成扇形,下列量的变化情况是:∠A 的度数______,图形的面积______.(空格处填“变大”,“变小”或“不变”)14.有二把不同刻度的直尺a 、b ,同一把直尺上的刻度之间距离相等,小敏把这二把直尺如图紧贴,并将两把直尺上的刻度0互相对准,发现a 尺的刻度36对准着b 尺上的刻度48,平行移动a 尺(平移过程中两把直尺维持紧贴),使得a 尺的刻度0对准b 尺的刻度4,则此时a 尺的刻度21对准b 尺的上刻度是______.15.二次函数()()232y x h t x t =-++≤≤+的图象上任意二点连线不与x 轴平行,则t 的取值范围为______.16.正方形ABCD 中,E ,F 分别是AD ,DC 上的点,连结EF 交对角线BD 于点G ,若BE 恰好平分AEF ∠,413DG GB =,则DEAE的值为______.三、解答题(本题有8小题,第17~20题各8分,第21题10分,第22~23题各12分,第24题14分,共80分)17.(本题8分)已知线段a ,b ,c 满足326a b c==且a +b +c =22. (1)求线段a ,b ,c 的长;(2)若线段x 是线段a ,b 的比例中项,求线段x 的长.18.(本题8分)如图,在4×4的正方形方格中,△ABC 的顶点A 、B 、C 在单位正方形的顶点上.D 在边AB 格点上.(1)请找出△ABC 的外心O ;(2)请用无刻度直尺在边AC 上找出所有使得△ADE 与△ABC 相似的点E .19.(本题8分)已知正六边形ABCDEF 的中心为O ,半径OA =9.(1)求正六边形的边长;(2)以A 为圆心,AF 为半径画弧BF ,求BF 的长度.20.(本题8分)如图,已知抛物线的顶点坐标为M (2,-5),与y 轴交于点A (0,3).(1)求抛物线的解析式.(2)当14x <<时,直接写出函数y 的取值范围.21.(本题10分)如图,已知∠B =∠E =90°,AB =6,BF =3,CF =5,DE =15,DF =25.(1)求CE 的长;(2)求证:△ABC ∽△DEF .22.(本题12分)在平面直角坐标系中,O 为坐标原点,已知点B (0,4),点A 在x 轴负半轴上,且∠BAO =30°.将△AOB 绕着O 顺时针旋转,得△COD ,点A 、B 旋转后的对应点分别为C ,D ,记旋转角为α.(1)如图1,CD 恰好经过点B 时, ①求此时旋转角α的度数; ②求出此时点C 的坐标;(2)如图2,若090α︒<<︒,设直线AC 和直线DB 交于点P ,猜测AC 与DB 的位置关系,并说明理由. 23.(本题12分)某公司分别在A ,B 两城生产同种产品,共80件,A 城生产产品的总成本y (万元)与产品数量x (件)之间具有二次函数关系,部分数据如表,B 城生产产品的每件成本为50万元.(1)A 城生产产品的总成本y (万元)与产品数量x 的函数关系式;(2)记A 、B 两城生产这批产品的总成本的和为w (万元),求w 与A 城产品数量x (件)之间的函数关系式;(3)当A 、B 两城生产这批产品的总成本的和最少时,求A 、B 两城各生产多少件.24.(本题14分)如图,圆O 是△ABC 的外接圆,直径CD ⊥AB 于点E ,H 是CD 延长线上一点,P 为DH 的中点,连结AH ,过点E 作直线垂直AH 于点F ,交BC 于点G ,连结PG .(1)求证△ABC 是等腰三角形;(2)探究∠CGE ,∠CAB ,∠H 的数量关系,并说明理由; (3)若AB =2PE ,PH =6,PG =17,求OE 的长.九年级期中学业评价调测试卷数学参考答案一、选择题(每小题4分,共40分) 1-10:ADCCA BCDBB二、填空题(每小题5分,共30分) 11.21y x =+(答案不唯一) 12.4 13.变小 变大14.3215.5t ≤-或3t ≥-16.12或4 三、解答题(本题有8小题,共80分) 17.(本题8分)解:(1)设326a b ck ===,则a =3k ,b =2k ,c =6k , ∵a +b +c =22,∴3k +2k +6k =22,解得k =2, ∴a =3×2=6,b =2×2=4,c =6×2=12;(2)∵线段x 是线段a 、b 的比例中项,∴26424x ab ==⨯=,∴x =x =-(舍去),∴线段x = 18.(本题8分)(1) (2)19.解:(本题8分)(1)∵六边形ABCDEF 是正六边形, ∴正六边形的边长=半径OA =9; (2)∵六边形ABCDEF 是正六边形, ∴∠BCF =120°, ∴弧BF 的长为12096180y ππ⨯==.20.(本题8分)解:(1)由顶点坐标M (2,-5)可设二次函数表达式为()225y a x =--, 将(0,3)的坐标代入得()23025a =--,解得a =2. ∴抛物线对应二次函数的表达式为()2225y x =--;(2)当14x <<时,x =4时,函数有最大值为y =3(取不到), x =2时,函数有最小值y =-5,∴当14x <<时,函数y 的取值范围是53y -≤<. 21.(本题10分)(1)解:∵DE =15,DF =25,∠E =90°,∴20EF ==,∴CE =EF -CF =15(2)证明:∵BF =3,CF =5,∴BC =BF +CF =8, ∵62155AB DE ==,82205BC EF ==,∴AB BCDE EF=, ∵∠B =∠E =90°,∴△ABC ∽△DEF .22.(本题12分)解:(1)①由旋转可知OB =OD , ∵∠BAO =30°,∴∠ABO =60°=∠D , ∴△BOD 是等边三角形,∴∠BOD =60°,∴旋转角60α=︒; ②过点C 作CE ⊥x 轴交于点E ,∵∠AOB =90°,B (0,4),∴CO AO ==∵60α=︒,∴∠AOC =60°,∴OE =CE =6,∴()C -;(2)∵AOC α∠=,AO =CO ,∴1902OAC α∠=︒-, ∴1190306022BAP αα∠=︒--︒=︒-∵BOD α∠=,OB =OD ,∴1902OBD α∠=︒-, ∴11180********ABP αα⎛⎫∠=︒-︒-︒-=︒+ ⎪⎝⎭, ∴1160309022PBA PAB αα∠+∠=︒-+︒+=︒, ∴∠APB =90°,∴AC ⊥BD .23.(本题12分)解:(1)由题意设2y ax bx c =++得01001020040020600c a b a b =+=+=⎧⎪⎨⎪⎩,解得:110a b ==⎧⎨⎩,∴210y x x =+;(2)根据题意得:()22105080404000w x x x x x =++-=-+,∴w 与A 城产品数量x (件)之间的函数关系式为2404000w x x =-+;(3)∵()22404000203600w x x x =-+=-+, ∵10>,∴当x =20时,w 取得最小值,最小值为3600万元,此时80-20=60, 答:A 城生产20件,B 城生产60件. 24.(本题4分)证明(1)∵直径CD ⊥AB ,∴AC BC = ∴AB =BC ,∴△ABC 为等腰三角形 (2)∠CGE =∠CAB +∠H ∵CD ⊥AB ,∴∠BEH =90° ∴∠GEB +∠FEH =90°∵FG ⊥AH ,∴∠H +∠FEH =90°,∴∠H =∠GEB ∴∠CGE =∠CBA +∠GEB =∠CAB +∠H(3)取AH 中点M ,过M 作MN ⊥AB 于点N ,连结MB ,ME ,MP ,AD∴∠H =∠MEP =∠BEG ,∵AB =2EP ,∴EB =EP∴M ,P 为中点,∴MP AD ∥,∴∠MPE =∠ADC =∠ABC , ∴△PEM ≌△BEG ,∴EM =EG ,∴△PEG ≌△MEB ,∴MB =PG =17, 设AE =2x ,则BN =3x ,MN =x +3,得()()2223317x x ++= 得x =5,∴DE =4连结OB ,得()()2221034OE x OE ++=+,∴212OE =.。

浙江省绍兴市柯桥区中学2020届九年级模拟检测数学试题(含答案)

浙江省绍兴市柯桥区中学2020届九年级模拟检测数学试题(含答案)

知识像烛光,能照亮一个人,也能照亮无数的人。

--培根1 / 192020 年柯桥区联盟学校数学学科中考模拟试卷数 学 试 题 卷(2020.6)考生须知: 1. 本试题卷共 6 页,有三个大题,24 个小题。

全卷满分 150 分,考试时间 120 分钟。

2. 答案必须写在答题纸相应的位置上,写在本试题卷、草稿纸上均无效。

3. 答题前,认真阅读答题纸上的“注意事项”,按规定答题。

本次考试不能使用计算器。

试 卷 Ⅰ(选择题,共 40 分)一、选择题(本题有 10 每小题 4 分,共 40 分)1.2020 的相反数是( ▲ )A . - 2020B .2020C . - 1D .2020 2. 一双没有洗过的手,带有各种细菌约 75000 万个,75000 万用科学记数法表示为( ▲ )A .7.5×104B .7.5×105C .7.5×108D .7.5×1093. 如图,由几个小正方体组成的立体图形的左视图是( ▲ )A .B .C .D . 4. 某校九年级(1)班 50 名学生中有 20 名团员,他们都积极报名参加学校开展的“文明劝导活动”.根据要求,该班从团员中随机抽取 1 名参加,则该班团员京京被抽到的概率( ▲ )A .B .C .D .5.下面是一位同学做的四道题①(a +b )2=a 2+b 2 , ②(2a 2)2=﹣4a 4 , ③a 5÷a 3=a 2 ,④a 3·a 4=a 12.其中做对的一道题的序号是( ▲ ) A .① B . ② C .③ D .④知识像烛光,能照亮一个人,也能照亮无数的人。

--培根6.如图,一个函数的图像由射线BA,线段BC,射线CD,其中点A(-1,2),B(1,3),2 / 19A.当x<1,y 随x 的增大而增大B.当x<1,y 随x 的增大而减小C.当x>1,y 随x 的增大而增大D.当x>1,y 随x 的增大而减小7.如图所示,矩形纸片ABCD 中,AD=6cm,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为(▲)A.3.5cm B.4cm C.4.5cm D.5cm8.如图,半径为5 的⊙P 与y 轴相交于M(0,﹣4),N(0,﹣10)两点,则圆心P 的坐标为(▲)A.(5,﹣4)B.(4,﹣5)C.(4,﹣7)D.(5,﹣7)9.超市有一种“喜之郎”果冻的长方体礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm 的圆,横截面可以近似地看作一个抛物线,如图的点M 是OH 的中点。

浙江省绍兴市柯桥区2024届九年级上学期期中检测数学试卷(含答案)

浙江省绍兴市柯桥区2024届九年级上学期期中检测数学试卷(含答案)

数学试卷考生须知:1.全卷分试卷和答题卷二部分,考生须在答题卷上作答.全卷满分120分,考试时间120分钟.2.试卷分试卷Ⅰ(选择题),试卷Ⅱ(非选择题)两部分,共8页.试卷Ⅰ(选择题,共30分)请将本卷的答案,用铅笔在答题纸上对应的选项位置涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1.抛物线的对称轴是直线()A.B.C.D.2.在学校科技宣传活动中,某科技活动小组将4个标有“北斗”,3个标有“天眼”,2个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.摸出三种小球的可能性相同B.摸出“北斗”小球的可能性最大C.摸出“天眼”小球的可能性最大D.摸出“高铁”小球的可能性最大3.如图,点均在直线上,点在直线外,则经过其中任意三个点,最多可画出圆的个数为()第3题图A.3个B.4个C.5个D.6个4.如图是2022年杭州亚运会徽标的示意图,若,则阴影部分面积为()第4题图A.B.C.D.5.如图,在俄罗斯方块游戏中(出现的图案可进行顺时针、逆时针旋转;向左、向右平移),已拼好的图案如图所示,现又出现一个如图的方块正向下运动,你必须进行以下哪项操作,才能拼成一个完整的矩形()第5题图A.顺时针旋转,向右平移B.逆时针旋转,向右平移C.顺时针旋转,向左平移D.逆时针旋转,向左平移6.如图,已知及其所在平面内的4个点.如果半径为5,那么到圆心距离为7的点可能是()第6题图A.点B.点C.点D.点7.已知二次函数,当点在函数图象上时,则的大小关系正确的是()A.B.C.D.8.如图,将正方形和正五边形的中心重合,按如图位置放置,连接,则()第8题图A.B.C.D.9.如图,在平面直角坐标系中,平行于轴的直线,与二次函数分别交于和,若,则为()第9题图A.4B.2C.D.10.如图,是以为直径的半圆上一点,连结,分别以为边向外作正三角形,正三角形,弧,弧的中点分别是,连结,若,则的长为()第10题图A.B.8C.D.10试卷Ⅱ(非选择题,共90分)二、填空题(本题有6小题,每小题4分,共24分)11.若二次函数的图象开口向上,请写出一个符合题意的的值为_____.12.为估计种子的发芽率,做了10次试验,每次种了1000颗种子,发芽的种子都是950颗左右,预估该种子的发芽率是_____.13.如图,点在正六边形的边上运动.若,写出的范围______.第13题图14.如图,将绕着点逆时针旋转得到,使得点的对应点落在边的延长线上,若,则线段的长为______.第14题图15.如图1所示是一款带毛刷的圆形扫地机器人,它的俯视图如图2所示,的直径为,毛刷的一端为固定点,另一端为点,毛刷绕着点旋转形成的圆弧交于点,且三点在同一直线上.则图中阴影部分的周长为______.第15题图16.若,且,则代数式的最小值与最大值的和为______.三、解答题(本题有8小题,第17~19题每题6分,第题每题8分,第题每题10分,第24题12分,共66分)17.(本题6分)一起感悟读书之美,推广全民阅读,建设“书香中国”,犹如点亮一座灯塔,撒播一抔种子、开凿一眼清泉.如今,全民阅读已蔚然成风,氤氲书香正飘满中国,听总书记分享他的读书故事,一起感语读书之美,不负韶华梦,读书正当时!某校对《三国演义》、《红楼梦》、《西游记》、《水浒传》四大名著开展“传统文化经典著作”推荐阅读活动.(1)小云从这4部名著中,随机选择1部阅读,他选中《红楼梦》的概率是多少.(2)该校拟从这4部名著中,选择2部作为课外阅读书籍.用树状图或列表法求《红楼梦》被选中的概率.18.(本题6分)如图,在平面直角坐标系中,抛物线的部分图象经过点.(1)求该抛物线的解析式;(2)结合函数图象,直接写出时,的取值范围.第18题图19.(本题6分)(1)请借助网格和一把无刻度直尺找出的外心点;(2)设每个小方格的边长为1,求出外接圆的面积.第19题图20.(本题8分)如图所示,是的一条弦,,垂足为,交于点,点在上.(1)若,求的度数;(2)若,求的长.第20题图21.(本题8分)【定义】若抛物线与一水平直线交于两点,我们把这两点间线段的长称为抛物线关于这条直线的跨径,抛物线的顶点到该直线的距离称为抛物线关于这条直线的矢高,矢高与跨径的比值称为抛物线关于这条直线的矢跨比.如图1,抛物线的顶点为轴于点,它与轴交于点,则的长为抛物线关于轴的跨径,的长为抛物线关于轴的矢高,的值为抛物线关于轴的矢跨比.(1)【特例】如图2,已知抛物线与轴交于点(点在点右侧)抛物线关于轴的矢高是______,跨径是______,矢跨比是______;(2)【应用】如图3是某地一座三连拱桥梁建筑示意图,其中主跨与边跨的拱轴线为开口方向与大小一样的抛物线,它们关于水平钢梁所在直线的跨径分别为420米与280米,已知主跨的矢跨比为,请求出边跨的矢跨比.第21题图22.(本题10分)在中,,点为内一点,连接、.(1)把逆时针旋转得到了,如图1,旋转中心是点______,旋转角是______;(2)在(1)的条件下,延长交于,求证:;(3)在图1中,若,把绕点旋转得到,如图2,若旋转一周,当旋转角是多少度时,,直接写出结果.第22题图23.(本题10分)两地有一条直道,小王和小李先后从地出发沿这条直道去地.设小李出发第分钟时,小李、小王离地的距离分别为与之间的函数表达式是与之间的函数表达式是.(1)两地相距多少;(2)小李出发时,小王离地的距离为多少;(3)小李出发至小王刚到达地这段时间内,求两人之间的最近距离.24.(本题12分)如图1,圆内接四边形为优弧的中点.(1)求的度数;(2)如图2,连结,若,求的值:(3)如图3,若为的中点,为的中点,连结,求证:.第24题图九年级期中数学参考答案一、选择题(每小题3分,共30分)1-10:CBDBACCADA二、填空题(每小题4分,共24分)11.1(正数即可)12.13.14.315.16.三、解答题(本题有8小题,共66分)17.(本题6分)解:(1)共有4部名著,随机选择1部为《红楼梦》的概率为(2)画树状图如下:共有12种等可能的结果,其中《红楼梦》被选中的结果有6种,《红楼梦》被选中的概率为18.(本题6分)解:(1)将代入得:,解得,.(2)令,解得或,拋物线经过,抛物线开口向上,时,;19.(本题6分)解:(1)如图所示,点即为所求;(2)连接,由勾股定理得:,外接圆的面积为:20.(本题8分)解:(1),,;(2),21.(本题8分)解:(1)抛物线的顶点为,抛物线的顶点到轴的距离是9,拋物线关于轴的矢高是9,在中,当时,,解得,,抛物线关于轴的跨径是6,矢跨比是,(2)建立如图所示的坐标系,依题意,求出主跨对应的抛物线表达式为从而求出边跨对应的抛物线表达式为则其顶点坐标为边跨的矢跨比为,22.(本题10分)(1)解:在图1中,点是的旋转中心,旋转角为;(2)证明:由逆时针旋转得到了可知,,在中,,在中,,而,,即.(3)解:如图,依题意得,当点在内部时,,当点在外部时,,绕点旋转,综上所述,当旋转角是或时,.23.(本题10分)(1)当时,两地相距(2)当时,小李出发时,小王离地的距离为,(3)设小李出发第分钟时,两人相距,则当时,取得最小值,此时,答:小李出发第时,两人相距最近,最近距离是.24.(本题12分)(1)连结为优弧的中点,,,为正,(2)上截取,连结为正为正,在与中,设,则过作(3)连结,取中点,连结过作交于点,连结为中点又而第(3)题方法二:连,则,延长,过点做垂直,垂足为.则四点共圆,连,则.,.又为中点.,..三角形是正三角形,可证是的中垂线,。

2020-2021学年浙江省绍兴市越城区九年级(上)期中数学试卷(含答案)

2020-2021学年浙江省绍兴市越城区九年级(上)期中数学试卷(含答案)

2020-2021学年浙江省绍兴市越城区九年级(上)期中数学试卷一.选择题(共10小题).1.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点2.如图所示圆规,点A是铁尖的端点,点B是铅笔芯尖的端点,已知点A与点B的距离是2cm,若铁尖的端点A 固定,铅笔芯尖的端点B绕点A旋转一周,则作出的圆的直径是()A.1cm B.2cm C.4cm D.πcm3.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.154.对于函数y=﹣x2﹣2x﹣2,使得y随x的增大而增大的x的取值范围是()A.x≥﹣1B.x≥0C.x≤0D.x≤﹣15.将抛物线y=x2+4x+1通过平移得到y=x2,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位6.对于二次函数y=ax2+bx+c(a≠0),我们把使函数值等于0的实数x叫做这个函数的零点,则二次函数y=x2﹣mx﹣5(m为实数)的零点的个数是()A.1B.2C.0D.不能确定7.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A.(0,0)B.(﹣1,1)C.(﹣1,0)D.(﹣1,﹣1)8.某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是()A.2米B.3米C.4米D.5米9.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD10.如图,一次函数y1=2x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣2)x+c的图象可能是()A .B .C .D .二.填空题(本题有6个小题,每小题5分,共30分) 11.已知,则=.12.从甲地到乙地有A ,B ,C 三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时 公交车用时的频数线路 30≤t ≤3535<t ≤4040<t ≤4545<t ≤50合计A 59 151 166 124 500B 50 50 122 278 500 C4526516723500早高峰期间,乘坐 (填“A ”,“B ”或“C ”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.13.如图,A ,B ,C ,D 为⊙O 上的点,OC ⊥AB 于点E .若∠CDB =30°,OA =2,则AB 的长为 .14.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,则球的半径为cm.16.如图,直线l:经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3)…B n (n,y n)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0)…,A n+1(x n+1,0)(n为正整数),设x1=d(0<d<1)若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当d(0<d<1)的大小变化时美丽抛物线相应的d的值是.三.解答题(本题有8个小题,共80分)17.已知抛物线的解析式为y=﹣3x2+6x+9.(1)求它的对称轴;(2)求它与x轴,y轴的交点坐标.18.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为;(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.19.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.20.如图,已知点A、B的坐标分别是(0,0)(4,0),将△ABC绕A点按逆时针方向旋转90°后得到△A′B′C′.(1)画出△A′B′C′(不要求写出作法);(2)写出点C′的坐标;(3)求旋转过程中点B所经过的路径长.21.某地欲搭建一桥,桥的底部两端间的距离AB=L,称跨度,桥面最高点到AB的距离CD=h称拱高,当L和h 确定时,有两种设计方案可供选择:①抛物线型,②圆弧型.已知这座桥的跨度L=32米,拱高h=8米.(1)如果设计成抛物线型,以AB所在直线为x轴,AB的垂直平分线为y轴建立坐标系,求桥拱的函数解析式;(2)如果设计成圆弧型,求该圆弧所在圆的半径;(3)在距离桥的一端4米处欲立一桥墩EF支撑,在两种方案中分别求桥墩的高度.22.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为在40元的基础上上涨x(x>0),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润W(元),并把结果填写在表格中:销售单价(元)40+x销售量y(件)销售玩具获得利润W(元)(2)在(1)问条件下,若商场获得10000元销售利润,则该玩具销售单价应定为多少元?(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?23.我们知道:有一内角为直角的三角形叫做直角三角形.类似地,我们定义:有一内角为45°的三角形叫做半直角三角形.如图,在平面直角坐标系中,O为原点,A(4,0),B(﹣4,0),D是y轴上的一个动点,∠ADC =90°(A、D、C按顺时针方向排列),BC与经过A、B、D三点的⊙M交于点E,DE平分∠ADC,连结AE,BD.显然△DCE、△DEF、△DAE是半直角三角形.(1)求证:△ABC是半直角三角形;(2)求证:∠DEC=∠DEA;(3)若点D的坐标为(0,8),求AE的长.24.如图,已知二次函数y=x2+bx+c经过A,B两点,BC⊥x轴于点C,且点A(﹣1,0),C(4,0),AC=BC.(1)求抛物线的解析式;(2)点E是线段AB上一动点(不与A,B重合),过点E作x轴的垂线,交抛物线于点F,当线段EF的长度最大时,求点E的坐标及S;△ABF(3)点P是抛物线对称轴上的一个动点,是否存在这样的P点,使△ABP成为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.试题解析一.选择题(共10小题).1.解:二次函数y=(x﹣1)2+5的图象开口向上,顶点坐标为(1,对称轴为直线x=1.故选:C.2.解:∵AB=2cm,∴圆的直径是4cm,故选:C.3.解:设袋子中红球有x个,根据题意,得:,解得x=5,∴袋子中红球的个数最有可能是5个,故选:A.4.解:∵y=﹣x2﹣2x﹣7=﹣(x+1)2﹣7,a=﹣1<0,抛物线开口向下,∴当x≤﹣6时,y随x的增大而增大,故选:D.5.解:∵抛物线y=x2+4x+7可化为y=(x+2)2﹣3,∴把抛物线y=(x+2)2﹣7先向右平移2个单位,再向上平移3个单位即可得到抛物线y=x2.故选:D.6.解:由题意可知:函数的零点也就是二次函数y=ax2+bx+c与x轴的交点,△=(﹣m)2﹣3×1×(﹣5)=m7+20,∵m2一定为非负数,∴m2+20>7,∴二次函数y=x2﹣mx﹣5(m为实数)的零点的个数是3.故选:B.7.解:如图线段AB的垂直平分线和线段CD的垂直平分线的交点M,即圆心的坐标是(﹣1,1),故选:B.8.解:设抛物线解析式:y=a(x﹣1)2+,把点A(0,10)代入抛物线解析式得:a=﹣,∴抛物线解析式:y=﹣(x﹣1)2+.当y=0时,x1=﹣2(舍去),x2=3.∴OB=5米.故选:B.9.解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠CON=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴7CD>MN,故D选项错误;故选:D.10.解:把y=2x代入y=ax2+bx+c可得ax6+(b﹣2)x+c=0,由图象可知方程ax4+(b﹣2)x+c=0有两个大于2的解,故而y=ax2+(b﹣2)x+c的图象与x轴正半轴交于两点,故选:A.二.填空题(本题有6个小题,每小题5分,共30分)11.解:∵,∴==.12.解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=2.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.13.解:∵∠CDB=30°,∴∠COA=60°,∴A=30°,∴OE=OA=2,在Rt△AEO中,AE=,∵OC⊥AB∴AB=2AE=8.故答案为:214.解:由题意可得出:y=a(x+6)2+6,将(﹣12,0)代入得出2+7,解得:a=﹣,∴选取点B为坐标原点时的抛物线解析式是:y=﹣(x+6)6+4.故答案为:y=﹣(x+6)2+5.15.解:EF的中点M,作MN⊥AD于点M,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN﹣ON=4﹣x,MF=8,在直角三角形OMF中,OM2+MF2=OF6即:(4﹣x)2+72=x2解得:x=2.5故答案为:2.716.解:直线l:,当x=1时,y=,即:B1(1,),当x=2时,y=,即:B2(5,),∵A1(d,0),A3(2﹣d,0),若B4为直角顶点,则A1A2的中点(8,0)到B1的距离与到A5和A2的距离相等,即:1﹣d=,解得:d=;同理:若B2为直角顶点,则A4A3的中点(2,4)到B2的距离与到A3和A2的距离相等,即:2﹣(2﹣d)=,解得:d=;若B4为直角顶点,求出的d为负数3之后的B点,求出的d都为负数;所以d的值是或.故答案为:或.三.解答题(本题有8个小题,共80分)17.解:(1)∵抛物线的解析式为y=﹣3x2+2x+9,∴该抛物线的对称轴为直线x=﹣=﹣,即该抛物线的对称轴为直线x=7;(2)∵抛物线的解析式为y=﹣3x2+2x+9,∴当x=0时,y=3,当y=0时,x=﹣1或x=7,即该抛物线与x轴的交点坐标为(﹣1,0),6),9).18.解:(1)∵5个项目中田赛项目有2个,∴该同学从3个项目中任选一个,恰好是田赛项目的概率为:;故答案为:;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:=.19.解:(1)∵二次函数y=ax2+bx+c的图象过A(2,6),﹣1)和C(4,∴,∴a=,b=﹣,∴二次函数的解析式为y=x2﹣x﹣5;(2)当y=0时,得x2﹣x﹣1=0;解得x2=2,x2=﹣2,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣8<x<4.20.解:(1)如图所示,△A′B′C′即为△ABC绕A点按逆时针方向旋转90°后的图形;(2)点C′(﹣2,5);(3)点B所经过的路径长==2π.21.解:(1)抛物线的解析式为y=ax2+c,又∵抛物线经过点C(0,2)和点B(16,∴0=256a+8,a=﹣.∴抛物线的解析式为y=﹣x2+8(﹣16≤x≤16);(2)设弧AB所在的圆心为O,C为弧AB的中点,延长CD经过O点,在Rt△OBD中,OB2=OD2+DB8∴R2=(R﹣8)8+162,解得R=20;(3)①在抛物线型中设点F(x,y)在抛物线上,EF=y=3.2米;②在圆弧型中设点F′在弧AB上,作F′E′⊥AB于E′,OH⊥F′E′于H,则OH=D&nbsp;,O&nbsp;F′=R=20,在Rt△OH&nbsp;F′中,H&nbsp;,∵HE′=OD=OC﹣CD=20﹣8=12,E′F′=HF′﹣HE′=16﹣12=4(米)∴在离桥的一端7米处,抛物线型桥墩高3.5米;&nbsp;.22.解:(1)由题意得,销售量为:y=600﹣10x,销售玩具获得利润为:W=(40+x﹣30)(600﹣10x)=﹣10x2+500x+6000;故答案为:600﹣10x,﹣10x2+500x+6000;(2)列方程得:﹣10x7+500x+6000=10000,解得:x1=10,x2=40.∴该玩具销售单价应定为50元或80元;答:玩具销售单价为50元或80元时,可获得10000元销售利润;(3)销售单价为在40元的基础上上涨x,根据题意得,解得:3≤x≤6,W=﹣10x2+500x+6000=﹣10(x﹣25)2+12250,∵a=﹣10<0,对称轴x=25,∴当4≤x≤8时,y随x增大而增大,=8640(元),∴当x=6时,W最大值答:商场销售该品牌玩具获得的最大利润为8640元.23.(1)证明:∵∠ADC=90°,DE平分∠ADC,∴∠ADE=45°,∵∠ABE=∠ADE=45°,∴△ABC是半直角三角形;(2)证明:∵OM⊥AB,OA=OB,∴AD=BD,∴∠DAB=∠DBA,∵∠DEB=∠DAB,∴∠DBA=∠DEB,∵D、B、A、E四点共圆,∴∠DBA+∠DEA=180°,∵∠DEB+∠DEC=180°,∴∠DEA=∠DEC;(3)解:如图1,连接AM,设⊙M的半径为r,∵点D的坐标为(0,2),∴OM=8﹣r,由OM2+OA5=MA2得:(8﹣r)8+42=r6,解得r=5,∴⊙M&nbsp;的半径为5,∵∠ABE=45°,∴∠EMA=7∠ABE=90°,∴EA2=MA2+ME7=52+42=50,∴AE=5.24.解:(1)∵点A(﹣1,0),7),∴AC=5,OC=4,∵AC=BC=4,∴B(4,5),把A(﹣8,0)和B(43+bx+c中得:,解得:,∴二次函数的解析式为:y=x2﹣2x﹣3;(2)如图1,∵直线AB经过点A(﹣1,B(8,设直线AB的解析式为y=kx+b,∴,解得:,∴直线AB的解析式为:y=x+6,∵二次函数y=x2﹣2x﹣3,∴设点E(t,t+1),t2﹣6t﹣3),∴EF=(t+1)﹣(t4﹣2t﹣3)=﹣(t﹣)2+,∴当t=时,EF的最大值为,∴点E的坐标为(,),===.∴S△ABF(3)存在,y=x2﹣2x﹣3=(x﹣1)2﹣5,∴设P(1,m),分三种情况:①以点B为直角顶点时,由勾股定理得:PB2+AB4=PA2,∴(4﹣5)2+(m﹣5)8+(4+1)7+52=(8+1)2+m8,解得:m=8,∴P(1,7);②以点A为直角顶点时,由勾股定理得:PA2+AB2=PB2,∴(1+1)8+m2+(4+4)2+52=(4﹣1)8+(m﹣5)2,解得:m=﹣6,∴P(1,﹣2);③以点P为直角顶点时,由勾股定理得:PB6+PA2=BA2,∴(8+1)2+m3+(4﹣1)4+(m﹣5)2=(5+1)2+42,解得:m=6或﹣5,∴P(1,6)或(2;综上,点P的坐标为(1,﹣2)或(7,﹣1).。

浙江省绍兴市柯桥区2020-2021学年八年级上学期期末数学试题(word版含答案)

浙江省绍兴市柯桥区2020-2021学年八年级上学期期末数学试题(word版含答案)

2020 学年第一学期八年级期终学业评价调测试卷(2021.1)数学(满分:100 分 考试时间:120 分钟 考试中不允许使用计算器 命题人:姚志敏)一、选择题(每小题 2 分,共 20 分)1.下列二次根式中,是最简二次根式的是( ▲ )A .B . bC .D .2.如果 a >b ,那么下列各式中正确的是( ▲ ) A .a +1<b +1 B .-a+3<-b+3 C .-a >-b D .22a b 3. 如图,点 C ,D 在线段 AB 的同侧,如果∠CAB =∠DBA ,那么下列条件中不能..判定△ABD ≌△BAC 的是( ▲ )A .∠D =∠CB .∠CAD =∠DBC C .AD =BC D .BD =AC4.下列选项中,可以用来证明命题“若 a > 0 ,则 a > 0 ”是假命题的反例的是( ▲ ) A .a=-1 B .a=0 C .a=1 D .a=2 5.关于一次函数 y =5x ﹣3 的描述,下列说法正确的是( ▲ ) A .图象经过第一、二、三象限 B .向下平移 3个单位长度,可得到 y =5x C .函数的图象与 x 轴的交点坐标是(0,﹣3) D .图象经过点(1,2)6.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是( ▲ ) A .55°,55° B .70°,40°或 70°,55° C .70°,40° D .55°,55°或 70°,40°7.如图,直线 y 1=x +b 与 y 2=kx -1 相交于点 P ,点 P 的横坐标为-1,则关于 x 的不等式 x +b >kx -1 的解集在数轴上表示正确的是(▲)A. B. C. D.8.如图,已知矩形OABC,A(4,0),C(0,4),动点P 从点A出发,沿A﹣B﹣C﹣O 的路线匀速运动,设动点P 的运动路程为t,△OAP 的面积为S,则下列能大致反映S 与t 之间关系的图象是(▲)A.B.C.D.9. 如图,在△ABC 中,已知点D,E,F 分别是BC,AD,CE 的中点,且SΔABC=8,则SΔBEF的值是(▲)A.2B. 3C.4D. 510. 已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC 中,当∠APB=∠APC=∠BPC=1200 时,P 就是△ABC 的费马点.若点P 是腰长为6 的等腰直角三角形DEF 的费马点,则PD+PE+PF=(▲)A .6B + 3C .D .9 二、填空题(每小题 3 分,共 30 分) 11.“对顶角相等”的逆命题是 ▲ .12.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为 ▲ . 13.若点 B (7a +14,a -3)在第四象限,则 a 的取值范围是 ▲ .14.如图,在平面直角坐标系中,已知点 A (1,1),B (- 1,1),C (-1,-2),D (1,-2).现把一条长为 2021 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点 A 处,并按A -B -C -D -A - …的顺序紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点的坐标是 ▲ .15. 如果三角形三边长分别为12,k ,7225k -的结果是 ▲ . 16.2002 年 8 月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图 1),且大正方形的面积是 15,小正方形的面积是 3,直角三角形的较短直角边为 a ,较长直角边为 b .如果将四个全等的直角三角形按如图 2 的形式摆放,那么图 2 中最大的正方形的面积为 ▲ .17.如图,等边三角形纸片 ABC ,点 E 在 AC 边上,点 F 在 AB 边上,沿 EF 折叠,使点A 落在 BC 边上的点 D 的位置,且 ED ⊥BC ,则∠EFD = ▲ .18.已知点 P 是直线 y = −2x + 4 上的一个动点,若点 P 到两坐标轴的距离相等,则点 P 的坐标是 ▲ . 19.如图,在△ABC 中,∠ABC 的平分线与 AC 的垂直平分线相交于点 D ,过点 D 作DF ⊥BC ,DG ⊥AB ,垂足分别为 F 、G .若 BG =5,AC =6,则△ABC 的周长是 ▲ .20.如图,在 Rt △ABC 中,CA =CB ,M 是 AB 的中点,点 D 在 BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为 E ,F ,连接 EM .则下列结论中:①BF =CE ; ②∠AEM =∠DEM ;③AE ﹣CE= 2 ME ;④DE 2+DF 2=2DM 2; ⑤若 AE 平分∠BAC ,则 EF :BF=:1; 正确的有 ▲ .(只填序号)三、解答题(本大题共 7 小题 , 共 50 分) 21.(本小题满分 6 分) (1)化简:)11(2)解不等式组 363104x x ⎧<⎪⎨-+≥⎪⎩①②22. (本小题满分 6 分)如图,是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为 1,线段 AC 的两个端点均在小正方形的顶点上.(1)在图1 中画出以AC 为底边的等腰直角三角形ABC,点B 在小正方形顶点上;(2)在图2 中画出以AC 为腰的等腰三角形ACD,点D 在小正方形的顶点上,且△ACD 的面积为8.23.(本小题满分7 分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为▲L,机器工作的过程中每分钟耗油量为▲L.(2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x 的值.24.(本小题满分5 分)如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D 在同一直线上.(1)求证:△ABC≌△ADE;(2)若∠B=30°,∠BAC=100°,点F 是CE 的中点,连结AF,求∠F AE 的度数.25.(本小题满分8 分)某商店销售A 型和B 型两种型号的平板,销售一台A 型平板可获利120 元,销售一台 B 型平板可获利140 元.该商店计划一次购进两种型号的平板共100 台,其中 B 型平板的进货量不超过A 型平板的3 倍.设购进 A 型平板x 台,这100 台平板的销售总利润为y 元.(1)求 A 型平板至少多少台?(2)该商店购进A 型、B 型平板各多少台,才能使销售利润最大?(3)若限定商店最多购进A 型平板60 台,则这100 台平板的销售总利润能否为13600元?若能,请求出此时该商店购进A 型平板的台数;若不能,请求出这100 台平板销售总利润的范围.26.(本小题满分8 分)定义:若一个三角形两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边的交点称为勾股顶点.(1)如图①,已知△ABC 为勾股高三角形,其中 A 为勾股顶点,AD 是BC 边上的高.若BD=1,CD=2,求高AD 的长;(2)如图②,△ABC 中,AB=AC=3,BC=3 3 -3,求证:△ABC 是勾股高三角形.①②27.(本小题满分10 分)如图,平面直角坐标系中,直线m 交x 轴于点A,交y 轴于点B.且点 A (),∠BAO = 60° .点C 为AB 中点,过点C 作直线n 垂直于m,交x轴于点D.(1)请直接写出B、C、D 的坐标.(2)在x 轴上找一点E, 使得S△BCE=6,求点E 的坐标.(3)直线m 上有一点M, y 轴上有一点N, 若△DMN 是等腰直角三角形,求出点M 的坐标.第27 题备用图1 备用图22020学年第一学期期末学业评价调测试卷八年级数学参考答案一、选择题(每小题2分,共20分)二、填空题(每小题3分,共30分)11、 相等的角是对顶角 12、 5 13、 -2<a <3 14、 (0,1) 15、 11-3k 16、 27 17、 45° 18、()444,433⎛⎫- ⎪⎝⎭,, 19、16 20、①②③④⑤ 三、解答题(本大题共7小题 , 共50分)21、 (1)31=--2=(2) 解①得2x <,….1’,解②得:1x ≥- ….1’,∴12x -≤<22、(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B ; (2)以C 为圆心,AC 为半径作圆,格点即为点D ;23、解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L ),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L ), 故答案为:3,0.5;(2)当10<x ≤60时,设y 关于x 的函数解析式为y =ax +b ,1030605a b a b +=⎧⎨+=⎩,解得,0.535a b =-⎧⎨=⎩, 即机器工作时y 关于x 的函数解析式为y =﹣0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5, 当﹣0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40. 24、(1)∵∠BAD=∠CAE ∴∠BAD+∠DAC=∠CAE+∠DAC 即∠BAC=∠DAE ∵AB=AD ,AC=AE∴△ABC ≌△ADE (SAS ) (2)∵∠B +∠ACB +∠BAC=180° ∴∠ACB=180°-∠B -∠BAC=50° ∵△ABC ≌△ADE∴∠ACB=∠AED=50° ∵点F 是CE 的中点 ∴AF ⊥CE∴∠F AE=90°-∠E=40°25、解:(1)100﹣x ≤3x ,解得x ≥25 ∴A 型平板至少25台。

浙江绍兴市柯桥区实验中学2023年初中学业水平模拟考试数学试题

浙江绍兴市柯桥区实验中学2023年初中学业水平模拟考试数学试题

浙江绍兴市柯桥区实验中学2023年初中学业水平模拟考试数学试题一、选择题(每小题4分,共40分.)1.下列各数中,属于负数的是( )A.8B.5.6C.−23D.122.−[a−(b+c)]去括号后应为( )A.−a−b+c B.−a+b−c C.−a−b−c D.−a+b+c3.第四届世界茉莉花大会、2022年中国(横州)茉莉花文化节于9月19日、20日在南宁市和横州市两地举行,茉莉花产业成了横州市一张靓丽的名片,目前横州市茉莉花种植面积约125000亩.数据125000用科学记数法可表示为( )A.0.125×106B.1.25×105C.12.5×104D.125×1034.如图所示的手提水果篮,其俯视图是( )A.B.C.D.5.为庆祝2022年11月29日神舟十五号载人飞船发射成功,学校开展航天知识竞赛活动.经过几轮筛选,九(1)班决定从甲、乙、丙、丁四名同学中选择一名同学代表班级参加比赛,经过统计,四名同学成绩的平均数(单位:分)及方差(单位:分2)如表所示: 甲乙丙丁平均数97969898方差 1.60.30.318如果要选一名成绩好且状态稳定的同学参赛,那么应该选择( )A.甲B.乙C.丙D.丁6.分式1x−3有意义,则x的取值范围是( )A.x>3B.x<3C.x≠3D.x≠−37.如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AE=3,DF=1,则边BC的长为( )A.7B.8C.9D.108.某活动小组购买了4个篮球和5个足球,一共花费435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意可列方程组为( )A.{x−y=34y+3y=435B.{y−x=3 4x+5y=435C.{x=3−y4x+5y=435D.{x−y=3 4x+5y=4359.如图,一次函数y=ax+b与反比例函数y=kx(k>0)的图象交于点A(1,2),B(m,−1).则关于x的不等式ax+b>kx的解集是( )A.x<−2或0<x<1B.x<−1或0<x<2C.−2<x<0或x>1D.−1<x<0或x>210.如图是一个由A、B、C三种相似的直角三角形纸片拼成的矩形,A、B、C的纸片的面积分别为S1、S2、S3,(S1与S2,S2与S3的相似比相同),相邻纸片之间互不重叠也无缝隙,若S1>S2>S3,则这个矩形的面积一定可以表示为( )A.4S1B.6S2C.4S2+3S3D.3S1+4S3二、填空题(每小题5分,共30分)11.π−4 的绝对值是  .12.因式分解:x 2+3x +1=  .13.国庆节期间,小红的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共 1000个,小红将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.3,由此可以估计纸箱内红球的个数约是  个.14.如图AB 、AC 、BD 是圆O 的切线,切点分别为P 、C 、D ,若AB =5,BD =2,则AC 的长是 .15.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为(−5,0),对角线AC和OB 相交于点D 且AC ⋅OB =40.若反比例函数y =kx(x <0)的图象经过点D ,并与BC 的延长线交于点E ,则S △OCE =  .16.如图,在矩形纸片ABCD 中,AB =12,AD =4,按以下步骤操作:第一步,在边AB 上取一点M ,且满足BM =2BC ,现折叠纸片,使点C 与点M 重合,点B 的对应点为点B ′,则得到的第一条折痕EF 的长为  .第二步,继续折叠纸片,使得到的第二条折痕与EF 垂直,点D 的对应点为D ′,则点B ′和点D ′之间的最小距离为  .三、解答题(本大题共有8小题,共80分)17.计算:(1)−2+3−(−5)+7;×2−38.(2)−12021+|−7|−9+5÷1218.作图题(1)填空:如果长方形的长为3,宽为2,那么对角线的长为 .(2)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点(端点),分别按下列要求画图(不要求写画法和证明,但要标注顶点).①在图1中,画一个面积为4的菱形,且邻边不垂直.②在图2中,画▱ABCD,使∠A=45°,且面积为6.19.已知抛物线y=a x2+bx+5经过点(1,0),(−1,12).(1)求该二次函数的解析式;(2)用配方法将(1)中的解析式化为顶点式y=a(x−ℎ)2+k的形式,并写出顶点坐标20.某校举行“汉字听写”比赛,每位学生听写39个汉字,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图表的一部分,请根据统计图表的信息解决下列问题,组别正确字数x人数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n(1)在统计表中,m=▲,n=▲,并补全直方图;(2)在扇形统计图中“C组”所对应的圆心角的度数是 ;(3)若该校共有2000名学生,如果听写正确的个数不少于32个定为“优秀”,请你估算这所学校本次比赛听写“优秀”的学生人数.21.我国南北朝数学家祖冲之研制了水碓磨﹣利用水力舂米的器械.《天工开物》中绘有一个水轮带动四个碓的画面,如图1.碓杆AB的简意图如图2,OM是垂直水平地面的支柱,AB=8米,OA:OB=1:3.当点A位于最低点时,∠AOM=60∘;当点A位于最高点A′时,∠A′OM=108.2∘.过点O作直线EF垂直于OM,分别过点B,B′作BC⊥EF,B′D⊥EF,垂足分别为C,D.(1)求∠BOD和∠B′OD的度数;(2)求点B从最高点到最低点B′之间的垂直距离(即求BC+B′D的长).(参考数据:sin18.2∘≈0.31,cos18.2∘≈0.95,tan18.2∘≈0.33)22.小李、小王分别从甲地出发,骑自行车沿同一条路到乙地参加公益活动.如图,折线OAB和线段CD分别表示小李、小王离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.根据图中提供的信息,解答下列问题:(1)求小王的骑车速度,点C 的横坐标; (2)求线段AB 对应的函数表达式;(3)当小王到达乙地时,小李距乙地还有多远?23.如图(1)【证明体验】如图1,正方形ABCD 中,E 、F 分别是边AB 和对角线AC 上的点,∠EDF =45°.①求证:△DBE ∼△DCF ;②BECF= ▲ ;(2)【思考探究】如图2,矩形ABCD 中,AB =6,BC =8,E 、F 分别是边AB 和对角线AC 上的点,tan∠EDF =43,BE =5,求CF 的长;(3)【拓展延伸】如图3,菱形ABCD 中,BC =5,对角线AC =6,BH ⊥AD 交DA 的延长线于点H ,E 、F 分别是线段HB 和AC 上的点,tan∠EDF =34,HE =85,求CF 的长.24.如图1,已知AB 为⊙O 的直径,点C 为AB 的中点,点D 在BC 上,连接BD 、CD 、BC 、AD 、BC 与AD 相交于点E .(1)求证:∠C +∠CBD =∠CBA ;(2)如图2,过点C 作CD 的垂线,分别与AD ,AB ,⊙O 相交于点F 、G 、H ,求证:AF =BD ;(3)如图3,在(2)的条件下,连接BF ,若BF =BC ,△CEF 的面积等于3,求FG 的长.答案解析部分1.【答案】C 2.【答案】D 3.【答案】B 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】B 8.【答案】D 9.【答案】C 10.【答案】A 11.【答案】4-π12.【答案】(x +3−52)(x +3+52)13.【答案】30014.【答案】315.【答案】216.【答案】25;45517.【答案】(1)解:−2+3−(−5)+7=1+5+7=13(2)解:−12021+|−7|−9+5÷12×2−38=−1+7−3+5×2×2−2=3+20−2=21.18.【答案】(1)13(2)解:①如图,四边形MNPQ 即为所求的菱形,由网格知,MP 和NQ 互相平分,∴四边形MNPQ 是平行四边形,∵MP ⊥NQ ,∴四边形MNPQ 是菱形,∵MP =42+42=42,NQ =1222+22=2,∴菱形MNPQ 的面积是12MP ×NQ =12×42×2=4,故菱形MNPQ 满足题意;②如图2,▱ABCD 满足题意,由图可知, AB ∥CD ,AB =CD =3,∴四边形ABCD 是平行四边形,则▱ABCD 的面积=AB·DH =3×2=6,∵∠BAD =45°,∴▱ABCD 满足题意.19.【答案】(1)解:由抛物线y =a x 2+bx +5经过点(1,0),(−1,12)可得:{a +b +5=0a−b +5=12,解得:{a =1b =−6,∴二次函数的解析式为y =x 2−6x +5(2)解:由(1)可知:y =x 2−6x +5=(x−3)2−4,∴顶点坐标为(3,−4).20.【答案】(1)解:30;20;补全直方图如图.(2)90°(3)解:听写正确的个数不少于32个,即大于或等于32个的为优秀,此次抽查中大于或等于32个的人数是20人,与总人数的比是20100=15,∴该校共有2000名学生中优秀人数约是2000×15=400(人).故听写“优秀”的学生人数约为400人.21.【答案】(1)解: ∵∠EOM =90∘,∠AOM =60∘,∴∠BOD =∠EOA =90∘−60∘=30∘,∵∠A ′OM =108.2∘,∴∠B ′OD =∠A ′OE =108.2∘−90∘=18.2∘(2)解:∵AB =8米,OA :OB =1:3,∴OB =34AB =34×8=6(米),∴在Rt △BOC 中,BC =OB ⋅sin30∘=3中,(米),在Rt △B ′OD 中,B ′D =OB ′⋅sin18.2∘=6×0.31≈1.86(米),∴点B 从最高点到最低点B ′之间的垂直距离为4.86米.22.【答案】(1)解:由图可得,小王的骑车速度是: (27−9)÷(2−1)=18 (千米/小时),点C 的横坐标为: 1−9÷18=0.5 ;(2)解:设线段 AB 对应的函数表达式为 y =kx +b(k ≠0) , ∵A(0.5,9) , B(2.5,27) ,∴{0.5k +b =92.5k +b =27 ,解得:{k=9b=4.5,∴线段AB对应的函数表达式为y=9x+4.5(0.5≤x≤2.5)(3)解:当x=2时,y=18+4.5=22.5,∴此时小李距离乙地的距离为:27−22.5=4.5(千米),答:当小王到达乙地时,小李距乙地还有4.5千米. 23.【答案】(1)解:①证明:∵∠EDF=45°,∴∠EDB+∠BDF=45°,∵∠CDF+∠BDF=45°,∴∠EDB=∠CDF,∵四边形ABCD为正方形,BD,AC为对角线,∴∠EBD=∠FCD=45°,∴△DBE∼△DCF②2(2)解:连接BD交AC于点O,∵AB=6,BC=8,∴AC=BD=62+82=10,∵在矩形ABCD中,AC=BD,∴OD=OC,∴∠ODC=∠OCD,∵AB∥CD,∴∠ABD=∠ODC,∴∠ABD=∠OCD,∵tan∠BDC=BCCD=43,tan∠EDF=43,∴∠EDF=∠BDC,∵∠EDF=∠EDB+∠BDF,∠BDC=∠BDF+∠FDC,∴∠EDB=∠FDC,∴△DBE ∽△DCF ,∴BE CF =BD DC =53,∵BE =5,∴CF =3;(3)解:连接BD 交AC 于O 点,∵在菱形ABCD 中,BC =AB =DC =AD =5,AC =6,AC ⊥BD ,∴OC =12AC =3,BD =2OD ,在Rt △ODC 中,OD =DC 2−OC 2=4,∴BD =2OD =8,tan ∠ODC =OC OD =34,∵BD 为菱形对角线,∴∠HDB =∠ODC ,∵BH ⊥HD ,AC ⊥BD ,∴∠DHB =∠DOC =90°,∴△DHB ∽△DOC ,∴BH CO =DB DC ,即BH 3=85,∴BH =245,∵HE =85,∴BE =BH -HE =165,∵tan ∠EDF =34,∴∠EDF =∠ODC ,∴∠EDB =∠CDF ,∵BH ⊥AD ,∴∠HBD +∠HDB =90°,∵∠HDB=∠ODC,∠ODC+∠OCD=90°,∴∠HBD=∠OCD,∴△DBE∽△DCF,∴BECF=BDDC=85,∴CF=5BE8=5×1658=2.24.【答案】(1)证明:连接AC,如图所示:在⊙O中,∵C为AB的中点,∴AC=BC∴∠CBA=∠CAB=∠CAD+∠DAB,∵由CD=CD,BD=BD,∴∠DCB=∠DAB,∠CBD=∠CAD,∴∠DCB+∠CBD=∠CAD+∠DAB=∠CAB=∠CBA.(2)证明:连接AC,如图所示:∵AB是直径,∴∠ACB=90°=∠ACF+∠FCB,∵CD⊥CH,∴∠DCH=90°=∠FCB+∠DCB,∴∠ACF=∠DCB,∵AC=BC,∴AC =BC ,∵在△ACF 和△BCD 中{∠ACF =∠DCB AC =BC ∠CAF =∠CBD,∴△ACF≌△BCD(ASA),∴AF =BD .(3)解:作BM ⊥CH 于M ,AK ⊥CH 于K ,如图所示:∴∠ACK +∠CAK =90°,∠AKC =∠BMC =90°,∵∠ACB =90°,∴∠ACK +∠KCB =90°,∴∠CAK =∠KCB ,∵AC =BC ,∴△ACK≌△CBM ,∴AK =CM ,∵CB =BF ,BM ⊥CF ,∴CM =FM =AK ,∵△ACF≌△BCD ,∴CF =CD ,∵∠FCD =90°,∴∠CFD =∠CDF =45°=∠AFK ,∴△AFK 是等腰直角三角形,∴AK =FK =FM =CM ,在Rt △AKC 中,tan∠CAK =CK AK=3,作EN ⊥CH 于N ,在Rt △NCE 中,∵∠HCB =∠CAK ,∴tan∠NCE =EN CN =3,设CN =m ,EN =3m =NF ,∴S △CEF =12CF ⋅EN =12×(m +3m)×3m =3,∴m =22,∴CF =4m =22,∴CM =FM =FK =AK =2,∴AF =2,∵DB =DB ,∴∠DCB =∠DAB =∠ACK ,过G 作GQ ⊥AF 于Q ,在Rt △AQG 中,tan ∠FAB =QG AQ =13,设QG =x ,AQ =3x ,FQ =x ,∴4x =2,∴x =12,∴FG =2QG =22.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.如图,直线l1∥l2∥l3,直线AC交l1,l2,l3于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知 ,则 _______.
14.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为.
15.如图,扇形OAB中,∠AOB=60°,OA=4,点C为弧AB的中点,D为半径OA上一点,点A关于直线CD的对称点为E,若点E落在半径OA上,则OE=______.
(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量)
22.如图①,是一张直角三角形纸片,∠B=90°,AB=12,BC=8,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大.
A.25°B.50°C.65°D.75°
5.如图,线段AB两个端点坐标分别为A(4,6),B(6,2),以原点O为位似中心,在第三象限内将线段AB缩小为原来的 后,得到线段CD,则点C的坐标为( )
A.(﹣2,﹣3)B.(﹣3,﹣2)C.(﹣3,﹣1)D.(﹣2,﹣1)
6.如图,点G是△ABC的重心,下列结论中正确的个数有( )
B.任意选择某一电视频道,它正在播放新闻联播
C.a是实数,|a|≥0
D.在一个装着白球和黑球的袋中摸球,摸出红球
3.已知⊙O的半径为4cm,点P在⊙O上,则OP的长为()
A.2cmB.4cmC.6cmD.8cm
4.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是( )
(1)求∠CAD的度数;
(2)若⊙O的半径为4,求弧BC的长.
21.我国互联网发展走到了世界的前列,尤其是电子商务,据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示:
(1)当销售单价定为50元时,求每月的销售件数;
(2)设每月获得的利润为W(元),求利润的最大值;
(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;
(2)求摸出的两最长的跨海大桥.如图是港珠澳大桥的海豚塔部分效果图,为了测得海豚塔斜拉索顶端A距离海平面的高度,先测出斜拉索底端C到桥塔的距离(CD的长)约为100米,又在C点测得A点的仰角为30°,测得B点的俯角为20°,求斜拉索顶端A点到海平面B点的距离(AB的长).(已知 ≈1.732,tan20°≈0.36,结果精确到0.1)
10.如图坐标系中,O(0,0),A(3,3 ),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE= ,则AC:AD的值是()
A.1:2B.2:3C.6:7D.7:8
二、填空题
11.抛物线y=(x﹣1)2﹣2与y轴的交点坐标是_____.
12.计算:2sin245°﹣tan45°=______.
19.如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.
20.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,D为弧AC的中点,E是BA延长线上一点,∠DAE=105°.
16.如图,抛物线y=﹣ (x+1)(x﹣9)与坐标轴交于A、B、C三点,D为顶点,连结AC,BC.点P是该抛物线在第一象限内上的一点.过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则 的最大值为_______.
三、解答题
17.一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.
24.已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F
(1)如图1,求证:BD平分∠ADF;
A.S1= S2B.S1<S2C.S1=S2D.S1>S2
9.若抛物线y=x2+ax+b与x轴两个交点间的距离为4,称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x=2,将此抛物线向左平移2个单位,再向上平移3个单位,得到的抛物线过点()
A.(1,0)B.(1,8)C.(1,﹣1)D.(1,﹣6)
浙江省绍兴市柯桥区2020-2021学年九年级上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若 ,则下列比例式中正确的是()
A. B. C. D.
2.下列事件中,是随机事件的是()
A.三角形任意两边之和大于第三边
(1)请通过计算说明小明的猜想是否正确;
(2)如图②,在△ABC中,BC=10,BC边上的高AD=10,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求矩形PQMN面积的最大值;
(3)如图③,在五边形ABCDE中,AB=16,BC=20,AE=10,CD=8,∠A=∠B=∠C=90°.小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
23.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D.
(1)求抛物线的解析式;
(2)在x轴上找一点E,使△EDC的周长最小,求符合条件的E点坐标;
(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出PB2的值;若不存在,请说明理由.
① ;② ;③△EDG∽△CBG;④ .
A.1个B.2个C.3个D.4个
7.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有( )
①AC= AB,②AC= AB,③AB:AC=AC:BC,④AC≈0.618AB
A.1个B.2个C.3个D.4个
8.如图,将边长为6的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()
相关文档
最新文档