测试技术与信号处理课后答案
信号处理与测试技术习题及答案

第一章习题:一、填空题1、电量分为和,如电流、电压、电场强度和电功率属于;而描述电路和波形的参数,如电阻、电容、电感、频率、相位则属于。
2、传感器输出的经过加工处理后,才能进—步输送到记录装置和分析仪器中。
3、现代科学认为,、、是物质世界的三大支柱。
4、与三大支柱相对应,现代科技形成了三大基本技术,即、、。
5、传感技术是人的的扩展和延伸;通信技术是人的的扩展和延伸;计算机技术是人的的延伸。
6、、、技术构成了信息技术的核心。
二、简答题1、举例说明信号测试系统的组成结构和系统框图。
2、举例说明传感技术与信息技术的关系。
3、分析计算机技术的发展对传感测控技术发展的作用。
4、分析说明信号检测与信号处理的相互关系。
三、参考答案(-)填空题1、电能量、电参量、电能量、电参量2、电信号、信号调理电路3、物质、能量、信息4、新材料技术、新能源技术和信息技术5、感官(视觉、触觉)功能、信息传输系统(神经系统)、信息处理器官(大脑)功能6、传感、通信和计算机第二章习题:一、填空题1、确定性信号可分为和两类。
2、信号的有效值又称为,它反映信号的。
3、概率密度函数是在域,相关函数是在域,功率谱密度是在域上描述随机信号。
4、周期信号在时域上可用、和参数来描述。
5、自相关函数和互相关函数图形的主要区别是。
6、因为正弦信号的自相关函数是同频率的,因此在随机噪声中含有时,则其自相关函数中也必然含有,这是利用自相关函数检测随机噪声中含有的根据。
7、周期信号的频谱具有以下三个特点:_________、________、_________。
8、描述周期信号的数学工具是__________;描述非周期信号的数学工具是________。
9、同频的正弦信号和余弦信号,其相互相关函数是的。
10、信号经典分析方法是和。
11、均值E[x(t)]表示集合平均值或数学期望,反映了信号变化的,均方值反映信号的。
12、奇函数的傅立叶级数是,偶函数的傅立叶级数是。
机械测试技术与信号分析简答题及答案

一、问答题(每题8分,共40分)1.在系统特性测量中常用白噪声信号作为输入信号,然后测量系统的输出,并将输出信号的频谱作为系统频率特性。
请用卷积分定理解释这样做的道理。
答:白噪声是指功率谱密度在整个频域内均匀分布的噪声,所有频率具有相同能量的随机噪声称为白噪声。
在其频谱上是一条直线。
系统频率特性:传递函数的一种特殊情况,是定义在复平面虚轴上的传递函数。
时域卷积分定理:两个时间函数的卷积的频谱等于各个时间函数的乘积,即在时域中两信号的卷积等效于在频域中频谱相乘。
频域卷积分定理:两个时间函数的频谱的卷积等效于时域中两个时间函数的乘积。
y(t)=h(t)*x(t),对y(t)作付式变换,转到相应的频域下Y(f)=H(f)X(f),由于x(t)是白噪声,付式变换转到频域下为一定值,假定X(f)=1,则有Y(f)=H(f),此时就是传递函数。
2.用1000Hz的采样频率对200Hz的正弦信号和周期三角波信号进行采样,请问两个信号采样后是否产生混叠?为什么?3.什么是能量泄露和栅栏效应?能量泄漏与栅栏效应之间有何关系?能量泄漏:将截断信号的谱XT(ω)与原始信号的谱X(ω)相比较可知,它已不是原来的两条谱线,而是两段振荡的连续谱.这表明原来的信号被截断以后,其频谱发生了畸变,原来集中在f0处的能量被分散到两个较宽的频带中去了,这种现象称之为频谱能量泄漏(Leakage)。
栅栏效应:对采样信号的频谱,为提高计算效率,通常采用FFT算法进行计算,设数据点数为N = T/dt = T.fs则计算得到的离散频率点为Xs(fi) , fi = i.fs/N , i = 0,1,2,…,N/2。
这就相当于透过栅栏观赏风景,只能看到频谱的一部分,而其它频率点看不见,因此很可能使一部分有用的频率成分被漏掉,此种现象被称为栅栏效应。
频谱的离散取样造成了栅栏效应,谱峰越尖锐,产生误差的可能性就越大。
例如,余弦信号的频谱为线谱。
《测试技术》课后习题答案

第一章1答:测试技术是实验科学的一部分,主要研究各种物理量的测量原理和测量信号分析处理方法,是进行各种科学实验研究和生产过程参数测量必不可少的手段,起着人的感官的作用。
2答:测试系统由传感器、中间变换装置和显示记录装置三部分组成。
传感器将被测物理量检出并转换为电量,中间变换装置对接收到的电信号用硬件电路进行分析处理或经A/D变换后用软件进行信号分析,显示记录装置则测量结果显示出来,提供给观察者或其它自动控制装置。
3答:在工程领域,科学实验、产品开发、生产监督、质量控制等,都离不开测试技术。
测试技术应用涉及到航天、机械、电力、石化和海洋运输等每一个工程领域。
4答:例如:全自动洗衣机中用到如下传感器:衣物重量传感器,衣质传感器,水温传感器,水质传感器,透光率光传感器(洗净度) 液位传感器,电阻传感器(衣物烘干检测)。
第二章1答:信号波形是指被测信号幅度随时间的变化历程。
2答:从信号描述上分为:确定性信号与非确定性信号;从信号的幅值和能量上分为:能量信号与功率信号;从分析域上分为:时域与频域;从连续性分为:连续时间信号与离散时间信号;从可实现性分为:物理可实现信号与物理不可实现信号。
3答:可以用明确数学关系式描述的信号称为确定性信号。
不能用数学关系式描述的信号称为非确定性信号。
4答:在所分析的区间(-∞,∞),能量为有限值的信号称为能量信号,能量不是有限值的信号称为功率信号。
5答:周期信号的自相关函数仍然是同频率的周期信号,但不保留原信号的相位信息。
6答:信号频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f)。
时域分析只能反映信号的幅值随时间的变化情况,除单频率分量的简谐波外,很难明确揭示信号的频率组成和各频率分量大小。
信号频谱X(f)代表了信号在不同频率分量成分的大小,能够提供比时域信号波形更直观,丰富的信息。
7答:周期函数展开为傅立叶级数的物理意义: 把一个比较复杂的周期信号看成是许多不同频率的简谐信号的叠加。
测试技术课程课后习题答案

(2)当ξ=0.7时可解得A(400)=0.975;φ (400)=-43.03°
即幅值比为:A(400)=0.975;相位移为43.03°。
2-11 一个可视为二阶系统的装置输入一个单位 阶跃函数后,测得其响应的第一个超调量峰值 为0.15,振荡周期为6.23s。已知该装置的静态 增益为3,试求该装置的传递函数和该装置在无 阻尼固有频率处的频率响应。
0.2%
不能,这个变化量是太小。
3-6 一个电容测微仪其传感器的圆形极板的半径r=4mm,工 作初始间隙δ=0.3mm,问:1)工作时,如果传感器与工件的 间隙变化量∆δ=±0.1μn时,电容变化量是多少?2)如果测量 电路的灵敏度S1=100V/pF,读数仪表的灵敏度S2=5格/mV, 当 ∆δ=±0.1μn时,读数仪表的指示值变化多少格?
1
1 2
A()
1
0.414
1 0.35 2 12
2
1 T
幅值误差为:1-0.414=0.586
2-3 求周期信号x(t)=0.5cos10t+0.2cos (100t-45°),通过传递函数为 H(s) 1
0.005s 1
的装置后得到的稳态响应。
解: x(t) x1(t) x2 (t)
第二章习题
2-1 进行某动态压力测量时,所用的压电式力传感器的灵 敏度为90.9nC/Mpa,将他与增益为 0.005V/nC的电荷放大 器相连,电荷放大器的输出接到一台笔试记录仪上,记录仪 的灵敏度为20mm/V,试求该压力测试系统的灵敏度。当压 力变化为3.5Mpa时,记录笔在记录纸变化量为多少?
2-5 用一个一阶系统作100Hz正弦信号的测 量,如果要求限制振幅误差在5%以内,则时 间常数应取多少?若用该系统测量50Hz的正 弦信号,问此时振幅误差和相角差是多少?
测试技术(2-6章)(李迪张春华著)华南理工大学教材供应中心课后答案

第二章 测量结果的数据处理及误差分析√2-3 用标准测力机检定材料试验机,若材料试验机的示值为5.000MN ,标准测力仪输出力值为4.980MN ,试问材料机在5.000MN 检定点的示值误差、示值的相对误差各为多少?解:示值误差=,020.0000.5980.4−=−示值的相对误差=%04.0000.5020.0−=−√2-8 设间接测量量z x y =+,在测量x 和时是一对一对同时读数的。
测量数据如下表。
试求的标准测量序号y z 偏差。
1 2 3 4 5 6 78 9 10 x 读数100 104 1029810310199101105102 y 读数51 51 5450515250505351解:101.5x =,51.3y =,0.42y σ=,0.687x σ=152.8z x y =+=z x y =+,1,1z z x y∂∂∴==∂∂ 由于10(,)()(0.55iix y x x y y ρ−−∴==∑0.98z σ∴=。
1m 距离的标准偏差为0.2mm 。
如何表示间的函数式?求测此10m 距离的标准差。
见书P27-28页的内容。
5.033,25.039,25.034mm 。
如不计其他不确定度来源,最佳值及其标准不确定度。
见书P36页例题2.8√2-9 用米尺逐段丈量一段10m 的距离,设丈量接测量解:参√2-14 用千分尺重复测量某小轴工件直径10次,得到的测量数据为25.031,25.037,25.034,25.036,25.038,25.037,25.036,2试估计解:参答案网 w w w .h k s h p .c n第三章 信号描述与分析-3 求指数函数的频谱。
√解:()e (00)atx t A a t −=>≥,3dt e Ae dt e t x X t j at t j ∫∫+∞−−+∞∞−−==0)()(ωωω220)()ωωωωω+−=+=+−=+∞+−a j a A j a A e j a Ata j (3-4 求被截断的余弦函数0cos t ω0cos ||()0 ||t t x t t Tω<⎧=⎨≥T解:⎩(题图3-4 )的傅里叶变换。
测试技术(第二版)课后复习题答案_贾民平

测试技术与信号处理习题解答授课教师:陈杰来第一章习题(P29)1-1府轉质个职躺切齢肆帥静!耶个职臨号!饷腮i 普各狀啊酿?解:(1) 瞬变信号-指数衰减振荡信号,其频谱具有连续性和衰减性。
(2) 准周期信号,因为各简谐成分的频率比为无理数,其频谱仍具有离散性。
(3) 周期信号,因为各简谐成分的频率比为有理数,其频谱具有离散性、 谐波性和收敛性。
1-2求信号x (t )=sm 2^1的有效值(均方根值)畑二J 討:工“)曲.解:x (t )=sin2 f °t 的有效值(均方根值):J 丄:。
(1 cos 4 f o t) dt 2T o o[丄(T o -^si n4 f o T o ):2T o4 f oxrms1'■■,'TTox 2 (t)dtT oTosin 2 2 f o t dtu1------ sin 4 f o t 4 f 0T 0)1-3聽I呵抽三斛擁开拥腓师开丸耦茫触他1加般认胖離礼解:周期三角波的时域数学描述如下:T o2 x(t)0 tT 0 2T o x(t nT o )(1)傅里叶级数的三角函数展开:b n 1 T o/2T oT o / 2 T o /2 T o T o /2 4 T o /2 T o4 2 n 2 52 T o /2(1 T o /2a。
an 2n 2x(t)dt 2 T o /2T 00(1—t)dt T o x(t)cos n o t dt 2t)cos n o t dt T on 1,3,5, T o则x(t)sin n x(t)sin n o t dt n 2,4,6,,式中由于x(t)是偶函数,sinn o t 是奇函数,o t 也是奇函数,而奇函数在上下限对称区间上的积分等于o 。
故b n 0。
因此,其三角函数展开式如下:x(t)12 cos n n 1 nt41匕 2sin(n o t n 1 n2)(n=1,3, 5,…)其频谱如下图所示:A())1■2()」4 22・ 41 2 3 49 24 25 213 0 5 00 3 0 5 0单边幅频谱单边相频谱(2)复指数展开式复指数与三角函数展开式之间的关系如下:1 21 V a ! b :4 I m C nR e C nC 0 IA onarctg3oI m C nR e C n1 2 A 1arctg (电)a n故有I nC N =-b n /21 A1A n = an 2 2 arctg ( “) a nR e C N =31/22. 2 n 2 sin 2222 2n 0n 1,3,5, n 2,4,6,a o C n-5 0-3 0 - 0 0------------------------ ko 3 o 5 o实频谱j i R e C n1 2 222 9 225 22 25 2-5 0-3 o - o 0虚频谱o 3 o 5 o双边幅频谱t|Cn2 25 22 9 2 225 2-5 o -3 o - o o双边相频谱1-4求三角形窗函数{图J22)的频谱[井作频谱Kkt用傅里叶变换求频谱。
测试技术_课后答案

w ww .kh d a w.c o m信号及其描述习题1.1求周期方波(图1-4)的傅立叶级数(复指数函数形式)。
画出频谱图|C n |—ω ;φn —ω 图并与表1-1对比。
解:傅立叶级数的复指数形式表达式:⋅⋅⋅±±±==∑+∞−∞=,3,2,1,0;)(0n eC t x n tjn nω式中: []()⎪⎩⎪⎨⎧⋅⋅⋅±±±=⋅⋅⋅±±±=−=−−=+×+−=⎥⎦⎤⎢⎣⎡−+⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤+⎢⎣⎡−==−−−−−−−−−∫∫∫,6,4,2;0,5,3,1;2cos 12111)(1)(1200002002002022000000000000n n n A j n n A j e e n jA n jA e jn A T e jn A T dt Ae dt e A T dt e t x T C jn jn T t jn T t jn T t jn T t jn T T t jn n πππππωωππωωωωω所以: ⋅⋅⋅±±±±=⎟⎠⎞⎜⎝⎛−=∑+∞−∞=,7,5,3,1;2)(0n en A j t x t jn n ωπ幅值频谱:⋅⋅⋅±±±==+=,5,3,1;222n n A C C C nI nR n π相位频谱:立叶级数的复指数形式的幅值频谱图和相位频谱都是双边频谱图。
求正弦信x s求指数函数的频谱。
)和单位阶跃函数(题图)的频谱 ⎪⎩⎪⎨⎧⋅⋅⋅−−−=⋅⋅⋅=−=⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−==,5,3,1;2,5,3,1;202n n n A arctg C C arctg nR nI n πππϕ傅 号的绝对均值和均方根值1.2 x (t )=x 0sin ωt μ| |x rm 解: ωππωμ2;2sin 1)(lim 0000000====∫∫∞→T x tdt x T dt t x T T T x 式中:()2sin 1)(10020002000x dt dt x T dt t x T x T T rms ===∫∫ω1.3 解:00;Ae x ;()(≥>=−t t t αα)f j A dt e Ae dt e t x f X ft j t ft j παπαπ2)()(022+=⋅==∫∫∞+−−∞+∞−−1.41-1a 1-1b .求符号函数(题图w ww .kh d a w.c o m解:1) 符号函数的频谱:令: fj dt e e dt e e dt e t x f X t x e t x ft j tft j t ft j t ππαπααπαα1)1(lim )()(;)(lim )(0220021101=⎟⎠⎞⎜⎝⎛+−===∫∫∫∞+−−−∞−−→−−→2)单位阶跃函数的频谱: fj dt e e dt e t x f X t x e t x ft j t ft j tππααπαα21lim )()(;)(lim )(02022202=⎟⎠⎞⎜⎝⎛===∫∫∞+−−→−−→1.5求被截断的余弦函数cos ω0t (题图1-2)的傅立叶变换。
测试技术课后题部分答案

1.1简述测量仪器的组成与各组成部分的作用答:感受件、中间件和效用件。
感受件直接与被测对象发生联系,感知被测参数的变化,同时对外界发出相应的信号;中间件将传感器的输出信号经处理后传给效用件,放大、变换、运算;效用件的功能是将被测信号显示出来。
1.2测量仪器的主要性能指标及各项指标的含义是什么答:精确度、恒定度、灵敏度、灵敏度阻滞、指示滞后时间等。
精确度表示测量结果与真值一致的程度;恒定度为仪器多次重复测量时,指示值的稳定程度;灵敏度以仪器指针的线位移或角位移与引起这些位移的被测量的变化值之间的比例表示;灵敏度阻滞又称感量,是足以引起仪器指针从静止到做微小移动的被测量的变化值;指示滞后时间为从被测参数发生改变到仪器指示出该变化值所需时间,或称时滞。
2.3试述常用的一、二阶测量仪器的传递函数及它的实例答:一阶测量仪器如热电偶;二阶测量仪器如测振仪.2。
4试述测量系统的动态响应的含义、研究方法及评价指标。
答:测量系统的动态响应是用来评价系统正确传递和显示输入信号的指标.研究方法是对系统输入简单的瞬变信号研究动态特性或输入不同频率的正弦信号研究频率响应.评价指标为时间常数τ(一阶)、稳定时间t s和最大过冲量A d(二阶)等。
2.6试说明二阶测量系统通常取阻尼比ξ=0.6~0。
8范围的原因答:二阶测量系统在ξ=0.6~0。
8时可使系统具有较好的稳定性,而且此时提高系统的固有频率ωn会使响应速率变得更快。
3.1测量误差有哪几类?各类误差的主要特点是什么?答:系统误差、随机误差和过失误差。
系统误差是规律性的,影响程度由确定的因素引起的,在测量结果中可以被修正;随机误差是由许多未知的或微小因素综合影响的结果,出现与否和影响程度难以确定,无法在测量中加以控制和排除,但随着测量次数的增加,其算术平均值逐渐接近零;过失误差是一种显然与事实不符的误差.3。
2试述系统误差产生的原因及消除方法答:仪器误差,安装误差,环境误差,方法误差,操作误差(人为误差),动态误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测试技术与信号处理课后答案机械工程测试技术基础习题解答教材:机械工程测试技术基础,熊诗波 黄长艺主编,机械工业出版社,2006年9月第3版第二次印刷。
第一章 信号的分类与描述1-1 求周期方波(见图1-4)的傅里叶级数(复指数函数形式),划出|c n |–ω和φn –ω图,并与表1-1对比。
解答:在一个周期的表达式为00 (0)2() (0)2T A t x t T A t ⎧--≤<⎪⎪=⎨⎪≤<⎪⎩积分区间取(-T/2,T/2)000000002202002111()d =d +d =(cos -1) (=0, 1, 2, 3, )L T T jn tjn tjn t T T n c x t et Aet Ae tT T T Ajn n n ωωωππ-----=-±±±⎰⎰⎰所以复指数函数形式的傅里叶级数为 001()(1cos )jn tjn t n n n Ax t c ejn e n∞∞=-∞=-∞==--∑∑ωωππ,=0, 1, 2, 3, n ±±±L 。
(1cos ) (=0, 1, 2, 3, )0nI nR A c n n n c ⎧=--⎪±±±⎨⎪=⎩L ππ图1-4 周期方波21,3,,(1cos)00,2,4,6,nAnAc n nnn⎧=±±±⎪==-=⎨⎪=±±±⎩LLπππ1,3,5,2arctan1,3,5,200,2,4,6,nInnRπncπφncn⎧-=+++⎪⎪⎪===---⎨⎪=±±±⎪⎪⎩LLL没有偶次谐波。
其频谱图如下图所示。
1-2 求正弦信号0()sinx t xωt=的绝对均值xμ和均方根值rms x。
解答:00002200000224211()d sin d sin d cosT TT Txx x x x μx t t xωt tωt tωtT T T TωTωπ====-==⎰⎰⎰rmsx====1-3 求指数函数()(0,0)atx t Ae a t-=>≥的频谱。
解答:(2)22022(2)()()(2)2(2)a j f tj f t at j f te A A a j fX f x t e dt Ae e dt Aa j f a j f a f-+∞∞---∞-∞-=====-+++⎰⎰πππππππ()X f=π/20ω00幅频图相频图周期方波复指数函数形式频谱图πωω0ω0Im ()2()arctanarctanRe ()X f ff X f a==-πϕ1-4 求符号函数(见图1-25a)和单位阶跃函数(见图1-25b)的频谱。
a)符号函数的频谱10()sgn()10t x t t t +>⎧==⎨-<⎩t =0处可不予定义,或规定sgn(0)=0。
该信号不满足绝对可积条件,不能直接求解,但傅里叶变换存在。
可以借助于双边指数衰减信号与符号函数相乘,这样单边指数衰减信号频谱图 f|X (f )|Aφ(f ) fπ/2-π/2 tsgn(t ) 0 1 -1 tu (t )0 1图1-25 题1-4图a)符号函数 b)阶跃函数便满足傅里叶变换的条件。
先求此乘积信号x 1(t)的频谱,然后取极限得出符号函数x (t )的频谱。
10()sgn()0atatate t x t et et --⎧>==⎨-<⎩10()sgn()lim ()a x t t x t →==22211224()()(2)j f t at j f t at j f t f X f x t e dt e e dt e e dt ja f ∞∞-----∞-∞==-+=-+⎰⎰⎰πππππ[]101()sgn()lim ()a X f t X f jf→===-πF1()X f fπ=02()02f f f πϕπ⎧<⎪⎪=⎨⎪->⎪⎩b)阶跃函数频谱10()00t u t t >⎧=⎨<⎩在跳变点t =0处函数值未定义,或规定u (0)=1/2。
阶跃信号不满足绝对可积条件,但却存在傅里叶变1()sgn()at x t e t -=符号函数tx 1(t )0 1-符号函数频谱f φ(f )0 π/2 0f|X (f )|-π/2换。
由于不满足绝对可积条件,不能直接求其傅里叶变换,可采用如下方法求解。
解法1:利用符号函数11()sgn()22u t t =+ [][]1111111()()sgn()()()22222U f u t t f j f j f f ⎛⎫⎡⎤⎡⎤==+=+-=- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦δδππF F F()2211()()2U f f f δπ=+结果表明,单位阶跃信号u (t )的频谱在f =0处存在一个冲激分量,这是因为u (t )含有直流分量,在预料之中。
同时,由于u (t )不是纯直流信号,在t =0处有跳变,因此在频谱中还包含其它频率分量。
解法2:利用冲激函数10()()d 00tt u t t δττ-∞>⎧==⎨<⎩⎰时时根据傅里叶变换的积分特性1111()()d ()(0)()()222t U f f f f j j f f δττδδππ-∞⎡⎤⎡⎤==∆+∆=-⎢⎥⎢⎥⎣⎦⎣⎦⎰F1-5 求被截断的余弦函数0cos ωt (见图1-26)的傅里叶变换。
单位阶跃信号频谱f |U (f )|(1/2f φ(f )0 π/2 -π/20cos ()0ωt t T x t t T⎧<⎪=⎨≥⎪⎩解:0()()cos(2)x t w t f t =π w (t )为矩形脉冲信号 ()2sinc(2)W f T Tf =π()002201cos(2)2j f t j f tf t e e πππ-=+所以002211()()()22j f tj f t x t w t ew t e -=+ππ根据频移特性和叠加性得: 000011()()()22sinc[2()]sinc[2()]X f W f f W f f T T f f T T f f =-++=-++ππ可见被截断余弦函数的频谱等于将矩形脉冲的频谱一分为二,各向左右移动f 0,同时谱线高度减小一半。
也说明,单一频率的简谐信号由于截断导致频谱变得无限宽。
1-6 求指数衰减信号0()sin atx t eωt-=的频谱fX (f )Tf-f 0被截断的余弦函数频谱 图1-26 被截断的余弦函数t tT -TT -Tx (t )w (t )10 01-解答:()0001sin()2j t j tt e e j-=-ωωω 所以()001()2j t j tatx t ee e j--=-ωω单边指数衰减信号1()(0,0)atx t ea t -=>≥的频谱密度函数为 11221()()j t at j t a j X f x t e dt e e dt a j a ∞∞----∞-====++⎰⎰ωωωωω根据频移特性和叠加性得:[]001010222200222000222222220000()()11()()()22()()[()]2[()][()][()][()]a j a j X X X j j a a a a ja a a a ⎡⎤---+=--+=-⎢⎥+-++⎣⎦--=-+-+++-++ωωωωωωωωωωωωωωωωωωωωωωωωωω指数衰减信号1-7 设有一时间函数f (t )及其频谱如图1-27所示。
现乘以余弦型振荡0cos ()m ωt ωω>。
在这个关系中,函数f (t )叫做调制信号,余弦振荡0cos ωt 叫做载波。
试求调幅信号0()cos f t ωt的傅里叶变换,示意画出调幅信号及其频谱。
又问:若0mωω<时将会出现什么情况?解:0()()cos()x t f t t =ω()[()]F f t =ωF()0001cos()2j t j tt e e -=+ωωω所以0011()()()22j tj t x t f t ef t e -=+ωω根据频移特性和叠加性得:11()()()22X f F F =-++ωωωω 可见调幅信号的频谱等于将调制信号的频谱一分为二,各向左右移动载频ω0,同时谱线高度减小一半。
图1-27 题1-7图ωF (ω)f(t) 0t-ωω若0mωω<将发生混叠。
1-8 求正弦信号0()sin()x t x ωt φ=+的均值xμ、均方值2xψ和概率密度函数p (x )。
解答: (1)000011lim()d sin()d 0T T xT μx ttx ωt φt T T →∞==+=⎰⎰,式中02πTω=—正弦信号周期 (2)22222200000111cos 2()lim ()d sin ()d d 22T T T x T x x ωt φψx t t x ωt φt t T T T →∞-+==+==⎰⎰⎰(3)在一个周期内12ΔΔ2Δx T t t t =+=0002Δ[()Δ]limx x T T T t P x x t x x T T T →∞<≤+===22Δ0Δ0000[()Δ]2Δ2d ()limlim ΔΔd x x P x x t x x t t p x x T x T x πx x →→<≤+====-fX (f )ω0 -ω0矩形调幅信号频谱正弦信号第二章 测试装置的基本特性2-1 进行某动态压力测量时,所采用的压电式力传感器的灵敏度为90.9nC/MPa ,将它与增益为0.005V/nC 的电荷放大器相连,而电荷放大器的输出接到一台笔式记录仪上,记录仪的灵敏度为20mm/V 。
试计算这个测量系统的总灵敏度。
当压力变化为3.5MPa 时,记录笔在记录纸上的偏移量是多少?解:若不考虑负载效应,则各装置串联后总的灵敏度等于各装置灵敏度相乘,即S =90.9(nC/MPa)⨯0.005(V/nC)⨯20(mm/V)=9.09mm/M Pa 。
偏移量:y =S ⨯3.5=9.09⨯3.5=31.815mm 。
2-2 用一个时间常数为0.35s 的一阶装置去测量周期分别为1s 、2s 和5s 的正弦信号,问稳态响应幅值误差将是多少?解:设一阶系统1()1H s s τ=+,1()1H j ωτω=+()()A H ωω===,T 是输入的正弦信号的周期稳态响应相对幅值误差()1100%A δω=-⨯,将已知周期代入得58.6%1s32.7%2s8.5%5s T T T δ=⎧⎪≈=⎨⎪=⎩2-3 求周期信号x (t )=0.5cos10t +0.2cos(100t −45︒)通过传递函数为H (s )=1/(0.005s +1)的装置后得到的稳态响应。