七年级数学上册 综合训练 代数式求值(整体代入一)天天练(新版)新人教版
七年级数学上册综合训练代数式求值整体代入二天天练试题

代数式求值单位:乙州丁厂七市润芝学校时间:2022年4月12日创编者:阳芡明学生做题前请先答复以下问题问题1:整体代入的考虑方向①求值困难,考虑_____________;②化简________________,比照确定________;③整体代入,化简.问题2:代数式2a2+3b=6,求代数式4a2+6b+8的值.①根据2a2+3b=6无法求出a和b的详细值,考虑_____________;②比照及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值〔整体代入二〕〔人教版〕一、单项选择题(一共15道,每道6分)的值是5,那么代数式的值是( )A.6B.7C.11D.122.,那么代数式的值是( )A.0B.-1C.-3D.3,那么的值是( )A.12B.6C.3D.0,那么的值是( )A.0B.1C.2D.3,那么的值是( )A.2021B.2021C.2021D.2021的值是9,那么的值是( )A.7B.18C.12D.9的值是8,那么多项式的值是( )A.1B.2C.3D.4,那么的值是( )A.6B.-10C.-18D.24的值是7,那么多项式的值是( )A.2B.3C.-2D.4的值是18,那么多项式的值是( )A.28B.-28C.32D.-32的值是7,那么的值是( )A.11B.14C.15D.17的值是8,那么的值是( )A.2B.-17C.-7D.7,那么的值是( )A. B.C. D.,那么代数式的值是( )A.56B.66C.78D.80,那么的值是( )A.3B.2C.-1D.1。
七年级数学上册 综合训练 代数式求值(整体代入一)天天练(新版)新人教版

代数式求值学生做题前请先回答以下问题问题1:整体代入的思考方向①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:已知代数式2a2+3b=6,求代数式4a2+6b+8的值.①根据2a2+3b=6无法求出a和b的具体值,考虑_____________;②对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入一)(人教版)一、单选题(共13道,每道7分)1.把看成一个整体,合并同类项的结果为( )A. B.C. D.2.把看成一个整体,合并同类项的结果为( )A. B.C.D.3.设,把用含的代数式表示并化简的结果为( )A. B.C. D.4.设,把用含的代数式表示并化简的结果为( )A. B.C. D.5.若,则代数式的值为( )A.0B.4C.6D.26.已知,则的值为( )A.-1B.0C.1D.37.若,则代数式的值为( )A.-1B.1C.-5D.58.已知代数式的值是4,则的值为( )A.1B.5C.9D.109.若代数式的值为5,则代数式的值为( )A.1B.9C.11D.2110.已知代数式的值为6,则的值为( )A.24B.18C.12D.911.若,则的值为( )A.0B.2C.5D.812.若,则的值为( )A.7B.-7C.1D.-113.若,则的值为( )A.-59B.-31C.41D.61感谢您的支持,我们会努力把内容做得更好!。
最新人教版七年级数学上册 代数式综合测试卷(word含答案)

一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。
3.2代数式的值拓展练习:代数式的化简求值问题人教版2024—2025学年七年级上册

3.2代数式的值拓展练习:代数式的化简求值问题人教版2024—2025学年七年级上册一、问题引入与归纳1.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化。
2.代数式的求值(整体代入法):整体思想就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理。
二、典型例题解析例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求])45(2[22m m m m +---的值.变式1.已知多项式(m ﹣3)x |m |﹣2y 3+x 2y ﹣2xy 2是关于x ,y 的四次三项式.(1)求m 的值;(2)当x =,y =﹣1时,求此多项式的值.例2.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.变式2.已知x ﹣2y =3,则代数式6﹣2x +4y 的值为( )A .0B .﹣1C .﹣3D .3变式3.当x =1时,代数式ax 3﹣3bx +4的值是7,则当x =﹣1时,这个代数式的值是( )A .7B .3C .1D .﹣7变式4.若m ﹣n =﹣1,则(m ﹣n )2﹣2m +2n 的值为( )A .﹣1B .1C .2D .3变式5.已知2a +3b =4,则整式﹣4a ﹣6b +1的值是( )A .5B .3C .﹣7D .﹣10变式6.当x =﹣2时,式子3x 2+ax +8的值为16,当x =﹣1时,这个式子的值为( )A .2B .9C .21D .3变式7.如果a 和﹣4b 互为相反数,那么多项式2(b ﹣2a +10)+7(a ﹣2b ﹣3)的值是( )A .﹣3B .﹣1C .1D .3变式8.若x 2﹣4x ﹣1=0,则2x 2﹣8x ﹣(x 2﹣4x )+2020的值为( )A .2021B .2022C .2023D .2024变式9.已知m +n =﹣2,mn =﹣4,则整式2(mn ﹣3m )﹣3(2n ﹣mn )的值为( )A .8B .﹣8C .16D .﹣16变式10.已知a +2b =3,则代数式2(2a ﹣3b )﹣3(a ﹣3b )﹣b 的值为( )A .﹣3B .3C .﹣6D .6变式11.已知代数式m 2+m ﹣1=0,那么代数式2023﹣2m 2﹣2m 的值是( )A .2021B .﹣2021C .2025D .﹣2025 例3.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。
代数式的值同步练习2024-2025学年人教版(2024)数学七年级上册

3.2 代数式的值学习目标会选择适当的方法求代数式的值.课堂学习检测一、填空题1. 一般地,用代替代数式中的字母,计算得出的结果,叫做代数式的值. 当取不同的数值时,一般也不同.2. 若有理数m,n满足|m+4|+(n−3)²=0,则12m+n的值是 .3. 若a=16,b=13,则6a²−3ab的值为 .4. 在一定高度,一个物体自由下落的距离h与下落时间t之间的变化关系式是ℎ=12gt2(g为重力加速度, g=9.8m/s²). 一个物体自由下落的时间是3s,则这个物体是从 m高处自由下落的.5. 若a-b=2, 则代数式1+2a-2b的值是 .6. 在如图所示的运算程序中,若开始输入x的值为3,则输出y的值为 .二、选择题7. 关于x的代数式ax+b,,当x分别取一1,0,1,2时,对应的代数式的值如下表:x-1012ax+b-2147则a+b的值是(A) -2 (B) 1 (C) 4 (D) 7三、解答题8. 如图所示.(1) 用含有a,b的式子表示阴影部分的面积;(2) 当a=3, b=2时, 求阴影部分的面积.9.在面积为定值的一组长方形中,当长方形的一边长为7.5cm时,它的一条邻边长为8cm .(1) 设长方形相邻的两边长分别为x( cm), y( cm), 求y与x 的关系式.它们是反比例关系吗? 如果是,指出比例系数;(2) 若其中一个长方形的一条边长为5cm ,求这个长方形与之相邻的另一边长.综合·运用·诊断一、填空题a−4b,则12⊗(−1)=.10. 定义新运算“⊗”, 若规定:a⊗b=13的值为 .11. 若|x+1|+(y−2)²=0,则代数式y−xxy12. 若x=5-y, xy=2, 则代数式3x+3y-4xy的值为 .二、解答题13. 如图,某小区有一块长为((3a+2b)m,宽为3a m的长方形空地,现准备在空地边上留出一部分(图中阴影部分) 用来放置健身娱乐器材,其余部分种植花草.(1) 用含a,b的代数式表示用于种植花草的土地面积;(2) 已知种植花草每平方米需花费80元,若(a=2,b=3,求种植花草所需的成本.拓展·探究·思考一、解答题14. 某商场将进货价为30元的台灯以40元的销售价出售,平均每月能售出600个. 市场调研表明,当销售价每上涨1元时,其销售量将减少10个.若设每个台灯的销售价上涨a元.(1) 试用含a的代数式填空:①涨价后,每个台灯的销售价为元;②涨价后,每个台灯的利润为元;③涨价后,商场的台灯平均每月的销售量为个;(2) 商场要想使该台灯的销售利润平均每月达到10 000元,有如下方案:销售经理甲说:“在原售价每个40元的基础上再上涨40元,可以完成任务.”销售经理乙说:“不用涨那么多,在原售价每个40元的基础上再上涨10元就可以了.”试判断甲和乙的说法是否正确,并说明理由.。
3.2代数式的值 同步练习题(含简单答案)人教版数学七年级上册(2024年)新版教材

3.2 代数式的值一、单选题1.下列关于代数式“2a +”的说法,正确的是( )A .表示2个a 相加B .代数式的值比a 大C .代数式的值比2大D .代数式的值随a 的增大而减小 2.已知式子226y y -+的值为8,那么式子2245y y -++的值为( )A .1B .2C .3D .43.若多项式210m m ++=,则多项式2202122m m --的值是( )A .2022B .2022-C .2023D .2023- 4.如图是一个运算程序的示意图,若开始输入x 的值为81,则第2024次输出的结果为( )A .27B .9C .3D .15.如图是一个正方体的展开图,将展开图折成正方体后,相对的两个面上的数互为倒数,则a b c ++的值为( )A .74-B .7C .74D .47 6.若3x =-是方程1243ax b +=的解,则代数式63b a -的值为( ) A .4 B .7 C .9 D .127.如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有()1n n >个点,记第1个图形中总的点数为23S =,第2个图形中总的点数为36S =,依次为459,12S S ==,则2023S 的值是( )A .6063B .6066C .6069D .60728.已知代数式2x y -的值是2,则代数式12x y -+的值是( )A .-1B .1C .3D .-39.已知3x 2﹣4x +6的值为9,则6﹣x 2+43x 的值为( ) A .﹣5 B .5 C .7 D .﹣710.若235a b -=,求246a b -+-的值( )A .12-B .12C .8-D .8二、填空题11.若实数x 满足2210x x --=,则322742025x x x -++的值为 .12.已知有理数a ,b ,满足3310a b ++-=,则a b -的值为 .13.如图所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,……,第2024次输出的结果为 .14.已知多项式325a a 的值是7,则多项式323a a -++的值是 . 15.若233a b +=-,则代数式21247b a ---= .16.如图,在正方形ABCD 中,阴影部分的面积用含有a 、b 的代数式可表示为 ;当a =5,b =2时,阴影部分的面积为17.已知a 2+2ab =-10,b 2+2ab =16,则a 2+4ab +b 2= ,a 2-b 2= . 18.已知2251n n -=,则27410n n --+的值是 .19.当2a =-,3b =时,23a b +的结果为 .20.当13x 时,代数式21x +的值是 .三、解答题21.甲超市在国庆节这天进行优惠促销活动,苹果的标价为5元/千克,一次性购买4千克以上的苹果,超过4千克的部分按标价的6折出售.(1)文文购买3千克的苹果需付款________元;购买5千克的苹果需付款________元;(2)若文文一次性购买()4x x >千克的苹果,需付款多少元?(用含x 的代数式表示)(3)当天,乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为5元/千克,且全部按标价的8折销售,文文如果要购买10千克苹果,请问她在哪个超市购买更划算?22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉10台,电磁炉x 台()10x >.(1)若该客户按方案一购买,需付款______元(用含x 的代数式表示);若该客户按方案二购买,需付款______元(用含x 的代数式表示).(2)若30x =,通过计算说明此时按哪种方案购买较为合算?(3)当30x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法并计算需付款多少元?23.小亮房间窗户宽为b,高为a,窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)(1)用代数式表示窗户能射进阳光的面积是________.(结果保留π)(2)当34a=,1b=时,求窗户能射进阳光的面积是多少?(取π3≈)(3)小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是多少?(结果保留π)24.当1m=-时,求代数式326m m m+-+.25.如图是一个简单的数值运算程序.(1)用含x的代数式表示出运算过程;(2)当输入的x值为1-时,输出的值是多少?3x x-−−→−−→−−→−−→输入立方乘减去输出参考答案:1.B2.A3.C4.D5.C6.D7.B8.A9.B10.D11.2028-12.133- 13.214.115.516. 2ab /2ba 2017. 6 -2618.-919.520.119/10921.(1)15,23(2)(38)x +(3)在甲超市购买更划算22.(1)6000200x ;7200180x(2)方案一较为合算(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买20台电磁炉,需要付款11600元23.(1)21π8ab b -(2)38(3)21π16ab b - 24.7 25.(1)33x x --(2)4。
人教版七年级上册代数式的求值练习题2

人教版七年级上册代数式的求值练习题2一、选择题(共8小题;共40分)1. 当时,代数式的值是B. C. D.2. 根据下面所示程序图计算函数值,若输入的的值为,则输出的函数值为A. B. C. D.3. 若,且的值等于A. B. C.4. 如图是一个简单的数值运算程序,当输入的值是时,输出的值是A. C. D.5. 当时,代数式的值是A. B. C. D.6. 图是一个数值运算程序,若输出的值为,则输入的值为A. C.7. 已知多项式的值是的值是C. D.8. 当时,式子的值是,那么当时,这个式子的值是B. C. D.二、填空题(共4小题;共20分)9. 如图是一台数值转换机的运算程序,若输出的结果为,则输入的的值为.10. 按照如图所示的计算程序,若,则输出的结果是.11. 若,则.12. 如图,是一个运算程序的示意图,若开始输入的值为,则第次输出的结果为.三、解答题(共4小题;共52分)13. 求下列代数式的值:(1),其中;(2),其中,.14. 已知,求代数式的值.15. 小玲在电脑中设置了一个程序,输入数,按键,再输入数,就可以运算.(1)求的值;(2)小华在运用程序时,屏幕显示“该操作无法进行”,你猜猜看,小华输入的数据有什么特征?16. 根据如图所示的程序计算,若输入的值为,求输出的的值.答案第一部分1. C 【解析】将代入,得.故选C.2. B3. C4. C5. A6. D7. A 【解析】,,,.8. A第二部分9.10.11.12.第三部分13. (1)(2)14. ,,,,,,,故代数式的值为.15. (1).(2)第一个数的倍等于第二个数,即,导致除数为零,无法进行除法运算.16. 当时,,.所以输出的的值为.。
人教版七年级上册代数式的求值练习题8

人教版七年级上册代数式的求值练习题8一、选择题(共8小题;共40分)1. 随着值的增大,代数式的值A. 增大B. 减小C. 不变D. 大于2. 下列说法正确的是A. 代数式的值与代数式中的字母无关B. 代数式的值是随着代数式中的字母的取值变化而变化的C. 代数式中的字母可以取任意的值D. 含有的代数式的值等于的值3.A. B. C. D.4. 如果代数式的值为,那么的值等于A. B.5. 若,则的值为A. B. C.6. 若,满足等式,且,则式子的值为A. B. C. D.7. 按如图所示的运算程序,能使输出的结果为的是A. ,B. ,C. ,D. ,8. 按如图所示的程序计算,若开始输入的数为,则最后输出的结果是A. B. C. D.二、填空题(共4小题;共20分)9. 已知代数式的值为,则的值为.10. 已知,,计算代数式.11. 按如图所示的程序流程计算,若开始输入的值为,则最后输出的结果是.12. 若,则.三、解答题(共4小题;共52分)13. 当,时,求下列代数式的值:(1);(2);(3).14. 【概念学习】规定:求若干个相同的有理数(均不等于)的除法运算叫做除方.例如,记作,读作“的圈次方”;再例如,记作,读作" 的圈次方";一般地,把记作,读作“的圈次方”.(1)【初步探究】①直接写出计算结果:,.②关于除方,下列说法错误的是.A.任何非零数的圈次方都等于1B.对于任何大于的整数,C.D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数(2)【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?①依照上面的算式,将下列运算结果直接写成幂的形式:;.②将一个非零有理数的圈次方写成幂的形式为.③将(为大于等于的整数)写成幂的形式为.15. 根据如图所示的程序计算,若输入的值为,求输出的的值.16. 已知.(1)判断是否成立?请说明理由.(2)求的值(3)求的值.答案第一部分1. B 【解析】随着值的增大,代数式的值减小.故选B.2. B3. C 【解析】设,4. A 【解析】,,则,.5. B【解析】,,.6. C 【解析】,,,,,故选:C.7. C8. D第二部分9.10.11.12.第三部分13. (1).(2)(3).14. (1);;C【解析】①,②A选项:任何非零数的圈次方都等于,故A正确;B选项:对于任何大于等于的整数,,故B正确;C选项:,故C错误;D选项:负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,故D正确.(2);;;【解析】①②③15. 当时,,.所以输出的的值为.16. (1)将代入,,故不成立.(2),.(3),,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式求值
学生做题前请先回答以下问题
问题1:整体代入的思考方向
①求值困难,考虑_____________;
②化简________________,对比确定________;
③整体代入,化简.
问题2:已知代数式2a2+3b=6,求代数式4a2+6b+8的值.
①根据2a2+3b=6无法求出a和b的具体值,考虑_____________;
②对比已知及所求,考虑把________作为整体;
③整体代入,化简,最后结果为______.
代数式求值(整体代入一)(人教版)
一、单选题(共13道,每道7分)
1.把看成一个整体,合并同类项的结果为( )
A. B.
C. D.
2.把看成一个整体,合并同类项的结果为( )
A. B.
C.
D.
3.设,把用含的代数式表示并化简的结果为( )
A. B.
C. D.
4.设,把用含的代数式表示并化简的结果为( )
A. B.
C. D.
5.若,则代数式的值为( )
A.0
B.4
C.6
D.2
6.已知,则的值为( )
A.-1
B.0
C.1
D.3
7.若,则代数式的值为( )
A.-1
B.1
C.-5
D.5
8.已知代数式的值是4,则的值为( )
A.1
B.5
C.9
D.10
9.若代数式的值为5,则代数式的值为( )
A.1
B.9
C.11
D.21
10.已知代数式的值为6,则的值为( )
A.24
B.18
C.12
D.9
11.若,则的值为( )
A.0
B.2
C.5
D.8
12.若,则的值为( )
A.7
B.-7
C.1
D.-1
13.若,则的值为( )
A.-59
B.-31
C.41
D.61
感谢您的支持,我们会努力把内容做得更好!。