最新人教版七年级上册数学 代数式(基础篇)(Word版 含解析)
最新人教版七年级上册数学 代数式(基础篇)(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)价目表每月用水量价格不超过6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分6元/m35m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。
2024年新人教版七年级数学上册《第3章代数式 小结与复习》教学课件

x - y = (-3) - 5 = -8.
综上所述,x - y 的值为 -2 或 -8.
考点4:代数式的应用
例5 某学校办公楼前有一块长为 m,宽为 n 的长方形空 地,在中心位置留出一个半径为 a 的圆形区域建一个喷 泉,两边是两块长方形的休息区,阴影部分为绿地. (1) 用含字母 a、b、m、n 的式子表示绿地面积; 解:由图可知长方形空地面积为:mn, 喷泉面积为:πa2,休息区面积为:2ab, 所以绿地面积为:mn - πa2 - 2ab.
花坛面积为:πr2 m2,
所以草坪面积为:(ab - πr2) m2.
(2) 若空地的长为 150 米,宽为 80 米, 圆形花坛的半 径为 10 米,铺草坪每平方米需 20 元,花坛每平方米 需 50 元,则完成这个设计一共需要多少元 ( π 取 3 )? 解:当 a = 150,b = 80, r = 10 时, 花坛面积为:3×102 = 300 m2, 草坪面积为: 150×80 - 3×102 = 11 700 m2. 所以一共需要:11 700×20 + 300×50 = 249 000 (元).
练一练
1.(广东·期中)下列各式中,符合代数式书写规则的
是( B ) A. x×5
B. 1 xy
2
C. mn2
D. m÷n
A. 省略乘号,数字写在字母前面 5x
C. 数字写在字母前面
2mn
D.除号用分数线代替
m n
考点2:列代数式
例2 河上游的码头甲与下游的码头乙相距 s km,轮船
在静水中的速度为 x km/h,水流的速度为 y km/h,则
考点3:代数式的值
例4 若 a = 4,b = -2,求代数式 a - ab 的值. 解:当 a = 4,b = -2 时, a - ab = 4 - 4×(-2) = 12.
代数式七年级上册人教版

代数式七年级上册人教版一、代数式的概念。
1. 定义。
- 由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
例如:2x + 3,a^2 - b,(1)/(x)(x≠0)等都是代数式。
单独的一个数或者一个字母也是代数式,比如5,a等。
2. 代数式与等式、不等式的区别。
- 等式是表示两个代数式相等关系的式子,用“=”连接,如2x+3 = 5x - 1。
- 不等式是表示两个代数式之间大小关系的式子,用“>”“<”“≥”“≤”等符号连接,如3x+2>x - 1。
而代数式只是一个表达式,没有表示相等或者不等关系。
二、代数式的书写规范。
1. 数字与字母相乘。
- 数字要写在字母前面,且省略乘号,如3× a应写成3a;当数字是带分数时,要把带分数化为假分数,例如1(1)/(2)x应写成(3)/(2)x。
2. 字母与字母相乘。
- 省略乘号,如a× b写成ab。
3. 除法运算。
- 一般写成分数形式,如a÷ b写成(a)/(b)(b≠0)。
三、代数式的分类。
1. 整式。
- 单项式:由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
例如3x,-5,a等都是单项式。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如在单项式3x^2y中,系数是3,次数是2 + 1=3。
- 多项式:几个单项式的和叫做多项式。
每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里次数最高项的次数,叫做这个多项式的次数。
例如多项式2x^2+3x - 1,它有三项,分别是2x^2、3x、-1,其中-1是常数项,这个多项式的次数是2。
2. 分式。
- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。
例如(1)/(x),(x + 1)/(x - 1)等都是分式。
【精选】七年级上册代数式(基础篇)(Word版 含解析)

一、初一数学代数式解答题压轴题精选(难)1.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;2.糖业是我省重要的生物资源产业.我省某糖业集团今年4月收购甘蔗后入榨甘蔗250万吨,榨糖率为12%.经市场调查知5月份糖的销售价为2940/吨,若糖业集团在5月销售4月生产的糖,产销率为60%;又知糖业集团若在6月、7月两个月内销售4月生产的糖,销售价将在5月的基础上每月比上月降低6%、糖销量将在5月的基础上每月比上月增加9%.(1)问2005年4月糖业集团生产了多少吨糖?(2)若糖业集团计划只在7月销售4月生产的糖,请求出该糖业集团7月销售4月生产的糖的销售额是多少?(精确到万元)(注:榨糖率=(产糖量/入榨甘蔗量)×100%,产销率=(糖销量/产糖量)×100%,销售额=销售单价×销售数量).【答案】(1)解:2005年4月糖业集团产糖250×12%=30(万吨)=300000(吨)(2)解:设7月份的糖价为x元/吨,则据已知条件有x=2597.784(元/吨);设7月份的糖销量为y吨,则据已知条件得:y=30×0.60×(1+9%)2=21.3858(万吨)设7月份销售4月份产糖的销售额为w元,则据题意得:w=2597.784×21.3858≈55556(万元).答:糖业集团7月份销售4月份产糖的销售额约为55556万元.【解析】【分析】(1)根据产糖量等于入搾甘蔗量乘以搾糖率即可求解;(2)由题意先求出7月份的糖价=2940(1-6%)2=2597.784元/吨,再求出7月份的糖销量=30×0.60×(1+9%)2=21.3858(万吨),最后根据销售额等于销售单价乘以销售量即可解答。
第三章+代数式+小结+课件-2024-2025学年人教版七年级数学上册

代数式的意义
运算意义 实际意义
用字母表示数 代数式
列代数式
反比例关系
代数式的值
一般地,用数值代替代数式中的 字母,按照代数式中的运算关系 计算得出的结果,叫作代数式的 值,当字母取不同的数值时,代 数式的值一般也不同.
拓展提升
练习 1 如图,正方形 ABCD 的边长为 a.
(1)根据图中的数据,用含 a,b 的代数式表示阴影部
3.当长方形的周长一定时,相邻两边的长成反比例关 系吗?当长方形的面积一定时呢?为什么?
解:当长方形的周长一定时,相邻两边的长的和是一 定的,但积不是一定的,所以它们不成反比例关系;当长 方形的面积一定时,相邻两边的长的积是一定的,所以它 们成反比例关系.
定义:用运算符号把数或 表示数的字母连接起来的 式子叫作代数式.
练习 2 如图,用棋子摆出一组形如正方形的图形, 按照这种方法摆下去,摆第 n 个图形需要多少枚棋子?
…
第1个
第2个
第3个
1×4
2×4
3×4
…
解:摆第 n 个图形需要 4n 枚棋子.
第n个 4n
定义:用运算符号把数或 表示数的字母连接起来的 式子叫作代数式.
代数式的意义
运算意义 实际意义
用字母表示数 代数式
2
2
=18-4
A
4D
b
=14. 所以阴影部分的面积为 14.
B
a
C
练习 2 如图,用棋子摆出一组形如正方形的图形, 按照这种方法摆下去,摆第 n 个图形需要多少枚棋子?
…
第1个
第2 个
第3个
第n个
2×4-4
3×4-4
4×4-4
… 4(n+1)-4
人教版(2024)数学七年级上册+3.1+列代数式表示数量关系+课件

C基础概念 3. 代数式的应用 4. 近似数的小结
问题引入
问题引入
一个文具店出售铅笔,每支价格为2元。如果你买了x支铅笔,那么一共需 要多少钱呢?
提问:“如果我们想表示‘买x支铅笔的总价’,可以怎么表达?”
总价 = 2 × x
代数式的含义 代表变量 或未知数。
表达数量 之间的关 系
在代数式 3x + 2 中, 表示3倍的x加上2,其 中x可以表示物品的数 量,整个式子则表示 购买x件物品的总价。
如何列代数式?
1. 明确已知量和未知量:找出题目中已知和要求表示的量。 2. 设未知量为字母:用字母(如x、y等)表示未知数。 3. 建立数量关系:根据题目要求列出代数式。
例题讲解
(1)长方形的长是5cm,面积是m cm2,则长方形的宽是 cm ; (2)男生数是女生数的2倍少15,如女生数是a,则男生数
为 2 a -15 ;
(3)某生语数英三科的总成绩是m,其中语文占50%,数学占x% ,
则该生的英语成绩是(1-40%-x%)m 。
小结
总结
代 数 式
定义
由数字、字母和运算符组成的式子,用于表示数量 关系。
牛刀小试:某人骑车每小时行驶15公里,骑行t小时后的总路程 是多少?
1.已知每小时行驶15公里,要表示总路程 2.设总路程为 s 3. s = 15t
代数式的运用
例题讲解
1.每层楼房2.8米,某栋楼共有a层,用式子表示这栋楼的大约高度 2.8a米
2.圆柱体的底面半径、高分别是 r,h,用式子表示圆柱体的体积 πr2 h
3.甲乙两人相向而行,甲每小时行m千米,乙每小时行n千米,两人一 共行走2小时,共行走了 2(m+n)千米,如果一共行走了a小时,则, 两人共行走了 (m+n)a 千米.
3.2.1 代数式求值-人教版(2024)数学七年级上册

解:当a=-3,b=2时,
a2+b2=32+ (-2)2=13;
a2+b2=(-3)2+ 22=13;
(a+b)2=[3+(-2)]2=1.
(a+b)2=(-3+2)2=1.
8.求下列代数式的值:
2+1
(1)
,其中n=4;
−1
(2)(a-c)2+
解:当x=15,y=12时,
2x+3y=2×15+3×12=66;
1
(2) x=1,y= .
2
1
解:当x=1,y= 时,
2
1 7
2x+3y=2×1+3× = .
2 2
典例解析
【例2】根据下列a,b的值,分别求代数式a2-
的值:
(1) a=4,b=12;
解:当a=4,b=12时,
(2)a=-3,b=2.
人
教
版
第三章 代数式
3.2.1 代数式求值
学习目标
理解代数式的值,并能通过直接代入求值或整体代入求值,
从而求出一个代数式的值,渗透整体思想.
情境引入
【问题】 为了开展体育活动,学校要购置一批排球,每班配5个,学
校另外留 20个.学校总共需要购置多少个排球?
问1:记全校的班级数是n,则需要购置的排球总数是 5n+20 ;
式的值一般也不同.
【注意】
1.代入求值时,只将对应字母换成数值,式子中的其他符号和数字都
不改变;
2.代数式中原来省略的乘号,代入后出现数与数相乘时,必须添上乘
号;
3.当字母的取值是负数时,代入时要注意添加括号.
3.2 代数式的值 课件 2024-2025学年人教版(2024)数学七年级上册

3.2 代数式的值
学习目标
1.理解代数式的值是由代数式中字母的取值确定的. 2.掌握求代数式的值的方法,并能解决较简单的实际问 题. 3.通过求代数式的值的过程初步体会到数学中抽象概 括的思维方法.
目录
01. 情境导入 02. 新知初探 03. 当堂达标 04. 课堂小结
01 情境导入
02 新知初探
新知初探
探究一 求代数式的值
1.为了开展体育活动、学校要购置一批排球,每班配5个,学校另外
留20个.学校总共需要购置多少个排球?
问题1 若全校的班级数是n个,则需要购置的排球总数是多少?
解: 问题2 如5果n+班2级0.数是15,则需要购置的排球总数是多少?
解:用15代替字母n,那么需要购置的排球总数 是 问题3 如5果n+班2级0=数5是×1250+,2则0=需9要5(购个置).的排球总数是多少? 解:用15代替字母n,那么需要购置的排球总数 是
思考 比较问题2,问题3两题的运算结果,你有什么想法?
小结 一般地,用数值代替代数式中的字母,按照代数式中的 运算关系计算得出的结果,叫作代数式的值. 当字母取不同的数值时,代数式的值一般也不同.
2.根据下列x,y的值,分别求代数式2x+3y的值:
(1)x=15,y=12;
(2)x=1,y= . 1
谢
谢
的价格为每千克 1.4元4 .
a
5.为了节约用水,某自来水公司采取以下收费方法:每户每月用水不超过 10吨,则每吨水收费1元,如果每户每月用水超过10吨,超过部分按每吨2.5 元收费,现在李老师家里2月份用水a吨(a>10). (1)请用代数式表示李老师2月份应交水费多少元? (2)如果a=16,那么李老师2月份应交水费多少元?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q 左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.2.如图,正方形ABCD与正方形BEFG,且A,B,E在一直线上,已知AB=a,BE=b(b<a).(1)用a、b的代数式表示△ADE的面积.(2)用a、b的代数式表示△DCG的面积.(3)用a、b的代数式表示阴影部分的面积.【答案】(1)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,A,B,E在一直线上,∴AB=AD=a,∠A=90°,∠EBG=∠ABC=90°,AE=AB+BE=a+b,∴S△ADE= AD·AE=(2)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴AB=DC=BC=a,∠C=90°,BG=BE=b,∴CG=BC-BG=a-b,∴S △DCG= DC·CG=(3)解:∵四边形ABCD和四边形BEFG是正方形,AB=a,BE=b,∴S正方形ABCD+S正方形BEFG= .又∵S△ADE= ,S△DCG= ,S△EFG= EF·FG= ,∴S阴影= -S△ADE-S△GEF-S△CDG== .【解析】【分析】(1)根据题意可得△ADE的两直角边AD、AE,再由三角形的面积公式求出即可;(2)先求出CG=BC-BG=a-b,再根据三角形的面积公式求出即可;(3)分别求出△ADE、△EFG、△DCG的面积和两个正方形的面积,即可得出阴影部分的面积.3.已知:a是﹣1,且a、b、c满足(c﹣6)2+|2a+b|=0,请回答问题:(1)请直接写出b、c的值:b=________,c=________(2)在数轴上,a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,①当点P在AB间运动(不包括A、B),试求出P点与A、B、C三点的距离之和.②当点P从A点出发,向右运动,请根据运动的不同情况,化简式子:|x+1|﹣|x﹣2|+2|x﹣6|(请写出化简过程)【答案】(1)2;6(2)解:①∵PA=x﹣(﹣1)=x+1,PB=2﹣x,PC=6﹣x,∴PA+PB+PC=x+1+2﹣x+6﹣x=9﹣x;|x+1|﹣|x﹣2|+2|x﹣6|②当﹣1≤x<2时,原式=x+1+x﹣2﹣2(x﹣6)=11;当2≤x<6时,原式=x+1﹣(x﹣2)﹣2(x﹣6)=﹣2x+15;当x≥6时,原式=x+1﹣(x﹣2)+2(x﹣6)=2x﹣9【解析】【解答】解:(1)∵(c﹣6)2+|2a+b|=0,∴c=6,2a+b=0,即b=﹣2a,又∵a=﹣1,∴b=2,故答案为:2,6;【分析】(1)根据非负数的性质可得;(2)①根据两点间距离公式列出算式,化简可得;②分别根据﹣1≤x<2、2≤x<6、x≥6结合绝对值性质,去绝对值符号后化简可得.4.亚萍做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚(1)乔亚萍看了答案以后知道,请你替乔亚萍求出多项式的二次项系数;(2)在(1)的基础上,乔亚萍已经将多项式正确求出,老师又给出了一个多项式,要求乔亚萍求出的结果.乔亚萍在求解时,误把“ ”看成“ ”,结果求出的答案为,请你替乔亚萍求出“ ”的正确答案.【答案】(1)解:设A的二次项系数为m,由题意可得mx2+4x+2(2x2-3x+1)=x2-2x+2mx2+4x+4x2-6x+2=x2-2x+2(m+4)x2-2x+2=x2-2x+2∴m+4=1解之:m=-3∴多项式A的二次项系数为-3.(2)解:∵A+C=x2-5x+2∴-3x2+4x+C=x2-5x+2∴C=x2-5x+2-3x2-4x=-2x2-9x+2∴A-C=-3x2+4x-(-2x2-9x+2)=-3x2+4x+2x2+9x-2=-x2+13x-2【解析】【分析】(1)设A的二次项系数为M,将其代入可得到mx2+4x+2(2x2-3x+1)=x2-2x+2,就可求出m的值.(2)根据题意可得到A+C=x2-5x+2,代入求出多项式C,然后求出A-C即可。
5.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是________.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;拓广探索:(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2(2)解:∵x2﹣2y=4,∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;(3)解:∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,∴a﹣c=﹣2,2b﹣d=5,∴原式=﹣2+5﹣(﹣5)=8.【解析】【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;故答案为:﹣(a﹣b)2;【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.6.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个长为,宽为的长方形内,该长方形内部未被卡片覆盖的部分用阴影表示.(1)能否用只含的式子表示出图②中两块阴影部分的周长和?________(填“能”或“不能”);(2)若能,请你用只含的式子表示出中两块阴影部分的周长和;若不能,请说明理由. 【答案】(1)能(2)解:能,理由如下:设小长方形的长为a,宽为b,上面的长方形周长为:下面的长方形周长为:两式联立,总周长为:(由图可得)阴影部分总周长为【解析】【解答】解:(1)能;故答案为能;【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到,代入计算即可得到结果.7.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.(1)S甲=________,S乙=________(用含a、b的代数式分别表示);(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.【答案】(1)(a+b)(a-b);a2-b2(2)由两个图形的面积相等可知,(a+b)(a-b)=a2-b2。
(3)S正方形=(a+b)2, S正方形=(a-b)2+4ab∴(a+b)2=(a-b)2+4ab【解析】【分析】(1)根据图形的面积。
列式得到答案即可;(2)根据两组图案所表示的面积相等,即可得到等量关系;(3)同理,首先根据面积列出两种方式表示的面积,得到答案即可。
8.已知多项式3x6﹣2x2﹣4的常数项为a,次数为b.(1)设a与b分别对应数轴上的点A、点B,请直接写出a=________,b=________,并在数轴上确定点A、点B的位置;(2)在(1)的条件下,点P以每秒2个单位长度的速度从点A向B运动,运动时间为t 秒:①若PA﹣PB=6,求t的值,并写出此时点P所表示的数;②若点P从点A出发,到达点B后再以相同的速度返回点A,在返回过程中,求当OP=3时,t为何值?【答案】(1)﹣4;6(2)解:①∵PA=2t,AB=6﹣(﹣4)=10,∴PB=AB﹣PA=10﹣2t.∵PA﹣PB=6,∴2t﹣(10﹣2t)=6,解得t=4,此时点P所表示的数为﹣4+2t=﹣4+2×4=4;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)如果P在原点右边,那么AB+BP=10+(6﹣3)=13,t=;(Ⅱ)如果P在原点左边,那么AB+BP=10+(6+3)=19,t=.【解析】【解答】(1)∵多项式3x6﹣2x2﹣4的常数项为a,次数为b,∴a=﹣4,b=6.如图所示:故答案为﹣4,6;【分析】(1)根据多项式的常数项与次数的定义分别求出a,b的值,然后在数轴上表示即可;(2)①根据PA﹣PB=6列出关于t的方程,解方程求出t的值,进而得到点P所表示的数;②在返回过程中,当OP=3时,分两种情况:(Ⅰ)P在原点右边;(Ⅱ)P 在原点左边.分别求出点P运动的路程,再除以速度即可.9.若两个有理数的和等于这两个有理数的积,则称这两个有理数互为相依数例如:有理数与3,因为+3= 3.所以有理数与与3是互为相依数(1)直接判断下列两组有理数是否互为相依数,①-5与-2 ②-3与(2)若有理数与 -7 互为相依数,求m的值;(3)若有理数a与b互为相依数,b与c互为相反数,求式子的值(4)对于有理数a(a 0,1),对它进行如下操作:取a的相依数,得到;取的倒数,得到;取的相依数,得到;取的倒数,得到;….;依次按如上的操作得到一组数 , , ,…, . 若a= ,试着直接写出 , , ,…,的和.【答案】(1)解:若a与b互为相依数,则a+b=ab,①∵(-5)+(-2)=-7,(-5)×(-2)=10,∴(-5)+(-2)≠(-5)×(-2)∴-5与-2不互为相依数.②∵-3+=-,-3×=-,∴-3+=-3×,∴-3与互为相依数.(2)解:∵与-7互为相依数,依题可得:+(-7)=×(-7),解得:m=∴m的值为.(3)解:依题可得:a+b=ab,b+c=0,∴原式=5ab+7c-5a+2b-4,=5(a+b)+7c-5a+2b-4,=5a+5b+7c-5a+2b-4,=7(b+c)-4,=7×0-4,=-4.(4)解:依题可得:a+a1=a·a1,解得:a1=,∵a2为的a1倒数,∴a2=,依此类推:a3=1-a,a4=,a5=,a6=a,由此可得:这一组数的周期为6,∵a=,∴a1=5,a2=, a3=-, a4=-4,a5=, a6=,∴a1+a2+a3+a4+a5+a6=5+--4++=3,∴a1+a2+a3+a4+a5+a6+……+a2018,=336×3+a2017+a2018,=336×3+a1+a2,=336×3+5+,=1013.【解析】【分析】(1)根据题中给出两个有理数互为相依数的概念即可判断.(2)根据题中给出互为相依数的定义列出方程,解之即可.(3)根据题意得出a+b=ab,b+c=0,再将原整式化简,计算即可得出答案.(4)根据题意求得a1=,a2=,a3=1-a,a4=,a5=,a6=a,由此可得:这一组数的周期为6,将a=代入、可得:a1=5,a2=,a3=-,a4=-4,a5=,a6=,先求出a1+a2+a3+a4+a5+a6的和为3,再根据a1+a2+a3+a4+a5+a6+……+a2018=336×3+a1+a2,代入计算即可.10.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收费的价目表如下(注:水费按月份结算):价目表每月用水量价格不超过6立方米的部分2元/立方米超出6立方米,不超出10立方米的部分4元/立方米超出10立方米的部分8元/立方米(1)填空:若某户居民2月份用水4立方米,则应收水费________元;(2)若该户居民3月份用水a立方米(其中6<a<10),则应收水费________元;(用含a 的代数式表示,并化简)(3)若该户居民4、5两个月共用水15立方米(5月份用水量超过了4月份),设4月份用水x立方米,求该户居民4、5两个月共交水费多少元?(用含x的代数式表示,并化简)【答案】(1)8(2)4a-12(3)解:当0<x<5时,则15-x>10,应收水费为:2x+2×6+4×4+(15-x-10)×8=-6x+68(元);当5≤x<6时,则9≤15-x≤10,应收水费为:2x+2×6+(15-x-6)×4=-2x+48(元);当6≤x,则6<x<15-x<9,应收水费为:2×6+(x-6)×4+2×6+(15-x-6)×4=36(元)。