统计检验力
统计检验力和效果量

02 统计检验力与假设检验
CHAPTER
假设检验的基本概念
假设检验是一种统计推断方法,通过对样本数据的分析,对总体参数做出推断。
假设检验的基本步骤包括提出假设、选择合适的统计方法、进行统计推断、得出结 论。
假设检验的结论是概率性的,有一定的风险,即存在误判的可能性。
统计检验力在假设检验中的应用
统计检验力和效果量
目录
CONTENTS
• 统计检验力概述 • 统计检验力与假设检验 • 效果量概述 • 效果量与效应大小 • 统计检验力与效果量在实际研究中的应用
01 统计检验力概述
CHAPTER
定义与概念
统计检验力是指一个研究或实验能够正确拒 绝或接受某一假设的能力,即当实际效应存 在或不存在时,研究结果能够证明该效应的 能力。
选择适当的统计方法
根据数据特点和问题背景选择 合适的统计方法,能够提高统 计检验力。
降低显著性水平
显著性水平是决定是否拒绝原 假设的临界值,降低显著性水 平可以提高统计检验力。
重复实验
通过重复实验,可以降低随机 误差的影响,提高统计检验力
。
03 效果量概述
CHAPTER
定义与概念
效果量是指一个干预措施或条件 变化对个体或群体的影响程度, 它反映了实验或观察结果的变化
02
在统计分析中,常用的效果量计算方法包括Cohen's d、eta squared(η²)、phi (φ)等,这些方法可以帮助研究者了解干预措施或条件变化对个体或群体的具体 影响程度。
03
计算效果量时需要注意其适用范围和局限性,以确保结果的准确性和可靠性。
效果量的作用与意义
1
效果量可以帮助研究者了解实验或观察结果的可 靠性和实用性,为后续的研究和实践提供有价值 的参考。
统计检验的方法

统计检验的方法全文共四篇示例,供读者参考第一篇示例:统计检验是一种常用的数据分析方法,通过对数据的处理和分析,可以帮助我们解决研究中的问题和验证假设。
在科学研究、商业决策和社会调查等领域,统计检验都发挥着重要的作用。
本文将介绍统计检验的基本原理、常见类型和步骤,帮助读者了解并掌握这一重要的数据分析工具。
一、统计检验的基本原理统计检验的基本原理是基于概率论和数理统计的基础知识进行推导和应用。
在进行统计检验时,我们首先要建立一个原假设(H0)和一个备择假设(Ha),然后通过样本数据的分析来确定是否拒绝原假设。
统计检验的目的是基于样本数据对总体参数进行推断,并判断总体参数是否符合我们的假设。
二、统计检验的常见类型1. 参数检验:参数检验是用来检验总体参数的方法,例如总体均值、总体比例、总体方差等。
在参数检验中,我们通常根据总体是否符合正态分布来选择不同的检验方法,例如t检验、F检验、卡方检验等。
2. 非参数检验:非参数检验是用来检验总体分布的形态和位置的方法,不需要事先对总体做出特定的分布假设。
非参数检验适用于总体分布未知或不符合正态分布的情况,常见的非参数检验方法有秩和检验、秩和检验、符号检验等。
3. 单样本检验:单样本检验是用来检验单个总体参数值的方法,例如总体均值是否等于某个特定值、总体比例是否等于某个特定比例等。
5. 方差分析:方差分析是用来比较3个或3个以上总体均值是否相等的方法,适用于只有一个自变量和多个水平的情况。
三、统计检验的步骤1. 确定检验问题:首先要明确研究的问题和目标,建立原假设和备择假设。
2. 选择检验方法:根据数据类型和问题的特点选择合适的检验方法,包括参数检验和非参数检验、双样本检验和单样本检验等。
3. 收集样本数据:采集足够数量的样本数据,并进行数据清洗和整理。
4. 计算统计量:根据选定的检验方法,计算相应的统计量(例如t 值、F值、卡方值等)。
5. 假设检验:根据统计量的计算结果和显著水平的设定,判断是否拒绝原假设。
教育与心理统计学 第五章 假设检验考研笔记-精品

假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\
统计检验力和效果量

5、根据Z值与α水平临界值的差查 正态分布表,确定可能犯的第二类 错误概率β,于是得到统计检验力
1- β。
例题:
我们分别在猪宝宝与猴小兵中 分别抽取100名被试进行智商测查, 得到两组被试的智商平均数分别为 115分和111分。根据常模,该年龄 组智商的标准差为15分,请计算这 两组被试智商差异显著性检验的统 计检验力。
唐僧:检验结果表明两组孩子的智商没 有显著差异,得出该结论的统计检验力 为47%。
八戒嘟嘟哝哝:
小学生都知道115比111要大,师父却说 没有明显差异,分明是偏袒大师兄。我 赶快发个短信给高小姐,今天晚饭就不 要给师父吃灌汤包和桶子鸡了。
唐僧立刻截获了八戒的短信,暗想:这 个呆子,怎就忘记了出家人是从来不碰 荤腥的,我怎能稀罕灌汤包和筒子鸡?
唐僧点头称是:快去快回!
沙和尚挟带着呼呼的风沙,以及他的沙 娃娃,随同八戒来拜见师父。
唐僧:你们师兄弟3人,各出6名孩娃进 行智力测试,我来做裁判,比较他们是 否有显著性差异,而且给出统计检验力 和效果量的计算结果。
唐僧:这是一个单因素方差分析问题, 对于这种问题,通常是先计算效果量, 再计算统计检验力。
八戒:以前师父只是和我们讲过显著 性水平α,
现在看来,这个β也很重要啊! 那怎么来计算统计检验力1- β呢? 唐僧:八戒这几年真是有长进了, 我会慢慢教你的。
唐僧:以前我们对若干个样本的平均数 进行比较时,只是给出它们之间是否有 显著性差异的结论。例如,上个月猪宝 宝与猴小兵比武,我只是宣布双方的武 艺有显著性差异。
f F n
本例中
f 7.814 1.14 6
4、f
f=
k
检验统计量的基本形式

检验统计量的基本形式一、引言检验统计量是统计学中常用的一种工具,它用于判断一个样本是否代表了总体。
在统计推断中,我们常常需要对总体的某个特征进行推断,例如总体均值、总体比例等。
而检验统计量的基本形式就是为了实现这一目标而设计的。
二、检验统计量的定义检验统计量是基于样本数据计算得到的一个数值,它用于判断样本数据是否与某个假设相符。
通常,我们会根据样本数据计算出检验统计量的值,并与某个临界值进行比较,从而判断样本是否可以代表总体。
三、检验统计量的基本形式检验统计量的基本形式可以表示为:T=样本统计量−假设值标准误差其中,样本统计量是根据样本数据计算得到的统计量,假设值是我们对总体特征的猜测,标准误差是用于衡量样本统计量与总体特征之间的差异。
四、检验统计量的应用检验统计量的应用非常广泛,下面以常见的两个例子来说明其应用。
1. 单样本均值检验假设我们想要推断某个产品的平均寿命是否满足要求。
我们可以收集一些产品的寿命数据,然后计算出样本均值。
假设我们认为产品的平均寿命为1000小时,那么我们可以使用如下的检验统计量来进行推断:T=X‾−μs √n其中,X‾是样本均值,μ是假设的平均寿命,s是样本标准差,n是样本容量。
2. 两样本比例检验假设我们想要比较两种广告方式对产品销量的影响。
我们可以将产品销售分为两组,一组使用广告方式A,另一组使用广告方式B。
然后,我们可以统计出两组中购买产品的比例,并使用如下的检验统计量进行推断:T=p̂−p̂√p̂(1−p̂)(1n1+1 n2)其中,p̂1和p̂2分别是两组中购买产品的比例,p̂是两组中购买产品的总体比例,n1和n2分别是两组的样本容量。
五、检验统计量的性质检验统计量具有以下几个重要的性质:1. 无偏性如果检验统计量在总体参数等于假设值时的期望值等于假设值,则称该检验统计量是无偏的。
无偏性是检验统计量正确性的一个重要保证。
2. 有效性如果检验统计量的方差最小,则称该检验统计量是有效的。
统计检验力与效果大小

1-4 统计检验力的计算公式
Z统计量的计算公式: Z ( X1 X 2) (1 2)
2 1
2 2
n1 n2
因为 和 X1 X2 的总体期望值
分别是u 1 和 u 2,因此可得 的计算公式:
(1 2 )
2 1
2 2
n1 n2
或者用公式:
Z
Z
Z
(
X
1
X
2) SE
(1
2
)
Z
X
二 独立样本平均数差异显著性检验 统计检验力的估计步骤
接受 H 0
正确决策,1 II 型错误
拒绝 H 0 I 型错误 正确决策,1 统计检验力
统计检验力的含义
❖ 1 反映着正确辨认真实差异的能力,统计学 中称之为统计检验力(power of test)或效力。 也可以把统计检验力定义为:“在虚无假设为 假(备择假设为真)时,正确拒绝的概率”。
2) SE
(1
2
)
Z
X
实例
❖ 20, X 1 117.2,1 5.2 n2 20, X 2 114, 2 5.2
H0 : 1 2 H1 : 1 2
Z ( X1 X 2) (1 2) 117 .1114 3.1 1.89
2 1
2 2
第11章 统计检验力 和效果大小的估计
胡竹菁 2009. 10.-
第11章 统计检验力和效果大小的估计
❖ 参考文献与使用意义 ❖ 1. 平均数差异显著性检验的统计检验力和效
果大小的估计 ❖ 2. 方差分析的统计检验力和效果大小的估计 ❖ (3. 卡方检验与积差相关系数的统计检验力和
效果大小
参考文献
1
一 统计检验力的含义与估计原理
统计检验之统计检验力和效果量

2
本例中:
115 111 d 0.27 15
Cohen认为:d=0.2为低效果; d=0.5为中效果; D=0.8为高效果 本例为较低效果。
八戒松了一口气: 我请河南大学研究生对猪宝宝进行智力 开发,虽然效果不显著,但还算是有些 效果的,看样子还要坚持下去啊!
假设检验的两类错误
虚无假设:
H 0 为真
H 0 为假
H 0 : 1 2
备择假设:
拒绝 H 0 I 型错误
H 1 : 1 2
接受 H 0 正确决策, 1 II 型错误
1 统计检验力 正确决策,
在其他条件不变的前提下 α 和 不可以同时增大或减小
八戒可真聪明:我明白了, 虚无假设H0认为“猪宝宝与猴小兵”的智力 没有显著差异, 备择假设H1认为“猪宝宝与猴小兵”的智力 存在显著差异。 唐僧:不论我接受或拒绝哪个假设,都有可 能犯错误,这涉及到统计检验力的问题。
4、计算Z值和临界值的差: 1.89-1.96=-0.07
5、查正态分布表 从中心点为零到右边0.07个标 准差所占的面积为0.0279,约等于 0.03,加上中心点左侧的0.5的面积, 共有曲线下0.53的面积,这就是犯 II型错误的概率β。于是统计检验力 (1- β)=0.47。
再点击“选项”,选中“功效 估计”和“检验效能”;点击“继 续”、“确定”,于是得到“观察 到的效力=0.91”,这就是统计检验 力。
八戒晃着脑袋说:我最怕做计算了,现 在有了SPSS可好了,点击一下就帮我算 出来了! 唐僧:由于计算效果量和统计检验力的 方法较多,不同方法得到的结果是不能 进行比较的,因此,还是要把基础知识 搞清楚啊!
统计学三大检验方法

统计学三大检验方法统计学是一门研究数据收集、分析和解释的学科,它通过运用各种方法来对数据进行推断和预测。
在统计学中,检验方法是一种常用的技术,用于检验样本数据是否可以代表总体,或者用于比较两个或多个总体之间的差异。
本文将介绍统计学中的三大检验方法,分别是假设检验、置信区间和方差分析。
一、假设检验假设检验是统计学中最基本和最常用的方法之一,用于评估样本数据与某个假设之间的差异或关联性。
在假设检验中,我们首先提出一个关于总体特征的假设,称为原假设(H0),然后收集样本数据,并使用统计方法来判断这个假设是否成立。
在假设检验中,我们通过计算统计量的值,然后基于这个值来推断原假设的合理性。
如果计算得到的统计量的值与某个特定的分布相匹配,则我们可以得出原假设成立的结论;如果它与该分布不匹配,则我们可以拒绝原假设。
二、置信区间置信区间是用来估计总体参数的一个范围,它可以告诉我们总体参数的估计值的不确定性程度。
在统计学中,我们通常使用样本数据来估计总体参数,并计算出一个置信区间。
置信区间由一个下限和一个上限组成,它表示我们对总体参数可能的取值范围的估计。
如果我们得出一个置信区间为[95,105],则意味着我们相信总体参数的真实值在95到105之间,并且有95%的置信水平。
如果我们重复进行抽样调查,有95%的抽样平均值会落在这个区间内。
置信区间方法提供了对估计值的不确定性的量化,它使我们能够更准确地解释样本数据对总体参数的影响。
三、方差分析方差分析是一种用于比较两个或多个总体均值是否存在显著差异的方法。
它通过将总体的方差分解为不同的组间变异和组内变异来进行分析。
在方差分析中,我们将总体划分为不同的组别,然后收集每个组别的样本数据。
通过计算组间的变异和组内的变异,我们可以得出一个统计量,称为F值。
F值代表了组间变异与组内变异的比例,如果F值大于某个阈值,我们就可以得出组别之间存在显著差异的结论。
方差分析可以应用于多个实验组或多个处理组之间的比较,它提供了一种有效的方法来确定不同组别之间是否存在统计上显著的差异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Howell-2011 Gravetter-2011
《心理统计学》的主要发展
第1章 绪论
第2章 统计图表
第3章 集中量数
第4章 差异量数
第5章 相关系数 第6章 概率分布
2013/4-B.H.Cohen-(2007/3) Aron等-2013 Howell-2011 Gravetter-2011
第7章 参数估计 第8章 假假设设检检验验
APA《写作手册》2001第5版中译本P14
“作者对于自己的研究假设进行检验时,必须考虑采取 严格的统计力(statistical power)。我们可以通过特定 的水平、效果大小和样本大小来决定统计力,而这关系 到正确地拒绝作者想要检验的假设的可能性…
1-2 APA论文发表的新要求
APA《写作手册》1994第4版 P18
“Effect size and strength of relationship. …You can estimate the magnitude of the effect or the strength of the relationship with a number of measures that do not depend on sample size.
Experiment 1: …… Results We conducted planned comparisons between judgments in the strong and weak alternatives conditions. Diagnostic judgments in the weak alternatives condition (M = 81.7) were higher than in the strong alternatives condition (M = 58.5), t(19) = 5.0, p < .001, Cohen’s d = 1.1 . Predictive judgments did not differ significantly (Mstrong = 75.3; Mweak = 69.6) t(19) = 1.3, ns. Corroborating this analysis, we also found that there was no significant difference between judgments of P and Wc, t(39) = 0.60, ns.
10 统计检验力的 含义、估计方法和影响因素
10 统计检验力的 含义、估计方法和影响因素
1 效果大小在学术论文报告中的使用背景 2 统计检验力的含义 3 统计检验力的估计方法 4 统计检验力的影响因素
13章四节: 统计检验力
心理学实验研究过程
课题的选择与问题的提出 实验设计的确定 被试的选择 材料的选择
Common measures are ,2 2, 2,R 2, 2,… CCoohheenn’的s dd值值 …
APA《写作手册》2001第5版中译本P14
为了让读者能够充分地了解到你的研究发现的重要性,在 你的结果段落中呈现效果大小(effect size)的索引或关系 强度(strength of a relationship)是必要的。你可以使用一 些一般效果大小的估计值来估计你研究结果的效果大小或
关系强度,包括 2, 2 , 2 ,R 2 , 2,… Cohen的d值 …”
1-2 APA论文发表的新要求
美国APA-2010
Cohen’s d值
2 2
2010年1期
中国心理学会-2016
2011年3期
例 1 :Sloman等:……Diagnostic Reasoning
(JEP-G,2011.2,P168-185)
The process of conducting research can be divided into five steps
Developing an idea and refing it into a hypothesis
Choosing a research strategy
Collecting data Analyzing and interpreting data
Reporting results
Whitley等 (2013, P23)
心理统计学新内容
学术期刊发表新要求
1-1《心理统计学》教材发展的新内容
1986-张厚粲先生等-2015 (4)
张敏强-2010
甘怡群等-2005
2013 - B.Hn等-2013
仪器的选择和程序的确定 数据的采集和分析
对数据理论意义的讨论和结论的推论
撰写论文并提交发表
17(13) Interpreting Research Results
1 Describing the Results of Research 2 The Nature of the Relationship 3 Real Versus Chance Relationships 4 Effect Size and Importance 5 Inference in Behavioral Science Research 6 Null Results 7 Integrating the Results of Research
“Statistical power. Take seriously the statistical power considerations associated with your tests of hypotheses. Such considerations relate to the likelihood of correctly rejecting the tested hypotheses, given a particular alpha level, effect size,and sample size…
2 统计检验力和效果大小
第第99章章 方方差差分分析析
第10章 X2检验 第11章 非参数检验
3 一般线性模型(协方差分析)
第第1122章章 线线性性回回归归 第13章 多变量统计分析简介
1 多变量统计分析简介
第14章 抽样原理及方法
2010.1---2013.5
1-2 APA论文发表的新要求
APA《写作手册》1994第4版P16