弹塑性力学-第五章

合集下载

工程弹塑性力学-第五章

工程弹塑性力学-第五章

在e=0处与s轴相切
s A 理想刚塑性模型
只有两个参数A和n,因而也不可能 准确地表示材料的所有特征。但由 于解析式比较简单,而且n可以在较 大范围内变化,所以也经常被采用。
5.2 应力应变简化模型
5. Ramberg-Osgood模型 (三参数模型)
s /s1
有三个参数,能较 好地代表真实材料, 数学表达式简单。
(1)小变形时,e E;变形程度越大, 误差越大。
ln ln
ln(1 ln
l0 ) ln(1 e ) e
e2
e3
e4
L
(5.22)
l0
l0
234
e
1.6 1.2 0.8 0.4
O -0.4 -0.8 -1.2 -1.6
E=lnl/l0
1.0 1.2 1.4 1.6 l/l0
当变形程度小于10% 时,两值比较接近。
(a) 理想刚塑性模型
s
(b) 线性强化刚塑性模型
s
ss
ss
e
O
s ss, 当e 0时
特别适宜于塑性极限载荷的分析。
e
O
s ss E1e , 当e 0时
5.2 应力应变简化模型
3. 一般加载规律
s (e ) Ee[1w(e )]
(5.12)
w(e ) 其中,w(e )
0,
Ee
(e ) , Ee
ss’’

B
B’

等向强化’:
OABB’’
随动强化: OABB’
5.2 应力应变简化模型
例题:已知一单向加载过程的应力路径为01.5ss 0 –ss 0,材料符
合线性随动强化规律,强化模量E’E/100,试求出对应的应变路径。

[工学]第五章 弹塑性模型理论

[工学]第五章 弹塑性模型理论

第五章 弹塑性模型理论5.1 概述弹塑性理论可以分为两种,塑性增量理论和塑性全量理论。

塑性增量理论又称塑性流动理论,塑性全量理论又称塑性形变理论。

在塑性增量理论中,将物体在弹塑性变形阶段的应变ij ε分为两部分:弹性应变e ij ε和塑性应变p ij ε。

塑性应变增量ij d ε的表达式为e p ij ij ij d d d εεε=+ (5.1.1)式中,弹性应变增量d e ij ε可以用广义虎克定律计算,塑性应变增量d p ij ε可以根据塑性增量理论计算。

塑性增量理论主要包括三部分:(1) 屈服面理论;(2) 流动规则理论;(3) 加工硬化(或软化)理论。

在塑性形变理论中是按全量来分析问题的。

它在盈利状态和相应的应变状态之间建立一一对应的关系。

塑性形变理论实质上是把弹塑性变形过程看成是非线性弹性变形过程。

严格说,在弹塑性变形理论的应用是有条件的。

严格讲,只有在等比例加载条件下,应用塑性变形理论可以得到精确解。

所谓等比例加载是指在加载过程中,各应力分量是按同一比例增加的。

严格的等比例加载是很难满足的,在土工问题中可以说是不可能的。

在简单加载条件下应用塑性形变理论分析有时也可以取得较好效果。

近些年来建立的土体弹塑性模型大部分是根据塑性增量理论建立的。

本章主要介绍塑性增量理论,在最后一节简要介绍塑性形变理论。

5.2 屈服面得概念首先讨论理想弹塑性材料。

理想弹塑性材料受力到什么程度才开始发生塑性变形呢?在简单拉伸时,问题是很明显的。

当应力等于屈服应力σs 时,塑性变形开始产生。

σs 值是可以在拉伸试验应力-应变曲线上找到的。

然而在复杂应力状态时,问题就不是这样简单了。

一点的应力状态由六个应力分量确定。

在复杂应力状态下,显然不能任意选取某一个应力分量的数值作为判断材料是否进入塑性状态的标准。

因此需要在应力空间或应变空间来考虑这一问题。

在土塑性力学中,常用的应力空间有三维主应力空间、p 、q (或σm ,σ1-σ3)应力平面、以及132σσ+,132σσ-应力平面等。

弹塑性力学 第05章弹性力学问题的建立和一般原理

弹塑性力学    第05章弹性力学问题的建立和一般原理
假设其余应力分量全为零,并且由图中的几何关系,于是 可得下列一组应力分量
应力分量
M O
τ xz = −αGy ,τ yz = αGx σ x = σ y = σ z = τ xy = 0
代入平衡微分方程
τ zy
ϕ
τ
x
τ zx
∂σ x ∂τ yx ∂τ zx + + + Fbx = 0 ∂x ∂y ∂z ∂τ xy ∂σ y ∂τ zy + + + Fby = 0 ∂x ∂y ∂z ∂τ xz ∂τ yz ∂σ z + + + Fbz = 0 ∂x ∂y ∂z
假设弹性体受已知体力作用,在物体的边界上,或者面 力已知,或者位移已知,或者一部分上面力已知,而另一部 分上位移已知,则弹性体平衡时,体内各点的应力分量与应 变分量是唯一的,对于后两种情形,位移也是唯一的。
这一定理以这样一个假设为依据:当物体不受外力作用 时,体内的应变能为零,应力分量和应变分量也全为零。当
∫∫τ
∫∫τ
zx
dxdy = 0
dxdy = 0
M O
τ zy
ϕ
τ
x
zy
M = ∫∫ (xτ zy − yτ zx )dxdy
将应力分量代入
τ zx
τ yz = αGx
y
τ xz = −αGy
σ x = σ y = σ z = τ xy = 0
∫∫τ zx dxdy = 0
∫∫τ
zy
τ xz = −αGy
1 ε ij = (1 +ν )σ ij −νσ kk δ ij E

[
]
σ ij = λε kk δ ij + 2Gε ij

弹性与塑性力学基础-第五章屈服准则与塑性应力应变关系

弹性与塑性力学基础-第五章屈服准则与塑性应力应变关系

0
m

0 0 m
Uv
1 3 ( m m m m m m ) m m 2 2 1 m ( 1 2 3 ) 3
1 m ( 1 2 3 ) 3
弹性与塑性 力 学 基 础
第五章 屈服准则与塑性应力应变关系
积之和的一半(主坐标系中)
U
1 ( 1 1 2 2 3 3 ) 2
1 0 ij T 0 2 0 0
0 0 3
1 0 ij T 0 2 0 0
0 0 3
弹性与塑性 力 学 基 础
第五章 屈服准则与塑性应力应变关系
§5-2 米塞斯屈服准则
5.2.1 米塞斯屈服准的物理意义 米塞斯屈服准则 5.2.2
由广义虎克定律
1
1 2 [ 2 ( 1 3 )] E 1 3 [ 3 ( 1 2 )] E
式中, 为波桑系数,于是可得
弹性与塑性 力 学 基 础
第五章 屈服准则与塑性应力应变关系
§5-2 米塞斯屈服准则
5.2.1 米塞斯屈服准的物理意义 米塞斯屈服准则 5.2.2
单位体积变化位能Uv确定
取应力球张量及应变球张量
m T0
由此得
0
m

0 0 m
m T0
§5-10 全量理论
5.10.1 问题的背景及引出 5.10.2 亨盖理论(1924年) 5.10.3 那达依理论(1937年) 5.10.4 伊留申理论(1943年) 5.10.5 全量理论的问题与发展
弹性与塑性 力 学 基 础

弹塑性力学第5章—塑性本构关系

弹塑性力学第5章—塑性本构关系

3 2
sij

Cdε
p ij
sij −
Cdε
p ij
−σs = 0
C表征材料强化的大小,来自单向拉伸
5.3 后继屈服条件
1、等向强化模型
单向拉伸实验曲线中三个方向的塑性主应变为
ε1p
= ε p,
ε
p 2
=
ε
p 3
= − 1ε p
2
其中ε p为单向拉伸方向的塑性应变,由此得到等效塑性应变
( ) ( ) ( ) ε p =
4 3
J

2
=
2 9
⎡ ⎢⎣
ε1p

ε
p 2
2+
ε
p 2

ε
p 3
2+
ε
p 3
最大畸变能是材料屈服的原因
J2 = k2
J 2反映了材料的畸变能( U0d
=
J2 2G

( ) J2
=
1 2
sij sij
=
1 6
(σ1 − σ2 )2 + (σ2 − σ3 )2 + (σ3 − σ1)2
k 由实验确定,根据简单拉伸实验,在材料屈服时
[ ] J2
=1 6
(σ 0 − 0)2 + 0 + (0 −σ 0 )2
−0.8
屈服条件类似,主要区别是
−1.0
混凝土的抗压强度比抗拉强
−1.2
度高得多。
5.2 常用的屈服条件
5.2.3 混凝土的莫尔-库仑屈服条件
在实验基础上,提出线性化的莫尔-库仑屈服条件,σ

0
,
σ

弹塑性力学5

弹塑性力学5

u y
l
Y
考虑温度变化时
u x
v y
l
1
2
u y
v x
m
l1 T
1 2
E
X
v y
u x
m
1
2
v x
u y
l
m1
T
1 2
E
Y
如果体力、面力均考虑,在上述式子中应包含它们。
位移势函数的引用
位移势函数表示的温差
对于位移和温差表示的平衡方程,可解出位移的齐次微分 方程为一般解,再加上一个温差引起的位移特解。为求位 移特解,引入一个位移势函数ψ(x,y),令:
1 E
x y
T
y
1 E
y x
T
xy
21
E
xy
x
E
1 2
x y
ET 1
y
E
1 2
y x
ET 1
xy
E
21
xy
直角坐标系下的基本方程
几何方程
x
u x
y
v y
xy
u y
v x
位移表示的平衡方程
位移表示的应力方程
x
E
1
2
u x
v y
ET 1
令:
u r
r
u
1 r
类似于直角坐标系下的推导,位移势函数应满足:
2 1 T
T 1 2
1
在极坐标系下:
2 2 1 1 2
r2 r r r2 2
极坐标系下的基本方程
位移势函数表示的对应温度变化的应力特解
根据以前直角坐标系转换到极坐标系下的推导,应力特解 为:

第五章塑性理论

第五章塑性理论

硬化材料:
加卸载准则
理想塑性材料:
5.3 流动法则
流动规则用以确定塑性应变增量的方向或塑性应变增量张量的各个分量间的比 例关系。塑性理论规定塑性应变增量的方向是由应力空间的塑性势面g决定。在应力 空间中,各应力状态点的塑性应变增量方向必须与通过该点的塑性势面相垂直。所 以流动规则也叫做正交定律。这一规则实质上是假设在应力空间中一点的塑性应变 增量的方向是惟一的,即只与该点的应力状态有关,与施加的 应力增量的方向无关,亦即
5.2 屈服准则
屈服面是应力空间内弹性状态与弹塑性状态之间的分界面。
f (ij , k) 0
k为状态参数,与硬化/软化参数有关
5.2 屈服准则
弹性 f (ij , k) 0 塑性 f (ij , k)=0 ? f (ij , k)>0
f f T f T k 0
k
5.2 屈服准则
➢压硬性 ➢等压屈服特性 ➢剪胀性 ➢应变软化特性 ➢与应力路径相关性
5.1 基本原理
塑性理论的基本概念:
1、屈服准则(Yield criterion ) 屈服面是应力空间内弹性状态与弹塑性状态之间的分界面。
2、硬化(软化)规律(Harding/Softening rule) 硬化规律是确定加载过程中屈服面位置和大小变化的规律。
3、流动准则(Flow rule) 流动准则用来确定塑性加载过程中塑性应变增量的方向。
不硬化
5.4 硬化规律
等向强化 是指屈服面以材料中所
作塑性功的大小为基础在尺寸上 扩张。
随动强化 假定屈服面的大小保持不变而仅 在屈服的方向上移动,当某个方向的屈服 应力升高时,其相反方向的屈服应力应该 降低。
在随动强化中,由于拉伸方向屈服应力的 增加导致压缩方向屈服应力的降低,所以在 对应的两个屈服应力之间总存 的差值,初 始各向同性的材料在屈服后将不再是各向同f (σ, Ro ) 0

弹塑性力学第五章分析解析

弹塑性力学第五章分析解析

平衡方程
1
几何方程
2 1 3
2018/7/31
变形协调方程
22
第五章 简单弹塑性力学问题
二、考虑加载路径对桁架变形的影响——比例加载
P 3 2 1 A 2 2 P 2 2 A 2 2 P 1 2 3 A 2 2
塑性极限荷载

由于此时三根杆都已屈服,变形已不再受到任何约束,桁架进入 无限制塑性变形阶段 ,结构丧失进一步承载的能力,所以,又表示桁 架的 极限承载能力 。从上式可以发现, Ps 与材料的弹性模量无关。这 表明,如果采用理想刚塑性模型,则求出的 Ps 仍是一样的。这就为结 构的极限分析带来了极大的方便。
2018/7/31 5
第五章 简单弹塑性力学问题
【解】1、弹性阶段-弹性解和弹性极限荷载( 0<P≤ Pe )
N1 N3
N1 cos N 2 N3 cos P
平衡关系
N3 N1 N2 1 , 2 , 3 A A A
1 3 2 1 cos 2 P / A
第五章 简单弹塑性力学问题
福州大学土木工程学院 卓卫东 教授
第五章 简单弹塑性力学问题


简单桁架问题 梁的弹塑性弯曲问题 平面问题
2018/7/31
2
第五章 简单弹塑性力学问题
引 言
从本章开始,我们将应用前几章的基础理论和一般性原 理,解决工程实践中遇到的弹塑性力学问题。已经知道,经 过抽象化处理后,一个实际的弹塑性力学问题在数学上总是 归结为一个偏微分方程组的边值问题。因此,需要在严格的 边界条件下求解复杂的偏微分方程组。由于往往难以克服数 学上的困难,所以在一般情况下,很难求得问题的解析解或 精确解,而只有一些简单的问题,才存在解析解。 本章将通过几个简单的问题,说明弹塑性力学问题的理 论求解方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5-4 弹性体的变形能和外力势能
4、弹性系统的总势能
EP = U+V
总势能=应变能+外力势能
§5-4 弹性体的变形能和外力势能 1.几点提示 1.几点提示
保守力?有势力?保守力的势能? 保守力?有势力?保守力的势能? 保守力做功与路径无关
应变能或变形势能: 应变能或变形势能: 外力作用下,对弹性体做功, 外力作用下,对弹性体做功, 弹性体因发生变形而存储能量。( 。(这个能量石经由 弹性体因发生变形而存储能量。(这个能量石经由 内力做功转化而来的) 内力做功转化而来的)
(2)应变能密度的一般形式(在我们这门弹性力学的范围内)
平面问题应变能密度
(3)应变能密度是坐标的函数 对于一个弹性体来讲,每一点都有自己的应变能密度,如果这些应变 能密度是连续的,那么它们就是坐标的函数。
§5-4 弹性体的变形能和外力势能
2、应力的功和形变势能(内力势能) 应力的功和形变势能(能
2、应力的功和形变势能(内力势能) 应力的功和形变势能(内力势能)
(7).形变势能 U 的性质
§5-4 弹性体的变形能和外力势能
3、弹性体上的外力功和外力势能
(取u = v = 0或者无变形状态时的外力功和势能为零点)
外力克服弹性力做功,转化为弹性势能, 就好像外力克服重力做功,转化为物体的重力势能。
§5-4 弹性体的变形能和外力势能 1.几点提示 1.几点提示
应变能密度: 应变能密度: 单位体积内的应变能。 单位体积内的应变能。 2、应力的功和形变势能
(1)作用于微小单元上的应力,是邻近部分物体对它的作用力,可看 成是作用于微小单元上的“外力”。
§5-4 弹性体的变形能和外力势能
2、应力的功和形变势能
§5-4 弹性体的变形能和外力势能
3、弹性体上的外力功和外力势能
类比一下: F
mg
F
mg
h
重力势能: 重力势能:向上提的过程中,重力是外力,重力做功W=-mgh, 重力势能是V= -W= mgh 的过程中, 弹性体的外力 F,那么在产生位移 的过程中,它做了多少功? ,那么在产生位移u的过程中 它做了多少功? 如果F也是保守力的话,请问外力F的势能是多少?(要决定势能必须取参考点) 如果 也是保守力的话,请问外力 的势能是多少?(要决定势能必须取参考点) 也是保守力的话 的势能是多少?(要决定势能必须取参考点
第五章
弹性体的能量法
§5-4 弹性体的变形能和外力势能 1.几点提示 1.几点提示
弹性系统的组成: 弹性系统的组成: 的组成
弹性体 荷载系统:体力 边界面力 荷载系统:体力+边界面力 支承系统: 支承系统:以指定位移边界为例
§5-4 弹性体的变形能和外力势能 1.几点提示 1.几点提示
弹性静力学,物体点点平衡。 弹性静力学,物体点点平衡。 所以:外部荷载(体力,面力)必然是无限缓慢地加上去的。 所以:外部荷载(体力,面力)必然是无限缓慢地加上去的。 只有这样,才能保证物体中每个微元实时处于平衡状态。 只有这样,才能保证物体中每个微元实时处于平衡状态。 而外力是恒力
(4)弹性体的应变能(平面问题)
(5)应变能密度的应变表示(平面应力为例)
§5-4 弹性体的变形能和外力势能
2、应力的功和形变势能(内力势能) 应力的功和形变势能(内力势能)
(6)应变能密度与应力的导数关系
3.形变势能 U 的性质 (7)应变能密度的位移表示(平面应力为例) 将变形几何方程 代入 应变能密度表达式
相关文档
最新文档