《弹塑性力学》第五章 线弹性力学问题的基本解法和一般性原理.ppt

合集下载

弹塑性力学线弹性力学问题的基本解法和一般性原理

弹塑性力学线弹性力学问题的基本解法和一般性原理

w ij ij Eijkl kl 线性关系 各向同性 ij
指标符号表示
ij 2G ij ij kk
E ( ij ij kk ) (1 ) 1
2019/1/3 7
§5-1 基本方程和边界条件的汇总
X l x m yx n zx n1 11 n2 21 n3 31
Y l xy m y n zy n1 12 n2 22 n3 32
Z l xz m yz n z n1 13 n2 23 n3 33
§5-1 基本方程和边界条件的汇总
在第二、三、四章较全面的讨论了弹性变 形体在承受外力作用时,发生变形和抗力(内
力),这些变形和内力应遵循的三个基本规律,
从而导出了待求物理量(应力、应变、位移)
所须满足的基本方程,共十五个,现汇总如下。
2019/1/3
1
§5-1 基本方程和边界条件的汇总
1.1 基本方程汇总
当 S = S时称为微分方程第一边值问题;
当 Su = S时称为偏微分方程第二边值问题; 当 Su +S = S 称为偏微分方程第三边值问题。
2019/1/3
11
§5-2 位移法
弹性力学问题的待求函数共15个(ij、 ij 、 ui),如果一视同仁的同等看待,由给定的边界 条件下求偏微分方程组的定解是不可能的。由 物理量所满足的方程组中显示出来)。
2
yz
xy
y yz zx xy ( )2 y x y z zx
2
2 zx z yz xy ( )2 z x y z yx
2019/1/3
6

弹塑性力学第一章 PPT资料共54页

弹塑性力学第一章 PPT资料共54页

16.11.2019
10
§1-2 基本假设和基本规律
2.1基本假设
假设1:固体材料是连续的介质,即固体体积 内处处充满介质,没有任何间隙。
从材料的微观看此假设不正确。因为粒子 间有空隙,但从宏观上看作为整体进行力学分 析时,假设1是成立的。假设1的目的:变形体 的各物理量为连续函数(坐标函数)。
16.11.2019
11
§1-2 基本假设和基本规律
假设2:物体的材料是均匀的。认为物体内 各点的材料性质相同(力学特性相同),所 以从物体内任一部分中取出微元体进行研究, 它的力学性质代表了整个物体的力学性质。
16.11.2019
12
§1-2 基本假设和基本规律
假设3:小变形假设。物体在外因作用下,物 体产生的变形与其本身几何尺寸相比很小。
哑标如:
3
rr1e1r2e2r3e3 riei riei r j e j 3 i1
uu1e1u2e2u3e3 uiei uiei u j e j

i1

33


1e 1 1 e 11e 1 2 e 2 .. ..3.e 3 3 e .3 ie jie jie jie j
排列符号的作用可以简化公式书写,如: 1. 三阶行列式:
A11 A12 A13 AA21 A22 A23eijkAi1Aj2Ak3eijkA1iA2jA3k
A31 A32 A33
(共六项,三项为正,三项为负)。
16.11.2019
32
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
2. 基向量的叉积:右手系
16.11.2019
弹塑性力学
授课教师:龙志飞 目录

弹塑性力学 第05章弹性力学问题的建立和一般原理

弹塑性力学    第05章弹性力学问题的建立和一般原理
假设其余应力分量全为零,并且由图中的几何关系,于是 可得下列一组应力分量
应力分量
M O
τ xz = −αGy ,τ yz = αGx σ x = σ y = σ z = τ xy = 0
代入平衡微分方程
τ zy
ϕ
τ
x
τ zx
∂σ x ∂τ yx ∂τ zx + + + Fbx = 0 ∂x ∂y ∂z ∂τ xy ∂σ y ∂τ zy + + + Fby = 0 ∂x ∂y ∂z ∂τ xz ∂τ yz ∂σ z + + + Fbz = 0 ∂x ∂y ∂z
假设弹性体受已知体力作用,在物体的边界上,或者面 力已知,或者位移已知,或者一部分上面力已知,而另一部 分上位移已知,则弹性体平衡时,体内各点的应力分量与应 变分量是唯一的,对于后两种情形,位移也是唯一的。
这一定理以这样一个假设为依据:当物体不受外力作用 时,体内的应变能为零,应力分量和应变分量也全为零。当
∫∫τ
∫∫τ
zx
dxdy = 0
dxdy = 0
M O
τ zy
ϕ
τ
x
zy
M = ∫∫ (xτ zy − yτ zx )dxdy
将应力分量代入
τ zx
τ yz = αGx
y
τ xz = −αGy
σ x = σ y = σ z = τ xy = 0
∫∫τ zx dxdy = 0
∫∫τ
zy
τ xz = −αGy
1 ε ij = (1 +ν )σ ij −νσ kk δ ij E

[
]
σ ij = λε kk δ ij + 2Gε ij

工程弹塑性力学课件

工程弹塑性力学课件
工程弹塑性力学课件
目 录
• 弹塑性力学基础 • 弹性力学基本理论 • 塑性力学基本理论 • 工程应用实例 • 工程弹塑性力学展望
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
弹塑性力学是一门研究材料在弹 性极限和塑性极限内应力、应变 行为的科学。它广泛应用于工程 领域,为各种结构设计和分析提
供理论基础。
有限差分法
将物体的位移表示为离散的点的 差分形式,通过求解这些点的位 移来近似求解整个物体的位移。
边界元法
将物体的边界离散化为有限个小 的单元,通过求解这些单元的力 学行为来近似求解整个物体的边 界力学行为。
03
塑性力学基本理论
塑性力学基本概念
01
02
03
塑性力学
塑性力学是研究材料在达 到屈服点后,发生不可逆 变形时行为和特性的学科 。
边界元法
通过在边界上离散化求解微分方程的方法,可以减少未知数的数量 ,提高求解效率。
有限差分法
将微分方程转化为差分方程,通过迭代求解的方法得到近似解。
04
工程应用实例
桥梁工程弹塑性分析
总结词
桥梁结构稳定性
详细描述
桥梁工程弹塑性分析主要关注桥梁结构的稳定性,通过分 析桥梁在不同载荷下的弹塑性响应,评估其承载能力和安 全性。
总结词
材料非线性
详细描述
桥梁工程中的材料多为金属或复合材料,这些材料的弹塑 性行为呈现出非线性特征。在分析过程中,需要考虑材料 在不同应力水平下的弹塑性变形和破坏。
总结词
结构优化设计
详细描述
基于弹塑性分析的结果,可以对桥梁结构进行优化设计, 提高其承载能力和稳定性,同时降低制造成本和维护成本 。

弹塑性力学绪论ppt课件

弹塑性力学绪论ppt课件
区别在于第三类方程
14
1.2 弹塑性力ቤተ መጻሕፍቲ ባይዱ发展历史
• 1678年胡克(R. Hooke)提出弹性体的变形和所 受外力成正比的定律。
• 19世纪20年代,法国的纳维(C. I. M. H. Navier )、柯西(A. I. Cauchy)和圣维南(A. J. C. B. de Saint Venant)等建立了弹性理论
• 从1970年前后至今岩土本构模型的研究十分活跃, 建立的岩土本构模型也很多。
• 1982年Zienkiewicz提出广义塑性力学的概念,指出 岩土塑性力学是传统塑性力学的推广。
17
1.3 塑性力学的主要内容
• (1)建立屈服条件。 • 对于给定的应力状态和加载历史,确定材料是否超出
弹性界限而进入塑性状态,即材料是否屈服 • (2)判断加载、卸载。 • 加载和卸载中的应力应变规律不同,需要建立准则进
5
1.1 基本概念
• 弹塑性力学是固体力学的一个重要分支,是 研究弹性和弹塑性物体变形规律的一门科学。 应用于机械、土木、水利、冶金、采矿、建 筑、造船、航空航天等广泛的工程领域。
• 目的:(1)确定一般工程结构受外力作用时 的弹塑性变形与内力的分布规律;(2)确定 一般工程结构物的承载能力;(3)为进一步 研究工程结构物的振动、强度、稳定性等力 学问题打下必要的理论基础。
弹塑性力学
1
课程安排
• 授课方式:讲座,讨论,练习 • 考试方式:闭卷
2
参考书目
• ≤应用弹塑性力学≥,徐秉业、刘信声、著, 北京:清华大学出版社,1995
• ≤岩土塑性力学原理≥,郑颖人、沈珠江、龚 晓南著,北京:中国建筑工业出版社,2002
• ≤弹塑性力学引论≥,杨桂通编著,北京:清 华大学出版社,2004

第五章 弹性与塑性力学的基本解法

第五章 弹性与塑性力学的基本解法
(1)位移法:即以位移分量作为基本未知量,来求解边值 问题。此时将一切未知量和基本方程都转换成用位移分量 来表示。通常给定位移边界条件的边值问题,宜用此法。 (2)应力法:即以应力分量作为基本未知量,来求解边值 问题。此时将一切未知量和基本方程都转换成用应力分量 来表示。通常当给定应力边界条件时,宜用此法。 (3)混合法:即以一部分位移分量和一部分应力分量作为 基本未知量,来混合求解边值问题。显然,这种方法适宜 于求解混合边值问题。
第五章 弹性与塑性 力学的基本解法
对于平面问题(以平面应力为例)
几何方程
u x x
物理方程
将几何方程代入物理方程
E u v x ( ) 2 1 x y E v u y ( ) 2 1 y x
E x ( x y ) 2 1 E y ( y x ) 2 1
d 3 d 2
p
五个方程 一个方程 一个方程
E d m 3k d m d m 1 2
Sij= eij
五个方程 一个方程 一个方程
李田军弹塑性力学课件
eij Sij
m=K
2 3
6
第五章 弹性与塑性 力学的基本解法
4、静力边界条件和位移边界条件: ijlj=Fi (在ST上) ui=ui (在Su上)
纯弹性区
加载区 卸载区
2011年4月13日星期三
在它们的分界面上,应 力和应变应满足一定的 连续条件和间断条件。
李田军弹塑性力学课件 12
第五章 弹性与塑性 力学的基本解法
§5-2
按位移求解弹性力学问题
由于塑性力学问题的复杂性和特殊性,需要专门进行 讨论。鉴于学时所限,这里仅讨论弹性力学问题的基 本求解方法。 弹性力学问题:就是分析各种结构物或其构件在弹性

弹塑性力学讲稿课件

弹塑性力学讲稿课件
详细描述
金属材料的弹塑性分析主要关注金属在受力过程中发生的弹性变形和塑性变形。通过弹塑性分析,可以预测金属 在复杂应力状态下的行为,为金属材料的加工、设计和应用提供理论依据。
混凝土结构的弹塑性分析
总结词
混凝土结构在受到压力时会产生弹性变形和塑性变形,弹塑性分析是研究混凝土结构在受力过程中应 力和变形的变化规律。
总结词
复杂结构与系统的弹塑性行为研究是推动工程应用的重 要基础。
详细描述
在实际工程中,许多结构和系统的弹塑性行为非常复杂 ,如大型桥梁、高层建筑、航空航天器等,需要从整体 和局部多个角度进行研究,以揭示其力学行为和稳定性 规律,为工程安全和优化设计提供科学依据。
THANKS
感谢观看
VS
详细描述
复合材料的弹塑性分析主要关注复合材料 的组成材料和复合方式对弹塑性性能的影 响。通过弹塑性分析,可以预测复合材料 在不同环境下的力学性能,为复合材料的 应用和发展提供理论依据。
工程结构的弹塑性分析
总结词
工程结构在受到外力作用时会产生变形,弹 塑性分析是研究工程结构在外力作用下的应 力和应变的变化规律。
03
弹塑性力学的分析方法
有限元法
有限元法是一种将连续体离散化 为有限个小的单元体的集合,并 对每个单元体进行受力分析的方
法。
有限元法通过将复杂的结构或系 统简化为有限个简单的单元,使
得计算变得简单且精度较高。
有限元法广泛应用于各种工程领 域,如结构分析、热传导、流体
动力学等。
有限差分法
01
有限差分法是一种将偏微分方程 转化为差分方程的方法,通过离 散化空间和时间变量来求解问题 。
其他常见的弹塑性力学分析方法还包括有限体积法、无网格 法等。

弹性力学ppt课件

弹性力学ppt课件
研究对象
弹性体,即在外力作用下能够发生变 形,当外力去除后又能恢复原状的物 体。
弹性体基本假设与约束条件
基本假设
连续性假设、完全弹性假设、小变形假设、无初始应力假设。
约束条件
几何约束(物体形状和尺寸的限制)、物理约束(物体材料属性的限制)。
应力、应变及位移关系
01
应力
单位面积上的内力,表示物体内部 的受力状态。
分析圆柱形容器在内压或外压 作用下的应力分布和变形情况 。
球体受均匀内压或外压作 用
分析球形容器在内压或外压作 用下的应力分布和变形情况。
地基沉降问题
分析地基在荷载作用下的沉降 变形及其对上部结构的影响。
06
弹性力学在工程领 域应用探讨
土木工程:建筑结构、地基基础等方面应用
建筑结构
弹性力学在建筑结构中应用广泛,如高层建筑、大跨度桥梁等。通过弹性力学分析,可以预测结构在荷载作用下的变 形和应力分布,为结构设计提供重要依据。
优化设计
利用弹性力学原理,可以对机械 结构进行优化设计。通过改变结 构的形状、尺寸或材料属性等参 数,可以实现结构性能的最优化 ,提高机械产品的整体性能。
航空航天工程
01 02 03
飞行器结构强度校核
弹性力学在航空航天工程中主要用于飞行器结构的强度校 核。通过对飞行器结构在飞行过程中的受力状态进行分析 ,可以评估其结构强度是否满足设计要求,确保飞行安全 。
复合材料结构分析
随着复合材料在航空航天领域的广泛应用,弹性力学在复 合材料结构分析中合材料结构的力学性能进行预测和评估,为复 合材料的设计和应用提供指导。
结构优化设计
弹性力学还可以用于航空航天工程中结构的优化设计。通 过对飞行器结构进行拓扑优化、形状优化或尺寸优化等, 可以实现结构轻量化、提高结构刚度等目标,从而提高飞 行器的整体性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u j,i )
x
u x
y
v y
z
w z
xy
u y
v x
yz
v z
w y
zx
w x
u z
2021/3/11
5
§5-1 基本方程和边界条件的汇总
b. 变形协调方程
指标符号表示
ij,kl kl,ij ik, jl jl,ik 0
2 x
y 2
2 y
x 2
2 xy
xy
Байду номын сангаас
2 y 2 z 2 yz
ui ui 在 Su 上
uu vv ww
由三个基本规律导出的应力、应变和位移 满足的基本方程加上相应的边界条件建立了线 弹性问题解析法(微分提法)体系,从数学上 看是求偏微分方程组的边值问题。
2021/3/11
11
§5-1 基本方程和边界条件的汇总
当 S = S时称为微分方程第一边值问题; 当 Su = S时称为偏微分方程第二边值问题; 当 Su +S = S 称为偏微分方程第三边值问题。
2021/3/11
2
§5-1 基本方程和边界条件的汇总
1.1 基本方程汇总
1.1.1 平衡微分方程(3个)
体力与应力之关系:指标符号表示 ji,j+fi=0
11
x1
21
x2
31
x3
f1
01
12
x1
22
x2
32
x3
f2
0
13
x1
23
x2
33
x3
f3
0
2021/3/11
3
z x y z yx
2021/3/11
7
§5-1 基本方程和边界条件的汇总
1.3 本构(物理)方程(六个)
ij
w
ij
线性关系 ij
Eijkl kl
各向同性
指标符号表示
ij 2G ij ij kk
E
(1 )
( ij
1
ij kk
)
2021/3/11
8
§5-1 基本方程和边界条件的汇总
1.3 本构(物理)方程(六个)
指标符号表示
ij
(1
E
)
ij
E
ij
kk
上述所有方程为 ij 、 ij、ui在V上必须满足的
方程,同时在S上(边界上)有边界力或边界 位移。
2021/3/11
9
§5-1 基本方程和边界条件的汇总
1.2边界条件
1.2.1力的边界条件 Fi X i n j ji 在S 上
2021/3/11
12
§5-2 位移法
弹性力学问题的待求函数共15个(ij、ij、 ui),如果一视同仁的同等看待,由给定的边界
条件下求偏微分方程组的定解是不可能的。由 物理量所满足的方程组中显示出来)。
2021/3/11
13
§5-2 位移法
为了有效地求解,从15个量中选取一部分 作为基本待求未知函数,而其它待求函数看成 由基本待求函数导出的未知函数,这样使得求 解方程减少,且主攻方向明确(求基本未知 量),基本未知函数选取不同,导出的求解步 骤和方程名称不同,如:位移法、应力法和混 合法。
(拉米-纳维叶方程)
2021/3/11
18
§5-2 位移法
由于 u j, j e ——为体积应变
G2ui ( G)e,i fi 0
在V上
边界条件:a. ui ui (在Su上)
b. X n j ji n j G(ui, j u j,i ) ijuk,k

(在S 上 )
X i n jG(ui, j u j,i ) niuk,k (在S 上)
z 2 y2 zy
2 x
z 2
2 z
x 2
2 zx
xz
2021/3/11
6
§5-1 基本方程和边界条件的汇总
b. 变形协调方程
( yz zx xy ) 2 2 x
x x y z yz
( yz zx xy ) 2 2 y
y x y z zx
( yz zx xy ) 2 2 z
2021/3/11
14
§5-2 位移法
位移法求解思想:
选取 ui 为基本未知函数,而 ij 和 ij
均看成是由ui导出的未知函数,这样15
个方程中某些方程成为的ui ij ij
关系式。
2021/3/11
15
§5-2 位移法
位移法基本步骤:
基本未 几何方程 知
函数ui
应 变 kl 用 ui 物理方程
第五章 线弹性力学问题的基本解 法和一般性原理
§5-1 基本方程和边界条件的汇总
§5-2 位移法 §5-3 应力法
§5-4 线弹性力学的几个原理
§5-5 线弹性力学的几个简单 问题的求解
2021/3/11
1
§5-1 基本方程和边界条件的汇总
在第二、三、四章较全面的讨论了弹性变 形体在承受外力作用时,发生变形和抗力(内 力),这些变形和内力应遵循的三个基本规律, 从而导出了待求物理量(应力、应变、位移) 所须满足的基本方程,共十五个,现汇总如下。
表示
应 力 kl 用 ui
表示
kl 用ui 表示
用ui表示的平衡 微分方程
用ui表示的力的边界条 件(在S上)
位移边界条件(在Su上)
2021/3/11
16
§5-2 位移法
位移法的基本方程(3个) 推导(用指标符号 表示)
应变用位移表示
ij
1 2
(ui,
j
u j,i )
线性各向同性材料的应力用位移表示:
2021/3/11
19
§5-2 位移法
力的边界条件转为用ui的偏微分表示的。 这类边界条件从形式上看可以处理,但实际操 作上有时较难处理。
2021/3/11
20
X l x m yx n zx n111 n2 21 n3 31
Y l xy m y n zy n112 n2 22 n3 32
Z l xz m yz n z n113 n2 23 n3 33
2021/3/11
10
§5-1 基本方程和边界条件的汇总
1.2.2 位移边界条件
ij G(ui, j u j,i ) ijuk,k
2021/3/11
17
§5-2 位移法
ij G(ui, j u j,i ) ijuk,k
上式代入平衡微分方程,得到位移法 的基本方程
G(ui, j u j,i ), j ijuk,kj fi 0 在V上

G2ui ( G)u j, ji fi 0 在V上
§5-1 基本方程和边界条件的汇总
1.1.2 几何方程(六个) 或变形协调方程(六个)
几何方程表示了位移与应变之关系,当由 位移场确定应变场时仅利用几何方程就够了, 但反之,应变场还需补充变性协调条件。
2021/3/11
4
§5-1 基本方程和边界条件的汇总
a. 几何方程 指标符号表示
ij
1 2 (ui, j
相关文档
最新文档