§2 二维离散型随机变量及其分布
合集下载
二维离散随机变量及其分布(3.2)

yj p1 j p2 j pij
x2
… … …
pi
p1 p2
pi
xi
p j pi1源自p1 pi 2
p2
…
…
…
p j
…
第三章 二维随机变量及其分布
§2 二维离散随机变量
例 3 从 1 ,2 ,3 ,4 这4个数中随机取出一个,记为 X,
再从 1 到 X 中随机地取出一个数,记为 Y, 试求 X , Y 的联合分布律与X 及 Y 各自的边缘 分布律.
PX 1, Y 1
1 PX 2, Y 0 9
PX 2, Y 1 P 0
2 9
PX 2, Y 2 P 0
第三章
二维随机变量及其分布
§2 二维离散随机变量
由此得 X, Y 的联合分布律为
Y X
0 1 2
0
1
2
1 9 2 9 1 9
j 1,2,
X, Y 的联合分布律也可以由 下表表示
Y X x1
y1
y2
… … …
yj p1 j p2 j
pij
… … … …
p11 p21
pi1
p12 p22
x2
xi
第三章 二维随机变量及其分布
§2 二维离散随机变量
3)二维离散型随机变量联合分布律的性质
性质 1 :非负性
i, j , i,j 1, 2, 对任意的
解:
0, 1, 2. X 的可能取值为 0, 1, 2;Y 的可能取值为
1 1 PX 0, Y 0 2 9 3
第三章
二维随机变量及其分布
二维离散型随机变量及其分布

[例1] 1个口袋中装有大小形状相同的6个球, 其中2个红球、4个白球,现从袋中不放回地取两 次球,每次取一个。设随机变量
0, 表示第一次取红球 0, 表示第二次取红球 X 1, 表示第一次取白球 Y 1, 表示第二次取白球
求(X,Y)的联合分布律。
二、 边缘分布律(Marginal distribution regularity)
2007年12月
三、随机变量的独立性(Independence of random
variable)
定理1 设(X,Y)是二维离散型随机变量,则 X,Y相互独立的充要条件是:对所有的i,j,均有
pij=pi..p.j
[例3] 见例1,判断X,Y是否相互独立?
例4 已知随机变量(X,Y)的分布律为
x\y 1 0
1 1/10 3/10
0 3/10 3/10 解:
求X、Y的边缘分布律。
x\y 1 0 pi. 1 1/10 3/10 2/5 0 3/10 3/10 3/5
p.j 2/5 3/5
故关于X和Y的分布律分别为:
X0 1
Y/5 2/5
小结
联合分布律 边缘分布律
思考
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为
“有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立?
2、上述我们解决了:已知二维离散型随机变
量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
1、定义 设(X,Y)是二维离散型随机变量, 称分量X的分布律为(X,Y)关于X的边缘分布律; 分量Y的分布律为(X,Y)关于Y的边缘分布律。
2-2离散型随机变量及其分布律

松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}
2.2 概率论——二维离散型随机变量及其分布

1,
x 0或y 0, 0 x 1, y 0或0 y 1, x 0 x 1, y 1
P(X1=1, X2=1) = P(|Y|<1, |Y|<2)= P(|Y|<1) = 0.6826
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
例5:设二维d.r.v.(X,Y)服从二元两点分布:
Y X
0
1
0
q
0
1
0
p
试求(X,Y)的分布函数。
0, F ( x, y) q,
2.2 二维d.r.v.及其分布
定义 如果随机向量 ( X,Y ) 的全部取值 (向量或点 ) 为有限多个或至多可列个,则称 ( X,Y )为离散型随机向量。
( X,Y )为离散型随机向量
X与Y均为离散型随机变量
记( X ,Y )的取值集合为 E {( xi , y j ), i, j 1,2, } P{ X xi ,Y y j } pij , i, j 1,2,
(1) 确定随机变量 (X, Y) 的所有取值数对. (2) 计算取每个数值对的概率. (3) 列出表格.
对任意的A E
P{( X ,Y ) A} pij
ij
( xi , y j ) A
( X ,Y )的联合分布函数
F(x, y) P{X x,Y y}
pij
xi x y j y
解 (1) X 可能的取值为 1,2,3,Y 可能的取值为2,3,4,
但 ( X ,Y )的取值为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)。
由古典概型公式
P{ X
1,Y
2}
x 0或y 0, 0 x 1, y 0或0 y 1, x 0 x 1, y 1
P(X1=1, X2=1) = P(|Y|<1, |Y|<2)= P(|Y|<1) = 0.6826
列表为:
X1 X2 0 1
0
0.0455 0
1
0.2719 0.6826
例5:设二维d.r.v.(X,Y)服从二元两点分布:
Y X
0
1
0
q
0
1
0
p
试求(X,Y)的分布函数。
0, F ( x, y) q,
2.2 二维d.r.v.及其分布
定义 如果随机向量 ( X,Y ) 的全部取值 (向量或点 ) 为有限多个或至多可列个,则称 ( X,Y )为离散型随机向量。
( X,Y )为离散型随机向量
X与Y均为离散型随机变量
记( X ,Y )的取值集合为 E {( xi , y j ), i, j 1,2, } P{ X xi ,Y y j } pij , i, j 1,2,
(1) 确定随机变量 (X, Y) 的所有取值数对. (2) 计算取每个数值对的概率. (3) 列出表格.
对任意的A E
P{( X ,Y ) A} pij
ij
( xi , y j ) A
( X ,Y )的联合分布函数
F(x, y) P{X x,Y y}
pij
xi x y j y
解 (1) X 可能的取值为 1,2,3,Y 可能的取值为2,3,4,
但 ( X ,Y )的取值为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)。
由古典概型公式
P{ X
1,Y
2}
二维离散型随机变量

F
(
x,
y)
1 3
,
1 x 2, y 2, 或 x 2,1 y 2,
1, x 2, y 2.
说明 离散型随机变量 ( X ,Y ) 的分布函数归纳为
F ( x, y) pij ,
xi x y j y
其中和式是对一切满足xi x, y j y 的i, j求和.
注意 联合分布
pij 1.
i1 j1
二维随机变量 ( X,Y ) 的分布律也可表示为
X Y
y1 y2
yj
x1
x2 xi
p11 p21
p12 p22
pi1
pi 2
p1 j p2 j pij
3、离散型随机变量的边缘分布律
定义设二维离散型随机变量( X ,Y )的联合分布
律为
P{X xi ,Y y j } pij , i, j 1, 2, .
3 7
pj (Y ) P{Y yj}
4
7 3
7
1
例2 设随机变量 X 在 1,2,3,4四个整数中等可能地 取值, 另一个随机变量Y 在 1 ~ X 中等可能地取一 整数值.试求 ( X ,Y ) 的分布律.
解 { X i,Y j}的取值情况是 : i 1,2,3,4,
j取不大于i的正整数. 且由乘法公式得
记
pi ( X ) pij P{X xi }, i 1, 2, ,
j 1
p j (Y ) pij P{Y y j }, j 1, 2, , i 1
分别称 pi ( X ) (i 1, 2, ) 和 p j (Y ) ( j 1, 2, ) 为 ( X ,Y )
关于 X 和关于 Y 的边缘分布律.
§2.2离散型随机变量及其分布列

1, x a F ( x) 0, x a
1
例2.2.9 若
.
服从两点分布
0
P
q
求
的分布函数
解: P( x) 0 当 x 0时,F(x) F(x) P( x) P( 0) q 当 0 x 1 时, F ( x) P( x) P( 0) P( 1) 1 当 x 1 时, 例2.2.10 设 的分布列为
0 1 2 3 4 5
k 5 k 5k
k=0,1,2,3,4,5.
q 5 5 pq 4 10 p 2 q 3 10 p 3 q 2 5 p 4 q p 5
3.分布列的性质
由概率的性质可知,任一离散型随机变量 的分布列 p i 都具有下述性质:
非负性:1)pi 0, i 1, 2, 规范性:2) pi 1
k 6 k 6
5000
5000
其中b(k;5000,1/1000)= C
k 5000
1 k 1 5000 k ( ) (1 ) 1000 1000
这时如果直接计算P 5 ,计算量较大。由于n很大 ,p较小,而np=5不很大 ,
可以利用 Poisson定理
5 P( 5) 1 P 5 1 e k 0 k !
i
例2.2.11 设随机变量
的分布函数为 的分布列。
解: 依题意可得
0, x 1 0.4, 1 x 1 F ( x) ,求 0.8,1 x 3 1, x 3
的可能取值为-1,1,3
P 1 F 1 0 F 1 0.4,
P 3 F 3 0 F 3 0.2
所以 的分布列为
二维离散型随机变量及其分布律

则(ξ ,η )的可能取值为(0,0),(0,1),(1,0),(1,1), 故 (ξ ,η )为二维离散型随机变量。
1
2. 联合分布律
定义: 设二维随机变量(ξ ,η )的所有可能取的值是 (xi ,yj ),i,j=1,2, ,若{ξ = xi ,η = yj }的概率 L pij = p{ξ = xi ,η = yj} (1) (2) pij ≥ 0 i,j=1,2, L i,j=1,2, L
第2-3节 二维离散型随机变量及其分布律
1.二维离散型随机变量的定义
定义: 若二维随机变量(ξ ,η )的所有可能取的值是 有限对或可列多对, (ξ ,η )=(xi ,yj ),i,j=1,2, L 则称(ξ ,η )为二维离散型随机变量。
例:抛掷两枚硬币一次,观察出现正反的情况,令
⎧0 ξ=⎨ ⎩1 ⎧0 ,η= ⎨ A币出现正面 ⎩1 A币出现反面 B币出现反面 B币出现正面
称之为随机变量η 在ξ = xi条件下的条件分布律。
4
5. 随机变量的独立性
定义: 设二维随机变量(ξ ,η )联合分布律为 pij = p{ξ = xi ,η = yj} i,j=1,2, L 若对于任意的i, j,恒有pij ≡ pi. p. j,即 p{ξ = xi ,η = yj} = p{ξ = xi} p{η = yj} 则称为随机变量ξ 与η 独立。
ij
∑∑ p
i =1 j =1
∞
∞
=1 L i,j=1,2, 为二维离散
则称为pij = p{ξ = xi ,η = yj}
型随机变量(ξ ,η )的联合分布律。
2
3. 边缘ห้องสมุดไป่ตู้布律
定义: 设二维随机变量(ξ ,η )的联合分布律为:pij = p{ξ = xi ,η = yj} i,j=1,2, 则称为pξ(xi ) = p{ξ = xi ,η < +∞} = pi. L 为(ξ ,η )关于分量ξ的边缘分布律。 类似,(ξ ,η )关于分量η的边缘分布律为: pη(η = yj ) = p{ξ < +∞,η = yj} = p.j j=1,2, L i,=1,2, L
2-2离散型随机变量及其分布律

4、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
P ( X 5 )
5 k 0
Ck 5000
(
1 1000
)k
(
999 1000
)5000k
离散型随机变量X b(n, p). 又设np ( 0), 则有
Cnk
pk (1
p )nk
n
k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
P(X=0)=P(A1)=1/2,
P(X 1) P(A1A2 ) P(A1)P(A2 ) 1 4 P(X 2) P(A1 A2A3 ) P(A1)P(A2)P(A3) 1 8 P(X 3) P(A1 A2 A3A4 ) P(A1)P(A2 )P(A3 )P(A4 ) 1 16 P(X 4) P(A1A2 A3 A4 ) P(A1)P(A2)P(A3)P(A4) 1 16
例3 (P30,例2) 设射手每次击中目标的概率p=0.75, 且各次射击 相互独立。现共射击4次,以X表示击中目标的次数。(1)写出X的 分布律;(2)求恰击中3次的概率;(3)求至少击中2次的概率。
解 : 定义 A {击中目标}, 伯努利试验.
X的可能取值有:0,1,2,3,4. 显然, X b(2,0.75)
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200* 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
Ck 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P{X xi , Y y j } pij , i 1, 2,, j 1, 2, ,
就称上式为二维离散型随机变量 ( X , Y ) 的分布律或 X 和 Y 的 联合分布律,
1
二维离散型随机变量的分布律也记列表为
X
Y
x1
p11 p12 p1 j
x2
xi
y1 y2 yj
§2
二维离散型随机变量及其分布
一、二维离散型随机变量及其分布律的概念
定义 2.1 如果二维随机变量 ( X , Y ) 的所有可能取值为有限对 或可列对,就称 ( X , Y ) 为 二维离散型随机变量.
定义 2.2 设 ( X , Y ) 为二维离散型随机变量,其所有可能的取 值为 ( xi , y j ) ,其中 i 1, 2,, j 1, 2, ,且
p21
pi1
p22 pi 2 p2 j pi j
2
例 2.1
设同一品种的五个产品中,有两个次品,每次从中取一
个检验,连续两次.设 X 表示第一次取到的次品个数; Y 表示 第二次取到的次品个数.试分别就⑴不放回;⑵有放回两种情 况,求出 ( X , Y ) 的概率分布.
pij ,其中 D 为任一平面区域.
( X , Y ) 的分布函数为
F ( x, y ) P X x, Y y
xi x y j y
p
ij
,
x , y .
6
例 2.2
已知二维随机变量 ( X , Y ) 的分布律为
X Y 0 1
i j
ij
所以 b 0.2 . 1知,0.7 a b 1 ,
X Y
1 0.2 0.1
0 0.1 0.1
1 0.3 0.2
⑵ 由⑴得 ( X , Y ) 的分布律为
0 1
故: P{X Y } P{X 0, Y 0} P{X 1, Y 1} 0.1 0.2 0.3 .
性质 2.1
设二维离散型随机变量 ( X , Y ) 的分布律为
P{X xi , Y y j } pij , i 1, 2,, j 1, 2, ,
则有⑴ pij 0 , i 1, 2,, j 1, 2, ;⑵ 性质 2.1 不难验证,证明从略.
【注】 如果 pij (i 1, 2,, j 1, 2,) 满足性质 2.1 中的⑴和 ⑵,则 pij (i 1, 2, , j 1, 2,) 必能构成某二维离散型随机 变量 ( X , Y ) 的分布律.
1
0
1
0.2 0.1
a 0.1
0.3 b
且 F (0,1.5) 0.5 .⑴ 求常数 a , b 的值;⑵ 计算 P{ X Y } .
解 ⑴ 由 F (0,1.5) P{X 0, Y 1.5} 0.5 ,得 0.4 a 0.5 , 故 a 0.1 . 又由
p
解 ⑴ 不放回的情况:利用乘法公式可计算得
3 2 3 P{ X 0, Y 0} P{ X 0}P{Y 0 X 0} ; 5 4 10 3 3 同理可求得 P{ X 0, Y 1} , P{ X 1, Y 0} , 10 10 X 1 0 1 P{ X 1, Y 1} , Y 10 3 3 0 所以 ( X , Y ) 的分布律为 10 10
p
i j
ij
பைடு நூலகம்
1.
5
设二维离散型随机变量 ( X , Y ) 的分布律为
P{X xi , Y y j } pij , i 1, 2,, j 1, 2, ,
则 ( X , Y ) 具有下列结论. 结论 2.1 结论 2.2
P{( X , Y ) D}
( xi , y j )D
1
3 10
1 10
3
续解 ⑵ 有放回的情况:与⑴相仿,利用乘法公式可计算得
3 3 9 ; P{ X 0, Y 0} P{ X 0}P{Y 0 X 0} 5 5 25 6 6 同理可得: P{ X 0, Y 1} , , P{ X 1, Y 0} 25 25 4 ,故有放回的情况下, ( X , Y ) 的分布律为 P{ X 1, Y 1} 25 X 0 1 Y 9 6 0 25 25 6 4 1 25 25 4