钢管桩设计方案与验算
钢管桩支架计算书

钢管桩支架计算书一.工程概况1.1 工程简介A匝道2号大桥是陕西神木至府谷高速公路永兴镇立交互通的匝道桥,全桥长221.5m,跨径组合为:3×35m+46.5m+2×35m,,主梁横截面设计为单箱四室结构,箱梁高2.4m,顶板宽19.5m,底板宽14.5,箱梁自重每延米45.9吨,全桥采用现浇连续施工,其中主跨下面通过主干桥西尔沟2号大桥构成立交体系。
1.2 建设条件该地区属于山谷地区且常年少雨,气候干燥。
高程变化有时较剧烈,施工条件较困难。
1.2.1地形地貌典型的黄土高原沟壑地形,气候干燥,地下水位较深,地形沿高程方向变化较剧烈。
1.2.2地质情况地质情况主要为Q,多属于分化砂岩和分化泥岩,岩土层大部或全部受到4分化。
承载力从中密碎石土的250KPa到风化砂岩的1200KPa不等,摩阻力相应的大体变化为80KPa到100KPa。
1.2.3气候气候干燥少雨,年均降雨量很小,早晚温差变化较大。
二.施工方案总体布置和荷载设计值2.1 支架搭设情况说明A匝道2号大桥上部结构采用现浇式预应力钢筋混凝土变截面箱梁。
根据工程实际情况采用钢管桩支架方案进行现浇施工,砼浇筑分两次浇筑,即第一次浇筑箱梁底板和腹板,第二次浇筑箱梁顶板和翼缘板。
根据大桥结构设计情况及现场施工条件的特点,综合考虑安全性、经济性和适用性,拟采用钢管桩支架作为该现浇体系的临时支承结构。
钢管桩采用Φ800mm×8mm-Q235的无缝焊接钢管。
方木布置情况:横桥向放置截面尺寸为15cm×15cm的方木,间距0.3m。
15cm×15cm方木放置在工10型钢上,工10型钢放置在贝雷梁上,贝雷梁放置在钢管桩顶端的沙桶上。
2.2 设计荷载取值混凝土自重取:26.5kN/m3箱梁重:24.1kN/m2模板自重: 2.5kN/m2施工人员和运输工具重量: 2.5kN/m2振捣混凝土时产生的荷载: 2.5kN/m2考虑分项系数后的每平米荷载总重:31.6kN/m2三.贝雷梁设计验算大桥第四跨跨径为46.5m,其他跨径为35m,在计算中需要对不同的跨径进行验算。
钢管桩的计算公式

钢管桩的计算公式条件:地基土粘土、可塑,承载力特征值f ak ,重度γ,摩擦角φ,作用在基础顶面处内力标准值为:弯距M k ,剪力V k ,竖向轴力N k一、根据结构力学知识,进行桩顶作用效应计算求出每个桩顶的力弯距ki M ,剪力ki V ,竖向轴力ki N , 如左图所示。
二、桩下压承载力计算 (参见《建筑桩基技术规范》)单桩竖向承载力标准值为:p pk p j sjk pk sk uk A q l q u Q Q Q λ+=+=∑sjk q ——桩侧第j 层土的极限侧阻力标准值,查表5.3.5-1。
pk q ——极限端阻力标准值,查表5.3.5-2。
j l ——桩周第j 层土的厚度u ——桩身周长p λ——桩端土塞效应系数,对于闭口钢管桩取1,对于敞口钢管桩按下式计算:当5/<d h b 时,d n h b p /16.0=λ当5/≥d h b 时,8.0=p λn 为桩端隔板分割数。
若: K Q R N uk ki /2.12.1=≤则桩基满足竖向承载力要求K ——安全系数,取2.0。
R ——单桩竖向承载力特征值三、 桩上拔承载力计算,即当0<kil N 时p uk kil G T N +≤2/j sjk j j uk l q u T ∑=λuk T ——抗拔极限承载力标准值P G ——桩基自重j λ——抗拔系数,砂土取0.5~0.7,黏性土、粉土取0.7~0.8。
当桩长与桩径之比小于20时取小值。
如满足上式则桩基满足上拔承载力要求四、抗倾覆稳定性验算根据《架空送电线路基础设计技术规范》,土压力系数:)2/45(20βγ+= tg m 空间增大系数:ββζtg d l k )245cos(3210++= 基础的计算宽度:00dk d =ζ土的侧压力系数,粘性土取0.72,粉质粘土和粉土取0.6,砂土取0.38。
倾覆力ki V 的作用点到地面的高度kiki V M h =0 lh 0=η,查表8.1.4得 638.12=μ若极限倾覆力ki f u V r l md V ≥=ημ20,极限倾覆力ki f u M r l md V ≥=μ3则桩基满足抗倾覆稳定性要求五、桩身承载力验算 强度验算:d n ki n ki f W M A N ≤+ 整体稳定性验算:d Eki n ki n ki f N N W M A N ≤-+)8.01(ϕ 22λπEA N E =。
钢管桩承载力理论计算与现场试验结果分析

钢管桩承载力理论计算与现场试验结果分析陈建涛;李俊【摘要】As the pile foundation of the temporary structure of bridge construction, the actual bearing capacity of steel pipe pile is the important mechanical index of the temporary structure stability. In the design and calculation, the complex and relatively inaccurate soil mechanics parameters are often deviation with actual situation, so as the sedimentation of the steel pipe pile has deviation with the design. Through the field test of steel pipe pile, the strained condition of steel pipe pile in the actual rock and soil layer is determined, the rationality of the construction design parameters and feasibility of the construction technology are verified.%钢管桩作为桥梁施工临时结构的桩基础时,其实际的承载力是临时结构的稳定性的重要力学指标,而在设计计算时涉及到复杂而相对不准确的土力学参数,往往与实际情况有所偏差,导致钢管桩沉降与设计有所偏差,通过钢管桩现场试验的方法确定钢管桩在实际岩土层中的受力状态,验证施工设计参数的合理性和施工工艺的可行性.【期刊名称】《价值工程》【年(卷),期】2016(035)003【总页数】2页(P142-143)【关键词】钢管桩;承载力;理论计算【作者】陈建涛;李俊【作者单位】中铁一局勘察设计分公司,西安710054;国网宁夏电力公司中卫供电公司,中卫755000【正文语种】中文【中图分类】TU473.1+1钢管桩具有承载力高、打拔方便、施工灵活、施工效率高、可回收等特点,被广泛应用与施工栈桥、水上平台、临时墩等结构(如图1所示)。
无剪力键钢抱箍+钢管桩组合支架重要部位验算

无剪力键钢抱箍+钢管桩组合支架重要部位验算高速公路已成为国家的重要资源,对于当地经济发展、提高人民生活质量、维护社会稳定等都起到至关重要的作用。
随着我国高速公路建设向山岭地区的偏向发展,山岭地区特有的地质条件对传统现浇桥梁支架技术的挑战越来越严峻,随着无剪力键钢抱箍+钢管桩组合支架的兴起,该支架体系主要部位的验算显得尤为重要。
标签:无剪力键;钢抱箍;钢管桩;验算0 引言现浇支架传统方法往往是采用满堂支架的方式,此方法是将全部荷载经满堂支架直接传递到地基上,而山岭地区桥梁基础地质条件普遍较差,软弱层多且层承载力较低,不足以提供足够的承载力,适用性不强。
为解决以上问题,现大多数选择无落地组合支架,现目前国内对无剪力键高荷载钢抱箍钢管桩+贝雷梁组合高支架现浇施工支架钢抱箍、钢管桩、横梁等主要部位验算还比较薄弱,无系统验算过程。
1 钢管桩的验算1.1 钢管桩设计:先拟定钢管桩数量、规格(外径D、内径和外径之比α)、长度L(长度因数μ)与布置间距,结合上部总荷载,验算单根桩竖向需承受的荷载N。
用单根荷载先校核钢管桩长细比,长细比公式如下:计算长细比与容许长细比比较,若符合要求,用计算长细比查找轴心受压杆件稳定系数,结合钢管桩截面积A与单根荷载N,利用钢管桩的轴向应力计算公式:计算出的轴向应力>钢管桩强度设计值方能使用,否则将重新拟定钢管桩规格,直到满足要求为止。
2 钢抱箍验算根据选定的抱箍规格,受荷载至少在包括壁厚、直径D、周长C、抱箍高度、螺栓直径和长度、螺栓孔数,进行受力验算。
抱箍与墩柱间的最大静摩擦力等于正压力与摩擦系数的乘积:其中:N—抱箍与墩柱的正压力;f—抱箍与墩柱间的静摩擦系数,根据《路桥施工计算手册》表12-16关于摩擦系数的规定对f进行取值;抱箍和墩柱的正压力与螺栓的预紧力是对平衡力,其中:n——抱箍的螺栓总数;F1——每个螺栓的预紧力;钢抱箍螺栓根据采用的Mx高强度螺栓,其预拉力是一定的,取安全系数λ=2。
钢管桩承载力验算(建筑类别)

北延桥钢管桩验算验算部位:选取全桥最不利荷载处-中支点墩柱一侧5m范围进行验算。
5m范围内钢管桩数量:顺桥向,按施工单位提供的钢管桩顺桥向支点位置5m,跨中位置6.5m间距可知,此段5m 范围内共计考虑顺桥向1排钢管桩。
横桥向,按施工单位提供图示,横桥向6根钢管桩,入土20m。
按上所述,顺桥向5m、横桥向18m桥宽范围内(桥梁面积90m2),共计6根钢管桩,桩入土20m。
一、施工单位提供的各项荷载值如下:恒载:1、底模、侧模采用竹胶板覆膜竹胶板自重:0.34kn/m22、顺桥向木枋(5×10)间距30cm自重:0.10kn/m23、横桥向木枋(12×12)间距60cm自重:0.30kn/m24、支架体系(碗扣式)自重:1.74kn/m2(腹板处)自重:1.06kn/m2(底板、翼缘板处)5、平台满铺木枋(15×15)自重:1.20kn/m26、纵联I36C工字钢(间距1.0m)自重:0.712kn/m27、横梁I36C工字钢(双拼)43m宽平台每排钢管桩受横联工字钢自重61.23kn活载:1、施工机具及人员荷载:2.5kn/m22、倾倒混凝土产生的荷载(泵送):4.0kn/m23、混凝土振捣产生的荷载:2.0kn/m2施工荷载吨/m2 桥梁面积(m2)荷载(吨)恒载 底模、侧模 0.034 90 3 顺桥向木枋 0.010 90 1 横桥向木枋 0.030 90 3 碗扣支架 0.117 90 10 平台满铺木枋 0.120 90 11 纵向工字钢 0.071 90 6 横向工字钢 0.068 90 6 活载 施工机具人员 0.250 90 23 倾倒混凝土 0.400 90 36振捣混凝土 0.200 90 18 梁体荷载 荷载(吨) 梁体荷载221 恒载合计 261 活载合计77恒载 1.0 活载1.0组合后荷载值F 总=1.0*261+1.0*77=338吨 此处为纵向1排,横向6列,故 单根钢管桩荷载值F=338/6=57吨 三、单根钢管桩抗力本次计算按试桩后对桩侧修正摩阻系数考虑 选取整个钢管桩范围内最不利钻孔ZK6计算,按桩入土20m ,顶标高0.808m ,底标高-19.192m 。
深基坑钢管桩支护方案设计检算

目录1 基坑支护总体概况 (2)1.1支护结构布置 (2)1.2支护参数选定 (3)2 基坑支护稳定性计算 (4)2.1ML19#墩承台基坑支护验算 (4)2.2MR21#墩承台基坑支护验算 (7)3 结论及建议 (10)1 基坑支护总体概况1.1 支护结构布置XXXX立交桥与铁路线路斜交角为80.1度。
上部采用左右分幅箱梁,每幅孔跨布置为2×56mT构,桥梁部分全长112m,其中2×44m为转体施工段。
平面上左右幅桥主墩采用错孔布置,右幅桥主墩承台距陇海铁路防护栏7.56m,左幅桥主墩承台距陇海铁路防护栏7.47m。
承台基坑开挖施工中,为防止边坡失稳,同时为减小对一旁铁路路基影响,故在开挖过程中需对基坑进行支护,如下图所示:图1.1 M R21#墩承台基坑支护平面图(单位:m)图1.2 M L19#墩承台基坑支护平面图(单位:m)图1.3 M R21#墩承台基坑支护立面图(单位:c m)图1.4 M L19#墩承台基坑支护立面图(单位:c m)1.2 支护参数选定1.2.1 支护材料工程量工程项目及材料名称数量长度(m) 重量(kg)ML19#墩12m长Ф600×10mm钢管桩43 12 75078 I32工字钢 2 4.9 565.46I32工字钢 2 27.9 3219.66I32工字钢 2 10.9 1257.86C20护壁砼18.67(m3)MR21#墩12m长Ф600×10mm钢管桩42 12 73332 I32工字钢 2 5 577I32工字钢 2 27 3115.5I32工字钢 2 11 1269.4C20护壁砼15.09(m3)合计12m长Ф600×10mm钢管桩148.4(T)I32工字钢10.005(T)C20护壁砼33.76(m3)ML19#墩基坑开挖:3358.68方,MR21#墩基坑开挖:2782.76方1.2.2 支护土层参数根据设计图纸中设计说明及现场实地勘查,该地区土质主要为失陷性黄土质,属于低液限粉质粘土,经查《公路桥涵地基与基础技术规范》(JTG D63-2007)、《土力学》、《建筑地基与基础设计规范》(GB50011-2010)等相关资料可取以下相关的参考特性值。
钢管桩承载力验算

北延桥钢管桩验算验算部位:选取全桥最不利荷载处-中支点墩柱一侧5m范围进行验算。
5m范围内钢管桩数量:顺桥向,按施工单位提供的钢管桩顺桥向支点位置5m,跨中位置6.5m间距可知,此段5m 范围内共计考虑顺桥向1排钢管桩。
横桥向,按施工单位提供图示,横桥向6根钢管桩,入土20m。
按上所述,顺桥向5m、横桥向18m桥宽范围内(桥梁面积90m2),共计6根钢管桩,桩入土20m。
一、施工单位提供的各项荷载值如下:恒载:1、底模、侧模采用竹胶板覆膜竹胶板自重:0.34kn/m22、顺桥向木枋(5×10)间距30cm自重:0.10kn/m23、横桥向木枋(12×12)间距60cm自重:0.30kn/m24、支架体系(碗扣式)自重:1.74kn/m2(腹板处)自重:1.06kn/m2(底板、翼缘板处)5、平台满铺木枋(15×15)自重:1.20kn/m26、纵联I36C工字钢(间距1.0m)自重:0.712kn/m27、横梁I36C工字钢(双拼)43m宽平台每排钢管桩受横联工字钢自重61.23kn活载:1、施工机具及人员荷载:2.5kn/m22、倾倒混凝土产生的荷载(泵送):4.0kn/m23、混凝土振捣产生的荷载:2.0kn/m2二、钢管桩受载计算施工荷载吨/m2 桥梁面积(m2)荷载(吨)恒载 底模、侧模 0.034 90 3 顺桥向木枋 0.010 90 1 横桥向木枋 0.030 90 3 碗扣支架 0.117 90 10 平台满铺木枋 0.120 90 11 纵向工字钢 0.071 90 6 横向工字钢 0.068 90 6 活载 施工机具人员 0.250 90 23 倾倒混凝土 0.400 90 36振捣混凝土 0.200 90 18 梁体荷载 荷载(吨) 梁体荷载221 恒载合计 261 活载合计77考虑荷载分项系数 恒载 1.0 活载1.0组合后荷载值F 总=1.0*261+1.0*77=338吨 此处为纵向1排,横向6列,故 单根钢管桩荷载值F=338/6=57吨 三、单根钢管桩抗力本次计算按试桩后对桩侧修正摩阻系数考虑 选取整个钢管桩范围内最不利钻孔ZK6计算,按桩入土20m ,顶标高0.808m ,底标高-19.192m 。
钢管桩设计与验算

钢管桩设计与验算钢管桩选用Ф800,δ=10mm 的钢管,材质为A 3,E=2.1×108 Kpa,I=64π80.04-78.04=1.936×10-3M 4;依据386或389墩身高度和周边地形,钢管桩最大桩长按30m 考虑;1、桩的稳定性验算桩的失稳临界力Pcr 计算 Pcr=22l EI π=32823010936.1101.2-⨯⨯⨯⨯π=4458kN >R=658.3 kN2、桩的强度计算桩身面积 A=4πD 2-a 2 =4π802-782=248.18cm 2钢桩自身重量P ×30×102×7.85=5844kg=58.44kN桩身荷载 p=658.3+58.44=716.7 kNб=p /A=716.7×102/248.18=288.7kg /cm 2=35.3Mpa3、桩的入土深度设计通过上述计算可知,每根钢管桩的支承力近658.3kN,按规范取用安全系数k=2.0,设计钢管桩入土深度,则每根钢管桩的承载力为658.3×2=1316.6kN,管桩周长 U=πD=3.1416×0.8=2.5133m;依地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:第一层粉质黏土厚度为3m, τ=120 Kpa第二层淤泥粉质黏土厚度为4m,τ=60 Kpa第三层粉砂厚度为1.8m,τ=90KpaN=∑τi u hiN =120×2.5133×3+60×2.5133×4+90×2.5133×h3=1316.6 kN=904.7+603.1+226.1 h2=1316.6kN解得 h3=-0.84m证明钢管桩不需要进入第三层土,即满足设计承载力;钢管桩实际入土深度:∑h=3+4=7 m4、打桩机选型拟选用DZ90,查表得知激振动570 kN,空载振幅≮0.8mm,桩锤全高 4.2 m,电机功率90kw;5、振动沉桩承载力计算根据所耗机械能量计算桩的容许承载力[]P =m 1{()[]v a A f m x 1223111βμα+-+Q} m —安全系数,临时结构取1.5m 1—振动体系的质量 m 1=Q/g=57000/981=58.1Q 1—振动体系重力 Ng —重力加速度=981 cm /s 2A X —振动沉桩机空转时振幅 A X = 10.3 mmM —振动沉桩机偏心锤的静力矩 N. cm μ—振动沉桩机振幅增大系数 μ= A n / A xA n -振动体系开始下沉时振幅 取1.2 cmf —振动频率 17.5 转/Sa —振动沉桩机最后一击的实际振幅 取1.0 cm ν—沉桩最后速度 取5 cm/minα1—土性质系数,查表得α1=20β1—影响桩入土速度系数, 查表得β1=0.17 p=5.11{517.0110.10.12.15.171.58202231⨯+⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛⨯⨯⨯+9×104}=5.11{85.1107401.26 +9×104} =5.11×1.571610=1047438N=1047KN > N=716.7KN 通过上述计算及所选各项参数说明:1DZ90型振动打桩机,是完全能够满足本设计单桩承载力的;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢管桩设计与验算
810,E=2.1×,δ=10mm的钢管,材质为A钢管桩选用Ф8003?44-34。
依据386#或10389#Kpa,I=M(墩身高度-)=1.936×7880..00 64和周边地形,钢管桩最大桩长按30m考虑。
1、桩的稳定性验算
桩的失稳临界力Pcr计算
?32?82?EI10?1?10?1.936.?2= Pcr=
22l30 =4458kN>R=658.3 kN
2、桩的强度计算
?22 aD桩身面积A=()-4?2
22=248.18cm)-=(80784钢桩自身重量27.85 ×10P=A.L.r=248.18×30×
=5844kg=58.44kN
p=658.3+58.44=716.7 kN
桩身荷载22=35.3Mpa
/248.18=288.7kgcm/10=pб/A=716.7×3、桩的入土深度设计,按规范通过上述计算可知,每根钢管桩的支承力近658.3kN,设计钢管桩入土深度,则每根钢管桩的承载力k=2.0取用安全系数。
依π,管桩周长U=D=3.1416×0.8=2.5133m2=1316.6kN658.3为×地质勘察报告,河床自上而下各层土的桩侧极限摩擦力标准值为:=120 Kpa τ,3m厚度为粉质黏土第一层.
第二层淤泥粉质黏土厚度为4m,τ=60 Kpa
第三层粉砂厚度为1.8m,τ=90Kpa
N=∑τu h ii N =120×2.5133×3+60×2.5133×4+90×2.5133×
h=1316.6 kN 3=904.7+603.1+226.1 h =1316.6kN
2解得h=-0.84m
3证明钢管桩不需要进入第三层土,即满足设计承载力。
钢管桩实际入土深度:∑h=3+4=7 m
4、打桩机选型
拟选用DZ90,查表得知激振动570 kN,空载振幅≮0.8mm,桩锤全高4.2 m,电机功率90kw。
5、振动沉桩承载力计算
根据所耗机械能量计算桩的容许承载力{}????223??a?Afm1??x11 +Q=1P
?m v1?1m—安全系数,临时结构取1.5
m—振动体系的质量m=Q/g=57000/981=58.1 11Q—振动体系重力N 12—重力加速度=981 cm /sg A—振动沉桩机空转时振幅 A = 10.3mm XX M—振动沉桩机偏心锤的静力矩N. cm
μ—振动沉桩机振幅增大系数μ= A/ A xn
A-振动体系开始下沉时振幅取1.2 cm
n f—振动频率17.5 转/S
a—振动沉桩机最后一击的实际振幅取1.0 cm
ν—沉桩最后速度取5 cm/m in
α—土性质系数,查表得α=2011β—影响桩入土速度系数,查表得β=0.17
}{101.??1????[p]4 10=+9×112??1.2??3220?58.1?17.5?1.0?1????
5?0.171?51.{}6107401?2.1410=+9×
85.15.116101.571*×= 1.5=1047438N=1047KN >N=716.7KN
通过上述计算及所选各项参数说明:
1)DZ90型振动打桩机,是完全能够满足本设计单桩承载力的。