实验五 水中菌落总数的测定及染色观察-水处理生物学实验
水中菌落总数的测定及常见微生物观察

(4)若所有稀释度的平均菌落数均小于30,则应按稀释度 最低的平均菌落数乘以稀释倍数报告之
(5)如果全部稀释度的平均菌落数均不在30~300之间,则 以最接近300或30的平均菌落数乘以稀释倍数报告之。
(6)菌落计数的报告,菌落在100以内时按实有数报告;大 于100时,采用二位有效数字;在二位有效数字后面的数 值,以四舍五入方法计算。为了缩短数字后面的零数,也可 用10的指数来表示,在所需报告的菌落数多至无法计算时, 应注明水样的稀释倍数。
是本试验精确度的关键,选择适宜者,平皿上菌落总数 介于30和300之间。 (3)吸取由高倍至低倍的稀释液,每个稀释液分别注入两 个培养皿,每皿1mL。
(4)注入彻底融化,然后冷却到45℃的营养琼脂培养基, 立即旋摇培养皿,充分混匀。方法是握住平皿,先往一个 方向画圆,再朝相反方向回转;或一面画圆,一面适当倾 斜。小心勿使这个混合液体溅到培养皿的边缘。让平皿基 于水平位置放置至固化。
三、实验试剂与器材 ① 污水样品(2种样品) ② 牛肉膏蛋白胨培养基; ③ 无菌试管、无菌三角瓶、无菌玻
璃涂棒、无菌吸管、接种环、无 菌培养皿等; ④ 酒精灯、超净工作台、培养箱等。
四、实验步骤
1 采集水样:已经准备好2种污水水样。 2 细菌总数的测定: (1)水样稀释:按无菌操作法,将水样作10倍系列稀释。 (2)选取10-1、10-2、10-3三个连续稀释度。稀释度的选择
(5)接种水样的培养皿,倒置于37℃培养箱中培养ቤተ መጻሕፍቲ ባይዱ8 h。
五、菌落计数
1 平板菌落数的选择 (1)进行平皿菌落计数时,记下同一浓度的3个平板(或2个)
的菌落总数,计算平均值,再乘以稀释倍数即为1ml水样中 的细菌总数。 (2)计数时应选择菌落数在30~300/皿之间的稀释倍数进行计 数,若同—个稀释度中一个平皿有较大片状菌落生长时,则 不宜采用,而应以无片状菌落生长的平皿计数该稀释度的平 均菌落数。若片状菌落少于平皿的一半时,而另—半中菌落 分布又均匀,则可将其菌落数的2倍作为全皿的数目。在记 下各平皿菌落数后,应算出同一稀释度的平均菌数,供下— 步计算时用。
微生物综合性实验__水中细菌总数的测定

微生物综合实验水中细菌总数的测定一、实验目的1.学习水样的采集和水样中细菌总数的测定方法。
2.了解和掌握平板菌落计数的原则。
3.复习、巩固微生物实验的各单元操作。
二、实验原理水中细菌总数的测定是进行水质检验的必要项目之一,主要作为判定饮用水、水源水、地表水等被污染程度的标志。
本试验采用平板菌落计数技术来测定水中的细菌总数。
该法是根据在固体培养基上所形成的菌落来进行计数。
菌落总数是指在一定条件下,1 mL水样所生长出来的细菌菌落的总数。
由于水中细菌种类繁多,它们对营养和其它生长条件的要求差别很大,不可能找到一种培养基和在一种条件下,使水中的所有细菌均能生长繁殖,因此,这种方法所得到的结果只是一种近似值。
目前一般采用营养琼脂培养基,在需氧条件下,37℃培养36-48 h,所得到的细菌绝大部分是腐生性的嗜中温性需氧菌和兼性厌氧菌。
三、实验材料1.检样:矿泉水等饮用水、河水、湖水、井水等。
2.培养基:营养琼脂培养基(附录Ⅱ-1.3)3.仪器与其它用具:三角烧瓶,广口瓶,吸管,培养皿,试管,培养箱等。
四、实验步骤1. 水样的采集与处理⑴饮用水:采样前,先用酒精棉球擦拭瓶口灭菌,以灭菌移液管或移液枪取水样。
⑵河水、湖水、池水:应取距水面10 cm~15 cm的深层水样。
先将已灭菌的带玻璃塞的广口瓶,瓶口向下浸入水中,然后翻转过来使瓶口向上,拔去瓶塞,待水盛满后,将瓶塞盖好,再将瓶子从水中取出。
在一定深度采水样时,需要用特制的采水器(图14-14)。
采水器是一金属框,内装玻璃瓶,其底部装有重沉坠,可按需要坠入一定深度。
瓶盖上系有一绳索,拉吊绳索即可打开瓶盖,待水样瓶中水盛满后,放松绳索,即自行盖上瓶盖。
水样采集后,将水样瓶取出,并立即用无菌棉塞或灭菌胶塞塞好瓶口,以备检验。
水样采集后应立即检验,如需要保存或运送,应采取冰镇措施,但一般要求不得超过4 h。
图14-14 采水器1-开瓶绳索2-铁框3-瓶盖4-水样瓶5-沉坠2. 细菌总数的测定⑴饮用水:①用灭菌吸管吸取0.2 mL水样,涂布于事先准备好平板中,共做2个平皿。
微生物实验报告:水中细菌总数和大肠菌群的检测

实验六水中细菌总数和大肠菌群的检测摘要:本实验以测定公园河流水的细菌总数和大肠菌群的数量,来测定特定地点的水质情况。
初步介绍了一种通用的方法来检测水源的健康指标,判定水体的质量。
对该实验点的水源作出了定性的评价,以及关于试验中如何提高梯度重复的精度的分析。
关键字:河流水;细菌总数测定;大肠菌群;EMB培养前言各种天然水中常含有一定数量的微生物。
水中细菌总数往往同水体受有机污染程度呈正相关,因而是评价水质污染程度的重要指标之一。
细菌总数是指1mL水样中所含细菌菌落的总数[cfu/g(mL)],可用稀释平板计数法检测。
水中大肠菌群的数量可用来判断水源是否被粪便污染,并可间接推测水源受肠道病原菌污染的可能。
特征:G-无芽孢杆菌,兼性厌氧、在37℃24h内能发酵乳糖产酸、产气。
多管发酵法初发酵:适当稀释样品,乳糖发酵培养,产酸产气;分离培养:伊红美蓝(EMB)平板上划线分离,出现紫色、粉红色特征性菌落;复发酵验证:挑取特征性菌落进行乳酸复发酵验证。
材料和方法牛肉膏蛋白胨琼脂培养基:用于水中细菌总数测定牛肉膏5g,蛋白胨10g,NaCl 5.0 g,琼脂8g,蒸馏水1000ml;pH 7.0乳糖胆盐蛋白胨培养基:用于初发酵1×:蛋白胨20g、牛胆盐5g、乳糖10g、0.04%溴甲酚紫水溶液25mL(调pH值后加)、水1000mL、pH 7.2-7.4三倍浓缩液(3×):除水以外,其余成分取三倍用量分装:1×的培养基分装9ml/管,3×的培养基分装5ml/管或50ml/瓶,均装上德汉氏小管。
灭菌条件:115℃,15min。
EMB培养基:用于大肠菌群菌落鉴定脱水培养基,按说明书操作,水用量为90%。
水源:紫竹院河水仪器:高压灭菌锅、无菌培养皿、试管、吸管、接种环、德汉氏小管、温箱、载玻片、酒精灯、显微镜等。
试剂:牛肉膏,蛋白胨,NaCl,琼脂粉,伊红美兰琼脂培养基、水、乳糖、0.04%溴甲酚紫水溶液、胆盐、革蓝氏染色试剂具体实验步骤:1),相关器械的灭菌操作,以及前往紫竹院取少量的样品水。
微生物综合实验水中细菌总数和大肠菌群的测定(精)

微生物综合实验:水中细菌总数和大肠菌群的测定一实验目的1、学习水样的采取方法和水样细菌总数测定的方法。
2、了解水源水的平板菌落计数的原则。
3、学习检测水中大肠菌群的方法,了解大肠菌群数量与水质状况的关系。
二、实验原理水中细菌总数可作为判定被检水样被有机物污染程度的标志。
本实验应用平板计数技术测定水中细菌总数。
由于水中细菌种类繁多,它们对营养和其他生长条件的要求差别很大,不可能找到一种培养基在一种条件下,使水中所有的细菌均能生长繁殖,因此,以一定的培养基平板上生长出来的菌落,计算出来的水中细菌总数仅是一种近似值。
目前一般是采用普通肉膏蛋白胨琼脂培养基。
我国规定1ml自来水中细菌总数不得超过100个。
大肠菌群是一群需氧或兼性厌氧的、在37℃培养24~28h能发酵乳糖产酸与产气的革兰氏阴性无芽孢杆菌,它们普遍存在于肠道中,且具有数量多,与多数肠道病原菌存活期相近,易于培养和观察等特点。
大肠菌群数是指每升水中含有的大肠菌群的近似值。
大肠菌群的检测方法有多管发酵法和滤膜法两种。
本实验采用多管发酵法,它被称为水的标准分析法,即将一定量的样品接种乳糖发酵管,根据发酵反应的结果,确证大肠菌群的阳性管数后在检索表中查出大肠菌群的近似值。
我国规定:每升自来水中大肠菌群数不得超过3个。
三、实验材料和用具:1、培养基:牛肉膏蛋白胨琼脂培养基,乳糖蛋白胨培养基,三倍浓度浓缩乳糖蛋白胨培养基,伊红美兰培养基(EMB培养基)。
2、试剂:无菌水、结晶紫染液、卢氏碘液、95%乙醇、番红染色液。
3、器皿:灭菌三角烧瓶,灭菌的带玻璃塞瓶,灭菌培养皿,灭菌吸管,灭菌试管,德汉氏小管,载玻片,无菌空瓶,移液管,接种环,酒精灯,注射器,显微镜等。
四、实验步骤第一周(2008-11-11)1、制备无菌水:取4支试管,向每支试管中加入9ml自来水。
2、配制:牛肉膏蛋白胨培养基(牛肉膏3g,蛋白胨10g,NaCl 5g,琼脂15~20g,蒸馏水1000ml,pH 7.2~7.4)乳糖蛋白胨培养基(蛋白胨10g,牛肉膏3g,乳糖5g,NaCl 5g,1.6%溴甲酚紫乙醇溶液1ml,蒸馏水1000ml,pH 7.2~7.4)三倍浓度浓缩乳糖蛋白胨培养基(将上述乳糖蛋白胨培养基浓缩3倍配制)3、将以上配制的无菌水和培养基全部进行灭菌处理。
水处理微生物实验报告

水处理微生物实验报告实验目的:通过研究水处理微生物的作用,了解微生物在水处理中的应用和重要性。
实验材料和方法:材料:自来水、废水、细菌培养基、平板、试管、显微镜等。
方法:1. 取自来水和废水样品,分别装入试管中。
2. 对试管中的样品进行稀释,得到不同浓度的样品。
3. 用吸管吸取一定量的稀释后的样品,均匀涂抹在细菌培养基平板上。
4. 将涂抹后的平板放入培养箱中,25培养24小时。
5. 取出培养好的平板,观察菌落的形态和数量。
6. 用显微镜观察菌落中的微生物,记录种类和数量。
实验结果:经过观察,可以发现自来水样品在平板上的菌落数量相对较少,且菌落颜色较浅。
而废水样品在平板上的菌落数量较多,菌落颜色较深。
通过显微镜观察,可以看到菌落中存在大量不同形态的微生物。
实验讨论:1. 自来水中的微生物数量较少,这是因为自来水经过消毒处理,微生物已经被杀灭或大量减少。
2. 废水中的微生物数量较多,这是因为废水中存在大量有机物质,为微生物提供了生存和繁殖的条件。
3. 废水中的微生物种类较多,包括细菌、真菌、藻类等。
这些微生物具有不同的代谢特点,对水中有机物质进行分解和降解,从而净化水体。
4. 废水处理中常使用微生物处理技术,利用微生物的降解能力进行废水处理。
通过培养和筛选适宜的微生物,可以提高废水处理效果,达到净化水体的目的。
实验结论:水处理微生物在废水处理中发挥着重要的作用。
通过研究微生物的生长和降解特性,可以优化水处理工艺,提高废水的处理效果。
同时,对自来水中的微生物进行研究也有助于了解水质的健康和安全情况。
因此,对水处理微生物的研究具有重要的意义。
老师整理的实验报告 水处理微生物学标准实验报告 实验十 细菌菌落总数(cfu)的测定

南昌大学实验报告学生姓名:学号:专业班级:实验类型:√验证□综合□设计□创新实验日期:实验成绩:实验十细菌菌落总数(CFU)的测定一、实验目的:1.学习水样的采取方法和水样细菌总数测定的方法。
2.了解培养基平板菌落计数原则二、实验基本原理:细菌菌落总数(CFU)是指1ml水样在营养琼脂培养基中,于37℃培养24h后所生长的腐生性细菌菌落总数。
它是有机污染程度的指标,也是卫生指标。
在饮用水中所测得的细菌菌落总数除说明水有机污染的程度外,还指示该饮用水能否饮用。
但还应当指出的是,水源水中的细菌菌落总数不能说明污染的来源。
因此,结合大肠菌群数以判断水的污染的安全程度就更全面。
我国现行生活饮用水的卫生标准(GB5749-2006)规定:细菌菌落总数在1ml自来水中不得超过80个。
细菌种类很多,有各自的生理特性,必须用适合它们的培养基才能将它们培养出来。
然而在实验工作中不易做到,通常用一种适合大多数细菌生长的培养基培养腐生性细菌,以它的菌落总数表明有机污染程度。
三、主要仪器设备及耗材:电热干燥箱,高压蒸汽灭菌锅,电热培养箱,恒温水浴,冰箱,菌落计数器,放大镜,肉膏蛋白胨脂培养基,灭菌水,灭菌三角烧瓶,灭菌的带玻璃塞瓶,灭菌培养皿,灭菌吸管,灭菌试管等。
四、实验步骤:1.水样的采取供细菌学检验用的水样,必须按无菌操作的基本要求进行采样,并保证在运送,贮存过程中不受污染。
为了要正确反映水质在采样时的真实情况,水样在采取后应立即送检,一般从取样到检验不应超过4小时。
条件不允许立即检验时,应存于冰箱,但也不应超过24小时,并应在检验报告单上注明。
(1)生活饮用水(自来水)先将自来水龙头用火焰烧灼3分钟灭菌,再开放水龙头使水流5分钟后,用灭菌三角烧瓶接取水样,以待分析。
(2)池水、河水或湖水应取距水面10—15㎝的深层水样,先将灭菌的带玻璃塞瓶,瓶口向下浸入水中,然后翻转过来,除去玻璃塞,水即流入瓶中,盛满后,将瓶塞盖好,再从水中取出,立即返回实验室检查,否则需放入冰箱中保存。
实验八水中菌落综述的测定及常见微生物的观察(精)

五、菌落计数
1 平板菌落数的选择 (1)进行平皿菌落计数时,记下同一浓度的3个平板(或2个) 的菌落总数,计算平均值,再乘以稀释倍数即为1ml水样中 的细菌总数。 (2)计数时应选择菌落数在30~300/皿之间的稀释倍数进行计 数,若同—个稀释度中一个平皿有较大片状菌落生长时,则 不宜采用,而应以无片状菌落生长的平皿计数该稀释度的平 均菌落数。若片状菌落少于平皿的一半时,而另—半中菌落 分布又均匀,则可将其菌落数的2倍作为全皿的数目。在记 下各平皿菌落数后,应算出同一稀释度的平均菌数,供下— 步计算时用。
(4)若所有稀释度的平均菌落数均小于30,则应按稀释度
最低的平均菌落数乘以稀释倍数报告之
(5)如果全部稀释度的平均菌落数均不在30~300之间,则 以最接近300或30的平均菌落数乘以稀释倍数报告之。 (6)菌落计数的报告,菌落在100以内时按实有数报告;大 于100时,采用二位有效数字;在二位有效数字后面的数 值,以四舍五入方法计算。为了缩短数字后面的零数,也可 用10的指数来表示,在所需报告的菌落数多至无法计算时, 应注明水样的稀释倍数。
进一步巩固微生物倒平板、稀释涂布平板分离法和无菌
操作等技术和方法
二、实验原理
菌落总数是指食品检样经过处理,在一定条件下培养后
所得1g或1ml检样中所含细菌菌落的总数。细菌种类很多,
有各自的生理特性,必须用适合它们生长的培养基才能将它 们培养出来。然而,在实际工作中不易做到,所以通常用一 种适合大多数细菌生长的培养基培养腐生性细菌,以它的菌 落总数表明有机物污染程度。水中细菌总数与水体受有机污
个培养皿,每皿1mL。
(4)注入彻底融化,然后冷却到45℃的营养琼脂培养基, 立即旋摇培养皿,充分混匀。方法是握住平皿,先往一个 方向画圆,再朝相反方向回转;或一面画圆,一面适当倾
水质菌落总数检测方法

水质菌落总数检测方法引言水质菌落总数检测方法是评估水体中细菌总数的一种重要方法,可以用于判断水体的卫生状况和水质的安全性。
本文将介绍水质菌落总数检测的原理、方法和应用。
一、原理水质菌落总数检测是基于细菌的生长原理进行的。
在菌落总数检测中,常用的方法是通过将水样溶液均匀地涂布在含有营养物质的琼脂平板上,然后在适宜的温度下进行培养,细菌就会在平板上形成可见的菌落。
通过计数菌落的数量,就可以得到水样中的细菌总数。
二、方法1. 准备工作(1) 准备琼脂平板:将琼脂混合溶液加热至完全溶解,冷却后倒入无菌培养皿中;(2) 准备培养基:根据需要添加不同的营养物质,如葡萄糖、肉葡萄糖、酵母粉等;(3) 灭菌:将琼脂平板和培养基一起进行高温高压灭菌。
2. 取样(1) 使用无菌容器采集水样;(2) 避免污染,尽量避免空气接触。
3. 稀释(1) 将水样稀释至一定浓度,以便于菌落的计数;(2) 根据水样的浑浊程度和预期菌落数量进行适当稀释。
4. 接种(1) 使用无菌吸管将稀释后的水样滴入琼脂平板上;(2) 均匀涂布水样,确保菌落的生长均匀。
5. 培养(1) 在适宜的温度下(通常为37℃),将琼脂平板倒置放置在培养箱中;(2) 培养时间通常为24-48小时,视菌落的生长速度而定。
6. 计数(1) 使用计数板或显微镜对菌落进行计数;(2) 确保计数的准确性,避免重复计数同一菌落。
三、应用水质菌落总数检测方法广泛应用于水质监测和卫生检验领域。
主要应用于以下方面:1. 自来水监测水质菌落总数检测可以评估自来水中细菌的数量,判断自来水的卫生状况,确保自来水的安全性。
2. 水源地评估通过对水源地进行水质菌落总数检测,可以判断水源地的卫生状况,及时采取措施保护水源地的水质。
3. 污水处理水质菌落总数检测可以评估污水处理系统的效果,判断处理后的水质是否符合排放标准,保护环境和人类健康。
4. 泳池水监测水质菌落总数检测可以判断泳池水的清洁程度,及时采取措施保证泳池水的卫生安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五水中菌落总数的测定及染色观察
一、实验目的
掌握国标中关于水中细菌总数的测定基本原理和方法;熟悉水体中细菌总数的检验方法、检验原理、检验依据、数据处理和报告方法;了解取样规程;采用革兰氏染色法判定微生物的特性。
二、实验原理
本实验应用平板计数技术测定污水中细菌总数。
由于水中细菌种类繁多,它们对营养和其他生长条件的要求差别很大,不可能找到一种培养基在一种条件下,使水中所有的细菌均能生长繁殖,因此,以一定的培养基平板上生长出来的菌落,计算出来的水中细菌总数仅是一种近似值。
目前一般是采用普通牛肉膏蛋白胨琼脂培养基。
三、实验试剂与器材
牛肉膏蛋白胨琼脂培养基,灭菌水;
灭菌三角烧瓶,灭菌的带玻璃塞瓶,灭菌培养皿,灭菌吸管,灭菌试管,培养箱等。
四、实验步骤
(1) 水样的准备
[1].底泥湖泊水(污水1):称取1 g底泥于三角瓶中,加入蒸馏水50 mL,于振荡箱中振
荡30 min后,过滤,待用;
(2) 细菌总数测定
[1].稀释水样取3个灭菌空试管,分别加入9 ml灭菌水。
取1 ml水样注入第一管9 ml灭
菌水内,摇匀,再自第一管取1ml至下一管灭菌水内,如此稀释到第三管,稀释度分别为10-1、10-2与10-3。
稀释倍数看水样污浊程度而定,以培养后平板的菌落数在30—300个之间的稀释度最为合适,若三个稀释度的菌数均多到无法计数或少到无法计数,则需继续稀释或减小稀释倍数。
一般中等污秽水样,取10-1、10-2、10-3三个连续稀释度,污秽严重的取10-2、10-3、10-4三个连续稀释度。
[2].用灭菌吸管吸取1 ml稀释水样,注入灭菌培养皿中。
共做两个平皿。
分别倾注约20ml
已溶化并冷却到45℃左右的肉膏蛋白胨琼脂培养基,并立即在桌上作平面旋摇,使水样与培养基充分混匀。
[3].另取一空的灭菌培养皿,倾注肉膏蛋白胨琼脂培养基15 ml,作空白对照。
[4].培养基凝固后,倒置于37℃温箱中,培养48小时,进行菌落计数。
两个平板的平均菌
落数即为1ml水样的细菌总数。
(3) 菌落计数方法
①先计算相同稀释度的平均菌落数。
若其中一个培养皿有较大片状菌苔生长时,则不应采用,而应以无片状菌苔生长的培养皿作为该稀释度的平均菌落数。
若片状菌苔的大小不到培养皿的一半,而其余的一半菌落分布又很均匀时,则可将此一半的菌落数乘2以代表全培养皿的菌落数,然后再计算该稀释度的平均菌落数。
②首先选择平均菌落数在30—300之间的,当只有一个稀释度的平均菌落数符合此范围时,则以该平均菌落数乘其稀释倍数即为该水样的细菌总数。
③若有两个稀释度的平均菌落数均在30—300之间,则按两者菌落总数之比值来决定。
若其比值小于2,应采取两者的平均数;若大于2,则取其中较小的菌落总数。
④若所有稀释度的平均菌落数均大于300,则应按稀释度最高的平均菌落数乘以稀释倍数。
⑤若所有稀释度的平均菌落数均小于30,则应按稀释度最低的平均菌落数乘以稀释倍数。
⑥若所有稀释度的平均菌落数均不在30—300之间,则以最近300或30的平均菌落数乘以稀释倍数。
(4)菌落数的报告
菌落数在100以内时,按其实有数报告,大于100时,采用二位有效数字,在二位有效数字后面的数值,以四舍五入方法计算.为了缩短数字后面的零数,也可用10的指数来表示。
(5)革兰氏染色
五、思考题
(1) 测定水中细菌菌落总数有什么实际意义?
(2) 本实验中哪些步骤属无菌操作?为什么?。