2019浙江高考物理压轴题练习
2019年高考物理压轴题汇总含答案解析

2019年高考物理压轴题集锦含答案解析1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 =G)(2h R Mm+。
卫星在空间站上的引力势能在 E p = -G hR Mm+ 机械能为 E 1 = E k + E p =-G)(2h R Mm+同步卫星在轨道上正常运行时有 G2rMm=m ω2r 故其轨道半径 r =32ωMG由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -2132ωGM +GhR Mm+ 2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。
(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y解得 f=20N N=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。
浙江省新高考压轴题磁场大题解析

浙江省新高考物理卷压轴题(“磁场”题)解析江苏省特级教师 戴儒京2016年开始,浙江省与上海市一起作为教育部新一轮高考改革的试点,全国的教师,都在关注,全国的物理教师,都在关注其物理试题。
在物理试题中,有一类试题特别受关注,那就是关于“带电粒子在电磁场中的圆周运动”的题目,为什么呢?因为它难,往往成为全国及各省市高考物理试卷的压轴题。
对于浙江新高考物理试卷,就是第23题(试卷的最后一题)或22题(试卷的倒数第2题)。
本文就把浙江省新高考物理卷压轴题解析下来,以供广大物理教师特别是高三物理教师参考。
本文包括浙江省新高考以来4年7题,除2016年4月卷22题,其余各卷均为23题。
除2019年外(2019年10月还未到),每年2卷,分别在4月和10月或11月。
所以本文包括4年7题。
1.2019年第23题 23.(10分【加试题】有一种质谱仪由静电分析器和磁分析器组成,其简化原理如图所示。
左侧静电分析器中有方向指向圆心O 、与O 点等距离各点的场强大小相同的径向电场,右侧的磁分析器中分布着方向垂直于纸面向外的匀强磁场,其左边界与静电分析器的右边界平行,两者间距近似为零。
离子源发出两种速度均为v 0、电荷量均为q 、质量分别为m 和0.5m 的正离子束,从M 点垂直该点电场方向进入静电分析器。
在静电分析器中,质量为m 的离子沿半径为r 0的四分之一圆弧轨道做匀速圆周运动,从N 点水平射出,而质量为0.5m 的离子恰好从ON 连线的中点P 与水平方向成θ角射出,从静电分析器射出的这两束离子垂直磁场方向射入磁分析器中,最后打在放置于磁分析器左边界的探测板上,其中质量为m 的离子打在O 点正下方的Q 点。
已知OP=0.5r 0,OQ= r 0,N 、P 两点间的电势差,54cos =θ,不计重力和离子间相互作用。
(1)求静电分析器中半径为r 0处的电场强度E 0和磁分析器中的磁感应强度B 的大小;(2)求质量为0.5m 的离子到达探测板上的位置与O 点的距离l (用r 0表示); (3)若磁感应强度在(B —△B )到(B +△B )之间波动,要在探测板上完全分辨出质量为m 和0.5m 的两束离子,求的最大值【解析】(1) 径向电场力提供向心力0200r mv q E =20qr mv E =,00qr mv B = (2) 动能定理25.021mv ⨯-205.021mv ⨯=NP qUm qU v v NP 420+==50v ,0255.0r qB mv r == 05.0cos 2r r l -=θ 05.1r l =(3) 恰好能分辨的条件:-∆-B B r 120=∆+BB r 1cos 2θ20r %12417≈-=∆BB2. 2018年11月第23题23.(10分)【加试题】小明受回旋加速器的启发,设计了如图1所示的“回旋变速装置”。
19年浙江压轴题含答案

19年浙江压轴题1.(杭州)(本题满分12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA. (1)若∠BAC=60°,①求证:OD=12 OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC <∠ACB,求证:m-n+2=0.第23题图2.(宁波)(14分)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.3.(温州)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.4.(湖州)(12分)如图1,已知在平面直角坐标系xOy中,四边形OABC是矩形,点A,C分别在x轴和y轴的正半轴上,连结AC,OA=3,tan∠OAC=,D是BC的中点.(1)求OC的长和点D的坐标;(2)如图2,M是线段OC上的点,OM=OC,点P是线段OM上的一个动点,经过P,D,B三点的抛物线交x轴的正半轴于点E,连结DE交AB于点F.①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时BF的长和点E的坐标;②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M时,点G也随之运动,请直接写出点G运动路径的长.5.(绍兴)如图,矩形ABCD 中,AB a =,BC b =,点,M N 分别在边AB ,CD 上,点,E F 分别在BC ,AD 上,MN ,EF 交于点P ,记:k MN EF =.(1)若:a b 的值是1,当MN EF ⊥时,求k 的值.(2)若:a b 的值是12,求k 的最大值和最小值. (3)若k 的值是3,当点N 是矩形的顶点,60MPE ∠=︒,3MP EF PE ==时,求:a b 的值.6.(金华)如图,在等腰Rt△ABC中,∠ACB=90°,AB=14 。
2019浙江省高考压轴卷理综试题物理(精品)word精品文档5页

2019浙江省高考压轴卷理综试题第Ⅰ卷 选择题(共120分)一.选择题(本题共17小题。
在每个小题给出的四个选项中只有一个选项符合题目要求。
)14.类比就是就是根据两个或两类对象之间在某些方面相似或相同而推出它们在其他方面也可能相似或相同的一种逻辑方法。
下列类比不正确的是 ( )A .点电荷可以与质点类比,都是理想化模型B .电场力做功可以与重力做功类比,两种力做功都与路径无关C .电磁波可以与机械波类比,都可以发生干涉现象.衍射现象,传播都需要介质D .电场线可以与磁感线类比,都是用假想的曲线描绘“场”的客观存在15.如图所示,一些商场安装了智能化的自动扶梯。
为了节约能源,在没有乘客乘行时,自动扶梯以较小的速度匀速运行,当有乘客乘行时自动扶梯经过先加速再匀速两个阶段运行。
则电梯在运送乘客的过程中( )A .乘客始终受摩擦力作用B .乘客经历先超重再失重C .乘客对扶梯的作用力先指向右下方,再竖直向下D .扶梯对乘客的作用力始终竖直向上16.如图所示,水平金属圆盘置于磁感应强度为 B.方向竖直向下的匀强磁场中,随盘绕金属转轴D D '以角速度ω沿顺时针方向匀速转动,盘的中心及边缘处分别用金属滑片与一理想变压器的原线圈相连。
已知圆盘半径为r ,理想变压器原.副线圈匝数比为n ,变压器的副线圈与一电阻为R 的负载相连。
不计圆盘及导线的电阻,则下列说法中正确的是 ( )A .变压器原线圈两端的电压为2rB ωB .变压器原线圈两端的电压为221r B ωC .通过负载R 的电流为nR r B 22ωD .通过负载R 的电流为nRr B 2ω 17.华裔科学家高锟获得2009年诺贝尔物理奖,他被誉为“光纤通讯之父”。
光纤通讯中信号传播的主要载体是光导纤维,它的结构如图所示,其内芯和外套材料不同,光在内芯中传播。
下列关于光导纤维的说法中正确的是A .波长越短的光在光纤中传播的速度越大B .频率越大的光在光纤中传播的速度越大C .内芯的折射率比外套的小,光传播时在内芯与外套的界面上发生全反射D .内芯的折射率比外套的大,光传播时在内芯与外套的界面上发生全反射二.选择题(本题共3小题。
2024届浙江省高三高考压轴卷 高效提分物理试题(基础必刷)

2024届浙江省高三高考压轴卷高效提分物理试题(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题列车在水平长直轨道上的模拟运行图如图所示,列车由质量均为m的5节车厢组成,假设只有1号车厢为动力车厢。
列车由静止开始以额定功率P运行,经过一段时间达到最大速度,列车向右运动过程中,1号车厢会受到前方空气的阻力,假设车厢碰到空气前空气的速度为0,碰到空气后空气的速度立刻与列车速度相同,已知空气密度为。
1号车厢的迎风面积(垂直运动方向上的投影面积)为S,不计其他阻力,忽略2号、3号、4号、5号车厢受到的空气阻力。
当列车以额定功率运行到速度为最大速度的一半时,1号车厢对2号车厢的作用力大小为( )A.B.C.D.第(2)题如图所示,一质量为m的物体,沿半径为R的四分之一固定圆弧轨道滑行,由于物体与轨道之间动摩擦因数是变化的,使物体滑行到最低点的过程中速率不变。
该物体在此运动过程,下列说法正确的是()A.动量不变B.重力做功的瞬时功率不变C.重力做功随时间均匀变化D.重力的冲量随时间均匀变化第(3)题静止在水平面上的物体,受到水平拉力的作用。
在从20N开始逐渐增大到40N的过程中,加速度随拉力变化的图像如图所示,由此无法计算出()( )A.物体的质量B.物体与水平间的动摩擦因数C.物体与水平间的滑动摩擦力大小D.加速度为时物体的速度第(4)题下列叙述正确的是( )A.汤姆孙发现了电子,表明原子具有核式结构B.卢瑟福通过分析“粒子散射实验”,提出原子核式结构学说C.贝克勒尔通过对天然放射现象的研究,发现原子中存在原子核D.伽利略通过“理想斜面”实验,提出“力是维持物体运动的原因”的观点第(5)题图为氢原子能级的示意图,现有大量的氢原子处于以n=4的激发态,当向低能级跃迁时辐射出若干不同频率的光.关于这些光下列说法正确的是A.最容易表现出衍射现象的光是由,n=4能级跃迁到n=1能级产生的B.频率最小的光是由n=2能级跃迁到n=1能级产生的C.这些氢原子总共可辐射出3种不同频率的光D.用n=2能级跃迁到n=1能级辐射出的光照射逸出功为6.34eV的金属铂能发生光电效应第(6)题如图所示,abc为均匀带电半圆环,O为其圆心,O处的电场强度大小为E,将一试探电荷从无穷远处移到O点,电场力做功为W。
(浙江选考)2019届高考物理二轮复习 19-23题:22题专练小卷

22题专练小卷1.(加试题)如图所示,两条足够长的平行金属导轨PQ、EF倾斜放置,间距为L,与水平方向夹角为θ。
导轨的底端接有阻值为R的电阻,导轨光滑且电阻不计。
现有一垂直导轨平面向上的匀强磁场大小为B,金属杆ab长也为L,质量为m,电阻为r,置于导轨底端。
给金属杆ab一平行导轨向上的初速度v0,经过一段时间后返回底端时已经匀速。
金属杆在运动过程中始终与导轨垂直且接触良好。
求:(1)金属杆ab刚向上运动时,流过电阻R的电流方向;(2)金属杆ab返回时速度大小及金属杆ab从底端出发到返回底端电阻R上产生的焦耳热;(3)金属杆ab从底端出发到返回底端所需要的时间。
2.如图甲所示,间距L=0.4 m的金属轨道竖直放置,上端接定值电阻R1=1 Ω,下端接定值电阻R2=4 Ω。
其间分布着两个有界匀强磁场区域:区域Ⅰ内的磁场方向垂直纸面向里,其磁感应强度B1=3 T;区域Ⅱ内的磁场方向竖直向下,其磁感应强度B2=2 T。
金属棒MN的质量m=0.12 kg、在轨道间的电阻r=4 Ω,金属棒与轨道间的动摩擦因数μ=0.8。
现从区域Ⅰ的上方某一高度处静止释放金属棒,当金属棒MN刚离开区域Ⅰ后B1便开始均匀变化。
整个过程中金属棒的速度随下落位移的变化情况如图乙所示,“v2-x”图象中除ab 段外均为直线,Oa段与cd段平行。
金属棒在下降过程中始终保持水平且与轨道间接触良好,轨道电阻及空气阻力忽略不计,两磁场间互不影响。
求:(1)金属棒在图象上a、c两点对应的速度大小;(2)金属棒经过区域Ⅰ的时间;(3)B1随时间变化的函数关系式(从金属棒离开区域Ⅰ后计时);(4)从金属棒开始下落到刚进入区域Ⅱ的过程中回路内的焦耳热。
22题专练小卷1.答案 (1)电流方向由a指向b(2)(3)解析 (1)由右手定则可知:感应电流方向为由a指向b(2)设返回底端匀速运动时速度为v,则两导轨间杆电动势为:E=BLv回路的总电阻R总=R+r所以I=又mg sin θ=BIL所以v=杆从出发到返回过程中由能量守恒有:Q总=mv2且Q R=Q总可得:Q R=(3)设上升过程时间为t1,下降过程时间为t2,上升的距离为s。
浙江省杭州市2019届高三高考命题比赛物理试题1 Word版含答案

2019年高考模拟试卷物理卷考试时间:90分钟满分:100分考生须知:1.本试题卷分选择题和非选择题两部分,共8页,满分100分,考试时间90分钟。
其中加试题部分为30分,用【加试题】标出。
2.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
3.选择题的答案须用2B铅笔将答题纸上对应的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净。
4.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上相应区域内,作图时可先使用2B铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试题卷上无效。
5.本卷计算中,重力加速度g均取10m/s2。
选择题部分一、选择题Ⅰ(本题共13小题,每小题3分,共39分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1. 下列各组物理量中,全部是矢量的一组是( )[原创]A.磁通量、角速度 B.电场强度、速度变化量C.电流、平均速度 D.功率、加速度2. 纵观2018年苏炳添的亚运会之旅,预赛当中,以10秒27的成绩排名小组第一轻松晋级半决赛。
半决赛当中,再次展现强劲实力,以10秒16的成绩小组第一晋级决赛,总成绩苏炳添排名第二。
决赛中,苏炳添一马当先,凭借个人超强硬实力,9秒92夺得最终的冠军。
以下说法错误的是()[原创]A.研究苏炳添起跑动作时,不能将其看作质点B.三次成绩决赛最佳,平均速度最大C.位移大小和路程相等D.苏炳添先做加速运动,后做匀速运动3.以下物理课本上的图例,没有用到控制变量法的实验是()[原创]A. B.伽利略对自由落体运动的研究探究影响电荷之间相互作用力的因素C. D.探究导体电阻与其影响因素的定量关系探究加速度与力、质量的关系4. 各机型飞机都会根据自身载重和结构设计不同造型的起落架。
如图是某种飞机起落架的结构简图,①活塞杆②转动杆。
当轮子缓慢收起的时候,以下说法正确的是( )[原创]A .轮子受到的合力竖直向上B .活塞杆和转动杆对轮子的力竖直向上C .轮子受到的重力与活塞给轮子的力是相互作用力D .转动杆受力一定为05. 如图所示,水平传送带匀速运动,在传送带的右侧固定一弹性挡杆。
2019年 高考物理 压轴题汇总(含答案解析)

2019年高考物理压轴题汇总(含答案解析)1. 地球质量为M ,半径为R ,自转角速度为ω,万有引力恒量为G ,如果规定物体在离地球无穷远处势能为0,则质量为m 的物体离地心距离为r 时,具有的万有引力势能可表示为E p =-GrMm.国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为h ,如果在该空间站上直接发射一颗质量为m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能? 解析:由G 2rMm =r mv 2得,卫星在空间站上的动能为E k =21mv 2=G)(2h R Mm+。
卫星在空间站上的引力势能在E p =-G hR Mm+ 机械能为E 1=E k +E p =-G)(2h R Mm+同步卫星在轨道上正常运行时有G2rMm=m ω2r 故其轨道半径r =32ωMG由③式得,同步卫星的机械能E 2=-G r Mm 2=-G2Mm32GMω=-21m (3ωGM )2 卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为E 2,设离开航天飞机时卫星的动能为E k x ,则E k x =E 2-E p -2132ωGM +GhR Mm+ 2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=0.6,cos37°=0.8,求:(1)物块与斜面间的动摩擦因数μ;(2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。
(设最大静摩擦力等于滑动摩擦力)解析:(1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡0sin =--=f G F F x θ 0cos =-=θG N F y解得f=20NN=40N因为N F N =,由N F f μ=得5.021===N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江高考物理压轴题练习1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量04.0=m kg 、电量4102-⨯+=q C 的可视为质点的带电小球与弹簧接触但不栓接。
某一瞬间释放弹簧弹出小球,小球从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B 点,并沿轨道滑下。
已知AB 的竖直高度h =0.45m ,倾斜轨道与水平方向夹角为037=α、倾斜轨道长为2.0=L m ,带电小球与倾斜轨道的动摩擦因数5.0=μ。
倾斜轨道通过光滑水平轨道CD 与光滑竖直圆轨道相连,在C 点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。
只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强3100.2⨯=E V/m 。
(cos37°=0.8,sin37°=0.6,取g=10m/s 2)求:(1)被释放前弹簧的弹性势能?(2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件?(3)如果竖直圆弧轨道的半径9.0=R m ,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m 的某一点P ?解:(1)A 到B 平抛运动:gh v y 22=解得: 3=y v m/s 1分 B 点:tan37°=xy v vA x v v ==4 m/s 2分 被释放前弹簧的弹性势能:221A P mv E ==0.32 J 2分 (2)B 点:22y x B v v v +==5 m/sB 到C : 22002121)37cos 37sin (B c mv mv L mg mg -=-μ, 33=c v m/s 2分① 恰好过竖直圆轨道最高点时:12R v m qE mg =+,4.0=qE N从C 到圆轨道最高点:220121212)(c mv mv R qE mg -=+- 33.01=R m 2分②恰好到竖直圆轨道最右端时:22210)(c mv R qE mg -=+- 825.02=R m 2分要使小球不离开轨道,竖直圆弧轨道的半径33.0≤R m 或825.0≥R m 2分(3) 9.0=R m >R 2,小球冲上圆轨道H 1=0.825m 高度时速度变为0,然后返回倾斜轨道h 1高处再滑下,然后再次进入圆轨道达到的高度为H 2。
有 11134)(mgh mgh H qE mg μ+=+,11234)(mgh mgh H qE mg μ-=+ 2分同除得:5341341112H H H =+-=μμ之后物块在竖直圆轨道和倾斜轨道之间往返运动同理:n 次上升高度11)51(H H n n -=(n >0)为一等比数列。
2分,当n =4时,上升的最大高度小于0.01m则小球共有6次通过距水平轨道高为0.01m 的某一点。
2分2、如图所示,MN 、PQ 是足够长的光滑平行导轨,其间距为L ,且MP ⊥MN .导轨平面与水平面间的夹角θ=30°.MP 接有电阻R .有一匀强磁场垂直于导轨平面,磁感应强度为B 0.将一根质量为m 的金属棒ab 紧靠MP 放在导轨上,且与导轨接触良好,金属棒的电阻也为R ,其余电阻均不计.现用与导轨平行的恒力F =mg 沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP 平行.当金属棒滑行至cd 处时已经达到稳定速度,cd 到MP 的距离为S .已知重力加速度为g ,求: (1)金属棒达到的稳定速度;(2)金属棒从静止开始运动到cd 的过程中,电阻R 上产生的热量; (3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B 随时间t 变化的关系式.解:(1)当金属棒稳定运动时做匀速运动,则有F =mg sin θ+F安又安培力 F 安=RvL B 222解得:22LB mgRv =(2)金属棒从静止开始运动到cd 的过程,由动能定理得:021sin 2-=--mv W mgs Fs 克安θ 解得:44223221L B R g m mgs W -=克安则根据功能关系得:回路中产生的总热量为Q =44223221LB R g m mgs W -=克安故电阻R 上产生的热量为Q R ==Q 2144223441L B R g m mgs -(3)当回路中的总磁通量不变时,金属棒中不产生感应电流.此时金属棒将沿导轨做匀加速运动. 根据牛顿第二定律 F -mg sin θ=ma ,解得,a =21g根据磁通量不变,则有 BLS =BL (S +vt +221at ) 解得,mgRtgt S L B SL B B 4)4(422223++= 答:(1)金属棒达到稳定速度的大小是22LB mgRv =; (2)金属棒从静止开始运动到cd 的过程中,电阻R 上产生的热量是44223441LB R g m mgs -; (3)磁感应强度B 随时间t 变化的关系式为mgRtgt S L B S L B 4)4(422223++ 3、如图,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段铺设特殊材料,调节其初始长度为l ,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A 点以初速度v 0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R =0.4m ,l=2.5m ,v 0=6m/s ,物块质量m =1kg ,与PQ 段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g =10m/s 2.求:(1)物块经过圆轨道最高点B 时对轨道的压力;(2)物块从Q 运动到P 的时间及弹簧获得的最大弹性势能; (3)物块仍以v 0从右侧冲上轨道,调节PQ 段的长度l ,当l 长度是多少时,物块恰能不脱离轨道返回A 点继续向右运动.解:(1)设物块A 与弹簧刚接触时的速度大小为v 1,物块从开始运动到P 的过程,由动能定理,可得:-μmgL =21mv 12-21mv 22;(3)A物块能第一次返回圆形轨道且能沿轨道运动而不会脱离轨道的条件是:1m≤l<1.5m或l≤0.25m.4、如图所示,倾角300的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接,轨道宽度均为L=1m,电阻忽略不计.匀强磁场I 仅分布在水平轨道平面所在区域,方向水平向右,大小B1=1T;匀强磁场II仅分布在倾斜轨道平面所在区域,方向垂直于倾斜轨道平面向下,大小B2=1T.现将两质量均为m=0.2kg,电阻均为R=0.5Ω的相同导体棒ab和cd,垂直于轨道分别置于水平轨道上和倾斜轨道上,并同时由静止释放.取g=10m/s2.(1)求导体棒cd沿斜轨道下滑的最大速度的大小;(2)若已知从开始运动到cd棒达到最大速度的过程中,ab棒产生的焦耳热Q=0.45J,求该过程中通过cd棒横截面的电荷量;(3)若已知cd棒开始运动时距水平轨道高度h=10m,cd棒由静止释放后,为使cd棒中无感应电流,可让磁场Ⅱ的磁感应强度随时间变化,将cd棒开始运动的时刻记为t=0,此时磁场Ⅱ的磁感应强度为B0=1T,试求cd棒在倾斜轨道上下滑的这段时间内,磁场Ⅱ的磁感应强度B随时间t变化的关系式.解:(1)cd 棒匀速运动时速度最大,设为v m ,棒中感应电动势为E ,电流为I ,感应电动势:E =BLv m , 电流:I =R E2 由平衡条件得:mg sin θ=BIL 代入数据解得:v m =1m/s ;(2)设cd 从开始运动到达最大速度的过程中经过的时间为t ,通过的距离为x ,cd 棒中平均感应电动势为E 1,平均电流为I 1,通过cd 棒横截面的电荷量为q ,由能量守恒定律得:mgx sin θ=21mv 2m +2Q ,电动势:E 1=t BLx ,电流:I 1=RE21,电荷量:q =I 1t ,代入数据解得:q =1C ;(3)设cd 棒开始运动时穿过回路的磁通量为Φ0,cd 棒在倾斜轨道上下滑的过程中,设加速度大小为a ,经过时间t 通过的距离为x 1,穿过回路的磁通量为Φ,cd 棒在倾斜轨道上下滑时间为t 0,则:Φ0=B 0Lθsin h 加速度:a =g sin θ,位移:x 1=21at 2 磁通量 Φ=BL (θsin h -x 1) θsin h =21at 2解得:t 0=8s ,为使cd 棒中无感应电流,必须有:Φ0=Φ, 解得:B =T t288-(t <8s ) 答:(1)导体棒cd 沿斜轨道下滑的最大速度的大小为1m/s ; (2)该过程中通过cd 棒横截面的电荷量为1C ; (3)磁场Ⅱ的磁感应强度B 随时间t 变化的关系式为B =T t288-(t <8s )【同类题】如图所示,倾角为θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道平滑连接.轨道宽度均为L =1m ,电阻忽落不计.水平向右大小为B =1T 的匀强磁场仅分布在水平轨道平面所在区域;垂直于倾斜轨道平面向下,同样大小的匀强磁场仅分布在倾斜轨道平面所在区域.现将两质量均为m =0.2kg ,电阻均为R =0.5Ω的相同导体棒ab 和cd ,垂直于轨道分别置于水平轨道上和倾斜轨道的顶端,并同时由静止释放.(g 取10m/s 2)求: (1)导体棒cd 沿斜轨道下滑的最大速度v 的大小;(2)导体棒ab 对水平轨道的最大压力N 的大小;(3)若已知从开始运动到cd 棒达到最大速度的过程中,ab 棒上产生的焦耳热Q =0.45J ,求该过程中通过cd 棒横截面的电量q .解:对ab 棒受力分析知,ab 棒始终处于平衡状态.由于轨道倾斜部分足够长,金属棒在进入水平轨道前做匀速运动,电路的总电阻为2R ,设金属棒cd 做匀速运动的速度为v ,棒中的电动势E ,电路中的电流为I ,则:mg sin θ-F 安=0 …① F 安=BIL …② I =RBLv m2 …③ 由①②③解得:v m =1m/s ;I =1A(2)根据左手定则可以判断出ab 受到的安培力方向向下,当cd 棒的速度最大时,ab 棒对轨道的压力最大:N =mg +BIL =0.2×10+1×1×1=3N (3)对整个系统分析,由能量守恒得:mg sin θ•x =21mv 2m +2Q 而:Q =0.45J 解得:x =1m该过程中的平均电动势:t ΦE ∆∆==tSB ∆∆ 则:q =I •△t =R E 2•△t =RBLx2=1C 答:(1)导体棒cd 沿斜轨道下滑的最大速度v 的大小是1m/s ; (2)导体棒ab 对水平轨道的最大压力N 的大小是3N ; (3)该过程中通过cd 棒横截面的电量是1C .5、如图所示质量为m =1kg 的滑块(可视为质点)由斜面上P 点以初动能E K0=20J 沿斜面向上运动,当其向上经过Q 点时动能E KQ =8J ,机械能的变化量ΔE机=-3J ,斜面与水平夹角α=37°。