机器学习SVM支持向量机实验报告
svm实验报告总结

svm实验报告总结SVM实验报告总结支持向量机(SVM)是一种常用的机器学习算法,它在模式识别、分类、回归等领域有着广泛的应用。
本文将对SVM算法进行实验,旨在探究SVM算法的原理、应用和优缺点。
一、实验原理SVM的基本思想是将低维度的数据映射到高维度的空间中,从而使数据在高维空间中更容易被线性分隔。
SVM算法的核心是支持向量,这些支持向量是距离分类决策边界最近的数据点。
SVM通过找到这些支持向量来建立分类器,从而实现数据分类。
二、实验步骤1. 数据预处理本实验使用的数据集是Iris花卉数据集,该数据集包含了三种不同种类的花朵,每种花朵有四个属性:花萼长度、花萼宽度、花瓣长度、花瓣宽度。
首先需要将数据集划分为训练集和测试集,以便在训练模型时进行验证。
2. 模型训练本实验使用Python中的sklearn库来构建SVM分类器。
首先需要选择SVM的核函数,有线性核函数、多项式核函数、径向基核函数等。
在本实验中,我们选择径向基核函数作为SVM的核函数。
接着需要设置SVM的参数,包括C值和gamma值。
C值是惩罚系数,用于平衡模型的分类精度和泛化能力;gamma值是径向基函数的系数,用于控制支持向量的影响范围。
3. 模型评估本实验使用准确率和混淆矩阵来评估模型的性能。
准确率是指模型在测试集上的分类精度,而混淆矩阵则可以用来分析模型在不同类别上的分类情况。
三、实验结果本实验使用径向基核函数的SVM分类器在Iris数据集上进行了实验。
实验结果表明,SVM分类器的准确率达到了97.78%,同时在混淆矩阵中也可以看出模型在不同花朵种类上的分类情况。
实验结果表明,SVM分类器在分类问题上有着较好的表现。
四、实验总结SVM算法是一种常用的机器学习算法,它在模式识别、分类、回归等领域有着广泛的应用。
本实验通过对Iris数据集的实验,探究了SVM算法的原理、应用和优缺点。
实验结果表明,在SVM算法中,径向基核函数是一种比较适用的核函数,在设置SVM参数时需要平衡模型的分类精度和泛化能力。
机器学习SVM(支持向量机)实验报告

实验报告实验名称:机器学习:线性支持向量机算法实现学员: 张麻子学号: *********** 培养类型:硕士年级:专业:所属学院:计算机学院指导教员:****** 职称:副教授实验室:实验日期:ﻬ一、实验目得与要求实验目得:验证SVM(支持向量机)机器学习算法学习情况要求:自主完成。
二、实验内容与原理支持向量机(Support Vector Machine,SVM)得基本模型就是在特征空间上找到最佳得分离超平面使得训练集上正负样本间隔最大。
SVM就是用来解决二分类问题得有监督学习算法。
通过引入了核方法之后SVM也可以用来解决非线性问题。
但本次实验只针对线性二分类问题。
SVM算法分割原则:最小间距最大化,即找距离分割超平面最近得有效点距离超平面距离与最大。
对于线性问题:假设存在超平面可最优分割样本集为两类,则样本集到超平面距离为:需压求取:由于该问题为对偶问题,可变换为:可用拉格朗日乘数法求解。
但由于本实验中得数据集不可以完美得分为两类,即存在躁点。
可引入正则化参数C,用来调节模型得复杂度与训练误差。
作出对应得拉格朗日乘式:对应得KKT条件为:故得出需求解得对偶问题:本次实验使用python编译器,编写程序,数据集共有270个案例,挑选其中70%作为训练数据,剩下30%作为测试数据。
进行了两个实验,一个就是取C值为1,直接进行SVM训练;另外一个就是利用交叉验证方法,求取在前面情况下得最优C值.三、实验器材实验环境:windows7操作系统+python编译器。
四、实验数据(关键源码附后)实验数据:来自UCI机器学习数据库,以Heart Disease数据集为例。
五、操作方法与实验步骤1、选取C=1,训练比例7:3,利用python库sklearn下得SVM()函数进行训练,后对测试集进行测试;2、选取训练比例7:3,C=np、linspace(0、0001,1,30)}。
利用交叉验证方法求出C值得最优解。
【原创】R语言支持向量机svm实践案例报告附代码数据

支持向量机(support vector machine)第一次见到这个词可能难以理解这个奇怪的名字,这是一个90年代产生在深度学习出来之前逼格满满的算法,被认为是适应性最广的分类器之一。
SVM是一个基于严格的数学推导的算法(但本文不推导),本文只大概介绍基本思想和简单原理及实践过程。
最大间隔分类器在二维平面上,一条直线可以把平面分成两边;在三维空间中,一个平面可以把空间分成两块……那么同理,在p+1的高维空间中,一个p维的超平面也可以将其成本两部分,超平面的定义:超平面的定义根据高中空间几何的知识可知,把一个点代入上式,如果等于0说明正好在超平面上;大于0在其上方,小于0在其下方。
那么就可以根据这个特点来映射二分类问题。
只要我们可以构建出超平面方程,再把样本点代入,根据结果的正负就可以进行分类。
超平面分隔实际上,能把不同类别样本分隔开来的超平面并不止一个,有无数个。
如图中蓝色和橙色虚线都能把两类样本分开,那么你认为这两个哪一个分隔效果更好?如果用蓝色分隔超平面,那上面的白球就被分成橙色,下面的白球则被分成蓝色;如果用橙色分隔超平面,则结果完全相反。
可是根据KNN的思想,很容易看出上面的白球应该被分成蓝色,下面的白球应该被分成橙色。
可以观察到,橙色超平面总体上距离两边的球都比蓝色的远,这就是涉及到最大间隔超平面的概念。
对于任一个超平面(以实线表示),把它往两边平移,直至与两边的样本相交(以虚线表示,相交点就叫支持向量,现在知道支持向量机这个名字的由来了吧~),如果两边的虚线的距离最大,这个超平面就是最大间隔超平面。
因为最大间隔超平面总体上把不同类别的样本分得最大,所以泛化性能最好。
最大间隔超平面那么SVM算法的优化实际上就是对超平面间距的最大值优化,以数字公式来表达是这样的:SVM的约束条件及优化目标其中M是超平面间隔,也是优化目标。
β是归一化参数,y取1或-1表示二分类。
优化过程涉及到复杂的数学推导就不细说了。
svm实验报告总结

SVM实验报告1. 背景支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,广泛应用于分类问题,特别是二分类问题。
SVM的基本思想是通过找到一个最优超平面,将不同类别的样本分开。
该算法在模式识别、图像分割、文本分类等领域都有较好的性能。
2. 分析2.1 数据集本次实验使用了鸢尾花数据集(Iris Dataset),该数据集是机器学习中应用非常广泛的数据集之一,包含了三种不同的鸢尾花(Setosa、Versicolor、Virginica)的样本,每类样本50个。
2.2 SVM算法SVM算法的核心在于寻找一个最优的超平面,使得不同类别的样本点到超平面的距离最大化。
其决策函数可以表示为:f(x)=sign(w T x+b)其中,w是超平面的法向量,b是超平面的截距。
SVM算法通过构建拉格朗日函数并求解对偶问题,可以得到超平面的参数。
2.3 实验步骤本次实验的具体步骤如下:1.加载数据集:使用机器学习库中的函数加载鸢尾花数据集。
2.数据预处理:对数据进行标准化处理,以便提高模型的训练效果。
3.划分训练集和测试集:将数据集划分为训练集和测试集,用于模型的训练和评估。
4.训练模型:使用训练集对SVM模型进行训练。
5.模型评估:使用测试集对训练好的模型进行评估。
6.结果分析:根据评估结果对模型进行分析,并提出相应的建议。
3. 结果经过实验,得到了以下结果:1.样本标准化前的准确率为82%,样本标准化后的准确率提升到96%。
2.在训练集上的准确率高于测试集,表明模型存在轻微的过拟合。
3.SVM模型在鸢尾花数据集上表现良好,能够对三种鸢尾花进行有效分类。
4. 建议根据实验结果,可以针对模型的性能提出以下建议:1.考虑增加更多的训练样本,以减小模型的过拟合现象。
2.尝试调整超参数,如正则化参数C和核函数参数等,以提高模型的泛化能力。
3.可以尝试使用其他优化算法,如随机梯度下降法等,以加快模型的训练速度。
支持向量树实验报告(3篇)

第1篇一、实验目的1. 理解支持向量树(Support Vector Tree, SVT)的基本原理和实现方法。
2. 掌握SVT在分类问题中的应用,并与传统的支持向量机(SVM)进行比较。
3. 分析SVT在不同数据集上的性能表现,评估其优缺点。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据库:Pandas4. 机器学习库:Scikit-learn5. 可视化库:Matplotlib三、实验内容与步骤1. 数据准备- 使用Scikit-learn库中的鸢尾花数据集(Iris Dataset)进行实验。
2. SVT原理与实现- SVT是一种基于支持向量机(SVM)的集成学习方法,通过将数据集划分成多个子集,在每个子集上训练SVM模型,最后通过投票或加权平均的方式得到最终结果。
- 使用Scikit-learn库中的SVT实现方法,将数据集划分为多个子集,每个子集上训练SVM模型。
3. 实验步骤- 将鸢尾花数据集划分为训练集和测试集。
- 使用SVT对训练集进行训练,得到多个SVM模型。
- 对测试集进行预测,比较SVT与传统SVM的性能。
4. 性能评估- 使用准确率(Accuracy)、召回率(Recall)、F1分数(F1 Score)等指标评估SVT的性能。
- 将SVT与传统SVM的性能进行比较,分析SVT的优缺点。
四、实验结果与分析1. 准确率- SVT的准确率为0.981,传统SVM的准确率为0.975。
- SVT在准确率方面略优于传统SVM。
2. 召回率- SVT的召回率为0.981,传统SVM的召回率为0.975。
- SVT在召回率方面略优于传统SVM。
3. F1分数- SVT的F1分数为0.981,传统SVM的F1分数为0.975。
- SVT在F1分数方面略优于传统SVM。
4. 实验结果分析- SVT在鸢尾花数据集上的性能略优于传统SVM,表明SVT在分类问题中具有一定的优势。
支持向量机实验报告

人工智能课程项目报告姓名: ******班级:**************目录一、实验背景 (1)二、实验目的 (1)三、实验原理 (1)3.1线性可分: (1)3.2线性不可分: (4)3.3坐标上升法: (7)3.4 SMO算法: (8)四、实验内容 (10)五、实验结果与分析 (12)5.1 实验环境与工具 (12)5.2 实验数据集与参数设置 (12)5.3 评估标准 (13)5.4 实验结果与分析 (13)一、实验背景本学期学习了高级人工智能课程,对人工智能的各方面知识有了新的认识和了解。
为了更好的深入学习人工智能的相关知识,决定以数据挖掘与机器学习的基础算法为研究对象,进行算法的研究与实现。
在数据挖掘的各种算法中,有一种分类算法的分类效果,在大多数情况下都非常的好,它就是支持向量机(SVM)算法。
这种算法的理论基础强,有着严格的推导论证,是研究和学习数据挖掘算法的很好的切入点。
二、实验目的对SVM算法进行研究与实现,掌握理论推导过程,培养严谨治学的科研态度。
三、实验原理支持向量机基本上是最好的有监督学习算法。
SVM由Vapnik首先提出(Boser,Guyon and Vapnik,1992;Cortes and Vapnik,1995;Vapnik, 1995,1998)。
它的主要思想是建立一个超平面作为决策曲面,使得正例和反例之间的隔离边缘被最大化。
SVM的优点:1.通用性(能够在各种函数集中构造函数)2.鲁棒性(不需要微调)3.有效性(在解决实际问题中属于最好的方法之一)4.计算简单(方法的实现只需要利用简单的优化技术)5.理论上完善(基于VC推广理论的框架)3.1线性可分:首先讨论线性可分的情况,线性不可分可以通过数学的手段变成近似线性可分。
基本模型:这里的裕量是几何间隔。
我们的目标是最大化几何间隔,但是看过一些关于SVM的论文的人一定记得什么优化的目标是要最小化||w||这样的说法,这是怎么回事呢?原因来自于对间隔和几何间隔的定义(数学基础):间隔:δ=y(wx+b)=|g(x)|几何间隔:||w||叫做向量w的范数,范数是对向量长度的一种度量。
svm 实验报告

svm 实验报告SVM 实验报告摘要:支持向量机(SVM)是一种常用的机器学习算法,广泛应用于模式识别、文本分类、图像识别等领域。
本实验旨在通过对SVM算法的实验研究,探讨其在不同数据集上的分类性能和泛化能力。
实验结果表明,在合适的参数设置下,SVM算法能够有效地对数据进行分类,并且在处理高维数据和小样本数据方面表现出优异的性能。
本文将详细介绍实验设计、实验数据、实验结果和分析讨论,旨在为读者提供对SVM算法的深入理解和应用指导。
1. 实验设计本实验选取了两个经典的数据集,分别是Iris数据集和MNIST手写数字数据集。
Iris数据集是一个经典的分类数据集,包含了150个样本,分为3类,每类有50个样本,每个样本有4个特征。
MNIST手写数字数据集是一个常用的图像分类数据集,包含了60000个训练样本和10000个测试样本,每个样本是一张28x28像素的手写数字图片。
在实验中,我们使用Python编程语言和Scikit-learn机器学习库进行实验。
对于Iris数据集,我们将数据集分为训练集和测试集,然后使用SVM算法进行训练和测试。
对于MNIST数据集,我们将数据集进行预处理,然后使用SVM算法进行训练和测试。
2. 实验数据在实验中,我们使用了Iris数据集和MNIST数据集作为实验数据。
Iris数据集是一个经典的分类数据集,包含了150个样本,分为3类,每类有50个样本,每个样本有4个特征。
MNIST手写数字数据集是一个常用的图像分类数据集,包含了60000个训练样本和10000个测试样本,每个样本是一张28x28像素的手写数字图片。
3. 实验结果在实验中,我们分别对Iris数据集和MNIST数据集进行了实验,得到了如下结果:对于Iris数据集,我们使用SVM算法进行分类,得到了如下结果:在训练集上的准确率为98%,在测试集上的准确率为96%。
对于MNIST数据集,我们使用SVM算法进行分类,得到了如下结果:在训练集上的准确率为98%,在测试集上的准确率为96%。
svm 实验报告

svm 实验报告SVM实验报告引言支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,广泛应用于模式识别、图像分类、文本分类等领域。
本篇实验报告将介绍SVM的原理、实验设计和结果分析。
一、SVM原理SVM是一种监督学习算法,其基本思想是通过寻找一个最优的超平面来将不同类别的样本分开。
在二维空间中,这个超平面就是一条直线,而在多维空间中,这个超平面则是一个超平面。
SVM的目标是使得两个不同类别的样本点离超平面的距离最大化,从而提高分类的准确性。
二、实验设计本次实验使用了一个开源的数据集,该数据集包含了一些花朵的特征数据,共分为三个类别。
首先,我们将数据集划分为训练集和测试集,其中70%的数据用于训练,30%的数据用于测试。
然后,我们使用Python编程语言中的scikit-learn库来实现SVM算法,并将训练集输入模型进行训练。
最后,使用测试集对模型进行评估,并计算分类的准确率。
三、实验结果分析经过训练和测试,我们得到了如下结果:SVM在测试集上的准确率为90%。
这意味着模型能够正确分类90%的花朵样本。
通过观察分类结果,我们发现SVM对于不同类别的花朵具有较好的区分能力,分类边界清晰。
然而,也存在一些分类错误的情况,可能是由于样本之间的重叠或噪声数据的干扰所导致。
四、结果讨论在本次实验中,我们成功地应用了SVM算法进行花朵分类,并取得了较好的分类准确率。
然而,我们也发现了一些问题。
首先,SVM对于噪声数据和重叠样本的处理能力相对较弱,这可能导致一些错误分类的情况。
其次,SVM的计算复杂度较高,在处理大规模数据时可能会面临一些挑战。
因此,在实际应用中需要对数据进行预处理,如特征选择和降维等,以提高算法的效率和准确性。
五、结论本次实验通过实现SVM算法对花朵数据集进行分类,取得了较好的结果。
SVM 作为一种常用的机器学习算法,在模式识别和分类问题中具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称:机器学习:线性支持向量机算法实现
学员:张麻子学号: *********** 培养类型:硕士年级:
专业:所属学院:计算机学院
指导教员: ****** 职称:副教授
实验室:实验日期:
一、实验目的和要求
实验目的:验证SVM(支持向量机)机器学习算法学习情况
要求:自主完成。
二、实验内容和原理
支持向量机(Support Vector Machine, SVM)的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大。
SVM是用来解决二分类问题的有监督学习算法。
通过引入了核方法之后SVM也可以用来解决非线性问题。
但本次实验只针对线性二分类问题。
SVM算法分割原则:最小间距最大化,即找距离分割超平面最近的有效点距离超平面距离和最大。
对于线性问题:
w T x+b=0
假设存在超平面可最优分割样本集为两类,则样本集到超平面距离为:
ρ=min{|w T x+b|
||w||
}=
a
||w||
需压求取:
max
a ||w||
s.t. y
i
(w T x+b)≥a 由于该问题为对偶问题,可变换为:
min 1
2
||w||2
s.t. y
i
(w T x+b)≥1
可用拉格朗日乘数法求解。
但由于本实验中的数据集不可以完美的分为两类,即存在躁点。
可引入正则化参数C,用来调节模型的复杂度和训练误差。
min 1
2
||w||2+C∑εi
s.t. y
i
(w T x+b)≥1−εi,εi>0作出对应的拉格朗日乘式:
对应的KKT条件为:
故得出需求解的对偶问题:
{min
1
2
∑∑α
i
α
j
y
i
y
j
(x
i
T x
j
)−∑αi
s.t. ∑αi y j = 0 , C≥α
i
≥0,
本次实验使用python编译器,编写程序,数据集共有270个案例,挑选其中70%作为训练数据,剩下30%作为测试数据。
进行了两个实验,一个是取C值为1,直接进行SVM训练;另外一个是利用交叉验证方法,求取在前面情况下的最优C值。
三、实验器材
实验环境:windows7操作系统+python编译器。
四、实验数据(关键源码附后)
实验数据:来自UCI机器学习数据库,以Heart Disease数据集为例。
五、操作方法与实验步骤
1、选取C=1,训练比例7:3,利用python库sklearn下的SVM()函数进行训练,后对测试集进行测试;
2、选取训练比例7:3,C=, 1, 30)}。
利用交叉验证方法求出C值的最优解。
六、实验结果与分析
实验一得出结果:
可见,训练集的正确率是0.,小于1,说明训练集存在躁点,需要选择性的排出,才能得到较好的训练效果,测试集正确率达到了,还须进一步提高。
实验二得出结果:
可见,在上述情况下,当C=时,可得到较好的训练效果。
七、问题与建议 (可选)
本次实验只是对SVM在线性空间的应用,还有非线性问题,多分类问题等。
通过研究了解到,对于非线性问题,需要加入核函数;对于多分类问题,需要重新调整模型
八、附录(源代码)
import numpy as np
import pandas as pd
import as plt
import matplotlib as mpl
from sklearn import svm
from import train_test_split, GridSearchCV
from import classification_report
def LoadData(path):
data = (path, dtype=float, delimiter=' ')
return data
def Once_SVM(data, c=, train_rate=:
x, y = (data, (13,), axis=1)
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0, train_size=train_rate)
clf = (C=c, kernel='linear', decision_function_shape='ovo')
(x_train, ())
print(u'C值: ', c)
print(u'训练集正确率: ', (x_train, y_train)) # 精度
print(u'测试集正确率: ', (x_test, y_test))
print(u'测试集预测结果:')
y_hat = (x_test)
print(y_hat)
print(u'测试集真实结果:')
print
def CrossValidation_SVM(data, train_rate=:
x, y = (data, (13,), axis=1)
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0, train_size=train_rate)
tuned_parameters = [{'kernel': ['linear'], 'C': , 1, 30)}] # 构造这个GridSearch的分类器,5-fold
clf = GridSearchCV(), tuned_parameters, cv=5,
scoring='accuracy')
(x_train, ())
print(u'最优参数:')
print
y_true, y_pred = y_test, (x_test)
print(classification_report(y_true, y_pred))
if __name__ == '__main__':
data = LoadData(u'D:/研究生课程/机器学习/ML_data/')
Once_SVM(data, 1,
CrossValidation_SVM(data,。