人教版七年级上册数学期中测试题(含答案)
人教版数学七年级上册《期中测试题》含答案

人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单项选择题(本大题共 10 小题,每题 3 分,共 30 分)1.2-的相反数是( ) A. 2-B. 2C. 12D. 12- 2.下列各式计算正确的是()A. ﹣513﹣713=﹣12 B. ﹣42×58=10 C. 3x 2﹣2x 2=1 D. 2x ﹣(x ﹣1)=x +13.23-的值是( ) A .﹣3B. 3C. 9D. ﹣94.用四舍五入法按要求对 1.06042 取近似值,其中错误的是( ) A. 1.1(精确到 0.1) B. 1.06(精确到 0.01) C. 1.061(精确到千分位)D. 1.0604(精确到万分位)5.设 a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A. ﹣1B. 0C. 1D. 不存在6.若﹣2a n+5b 3 和 5a 4b m 为同类项,则 n m 的值是( ) A. 1B. ﹣3C. ﹣1D. 37.下列比较大小正确的是( ) A. ﹣56<﹣45B. ﹣(﹣21)<+(﹣21)C. ﹣|﹣1012|>8 23D. ﹣|﹣723|=﹣(﹣7 23) 8.如图所示,下列判断正确的是( )A. a +b >0B. a ﹣b >0C. ab >0D. |b |<|a |9.现有四种说法:①﹣a 表示负数;②倒数等于本身的数有 2 个.③3×102x 2y 是 5 次单项式;④5x y是多项式.其中正确的是( ) A. ①③B. ②④C. ②③D. ①④10.正整数按如图的规律排列,请写出第 15 行,第 17 列的数字是( )A. 271B. 270C. 256D. 255二、填空题(本大题共 6 题,每题 3 分,共 18 分)11.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.12.《战狼 2》在 2017 年暑假档上映 36 天,取得历史性票房突破,共收获5490000 000 元,数据 5 490 000 000 用科学记数法表示为_________.13.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温 y ℃与向上攀登的高度 x km 的几组对应值如表:若每向上攀登1km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为___________.14.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是____________.15.已知线段AB 在数轴上且它的长度为7,点A 在数轴上对应的数为3,则点B在数轴上对应的数为_______________.16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1 次点A 向左移动3 个单位长度至点A1,第2 次从点A1 向右移动6 个单位长度至点A2,第3 次从点A2向左移动9 个单位长度至点A3,…,按照这种移动方式进行下去,点A4 表示的数,是__________ ,如果点A n与原点的距离不小于20, 那么n 的最小值是________________ .三、解答题(本大题共8 题,共72 分,解答时写出必要的文字说明,演算步骤或推证过程)17.计算:(1)﹣4﹣28+19﹣24(2)(﹣1)100﹣16×[3﹣(﹣3)2](3)(1572612+-)×(﹣36)18.先化简,再求值:y2+(5xy﹣8x2)﹣4(xy﹣2x2),其中x=-12,y=2.19.某天上午小李驾驶出租车沿东西向公路接送乘客.早晨从A 地出发,最后收工时到到B 地,约定向东为正方向,当天上午的行驶记录如下(单位:千米):+3,﹣14,+11,﹣10,﹣8,+9,﹣2,+9.(1)问B 地在A 地的哪个方向?它们相距多少千米?(2)若汽车耗油量为0.2 升/千米,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为5 元,起步里程为3km(包括3km),超过部分每千米加收20.若|a|=8,|b|=5,且a+b>0,那么a﹣b 的值是多少?21.(8 分)2013 年 4 月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户 2013 年 6 月份的用水量为 35 吨,按三级计算则应交水费为: 20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果小东家 2013 年 6 月份的用水量为 20 吨,则需缴交水费多少元?(2)如果小明家 2013 年 7 月份的用水量为 a 吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含 a 的代数式表示,并化简)(3)若一用户 2013 年 7 月份应该水费 90.8 元,则该户人家 7 月份用水多少吨? 22.阅读下面的解题过程: 计算:(﹣130)÷(211231065-+-)方法一:原式=(﹣130)÷[(21+36)﹣(12+105)]=(﹣ 130)÷(5162-)=-130×3=﹣110方法二:原式的倒数为(211231065-+-)÷(﹣ 130))=( 211231065-+-))×(﹣30)=﹣20+3﹣5+12=﹣10故原式=﹣110通过阅读以上解题过程,你认为哪种方法更简单,选择合适的方法计算下题: (﹣142)÷(132261437-+-). 23.定义一种新运算:观察下列式子:1⊗3=1×4+3=7,3⊗(﹣1)=3×4﹣1=11,5⊗4=5×4+4=24,4⊗(﹣3)=4×4﹣3=13 (1)请你想一想:a ⊗b = ;(2)若 a ≠b ,那么 a ⊗b b ⊗a ;(填入“=”或“≠”) (3)若[a ⊗(﹣6)]⊗3=3⊗a ,请求出 a的值.24.有理数 a 、b 、c 在数轴上的位置如图所示: (1)比较 a 、|b |、c 的大小(用“<”连接);(2)若 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |,求 1﹣2013•(m +c )2013 的值;(3)若 a =﹣2,b =﹣3,c =23,且 a 、b 、c 对应的点分别为 A 、B 、C ,问在数轴上是否存在一点 P ,使 P 与 A 的距离是 P 与 C 的距离的 3 倍?若存在,请求出 P 点对应的有理数;若不存在,请说明理由.答案与解析一、单项选择题(本大题共 10 小题,每题 3 分,共 30 分)1.2-的相反数是( )A. 2-B. 2C.12D. 12-【答案】B 【解析】 【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 2.下列各式计算正确的是( )A. ﹣513﹣713=﹣12 B. ﹣42×58=10 C. 3x 2﹣2x 2=1 D. 2x ﹣(x ﹣1)=x +1【答案】D 【解析】试题解析:A 、1125712333--=-, 故本选项错误, B 、254108-⨯=-, 故本选项错误, C 、22232x x x -=, 故本选项错误,D 、()211x x x ,--=+ 故本选项正确,故选D .3.23-的值是( ) A. ﹣3 B. 3C. 9D. ﹣9【答案】C 【解析】 【分析】负数的绝对值等于它的相反数.【详解】解:23 =9故选:C.【点睛】本题考查绝对值的计算,注意符号是解题关键.4.用四舍五入法按要求对1.06042 取近似值,其中错误的是()A. 1.1(精确到0.1)B. 1.06(精确到0.01)C. 1.061(精确到千分位)D. 1.0604(精确到万分位)【答案】C【解析】【分析】根据近似数的定义逐一进行求解即可得答案.【详解】1.06042≈1.1(精确到0.1),故A选项正确,不符合题意;1.06042≈1.06(精确到0.01),故B选项正确,不符合题意;.1.06042≈1.060(精确到千分位),故C选项错误,符合题意;1.06042≈1.0604(精确到万分位),故D选项正确,不符合题意,故选C.【点睛】本题考查了近似数,根据要求结合近似数的定义正确求解是解题的关键.5.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a,b,c 三个数的和为()A. ﹣1B. 0C. 1D. 不存在【答案】A【解析】【分析】先根据题意得到a、b、c值,再相加即可得到结果.【详解】解:由题意得a=0,b=-1,c=0,则a+b+c=-1,故选A.考点:有理数的初步认识【点睛】本题属于基础应用题,只需学生熟练掌握特殊的有理数,即可完成.6.若﹣2a n+5b3和5a4b m 为同类项,则n m的值是()A. 1B. ﹣3C. ﹣1D. 3【答案】C 【解析】试题解析:∵532n a b +-和45m a b 同类项,∴543n m +==,, 13n m =-=,, ∴()311m n =-=-. 故选C .点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项. 7.下列比较大小正确的是( ) A. ﹣56<﹣45B. ﹣(﹣21)<+(﹣21)C. ﹣|﹣10 12|>8 23D. ﹣|﹣723|=﹣(﹣7 23) 【答案】A 【解析】试题分析:A .-56<-45;该选项正确; B 、-(-21)=21>+(-21)=-21,故原选项错误; C .-|-1012|=-1012<823,故原选项错误; D .-|-723|=-723<-(-723)=723,故原选项错误. 故选A.考点:有理数大小比较.8.如图所示,下列判断正确的是( )A. a +b >0B. a ﹣b >0C. ab >0D. |b |<|a |【答案】B 【解析】试题分析:根据数轴可得:b <0<a,且b a >,所以a+b <0,ab <0,所以A 、C 、D 错误;B 正确,故选B .考点:1.数轴与有理数;2.有理数的大小比较.9.现有四种说法:①﹣a 表示负数;②倒数等于本身的数有 2 个.③3×102x 2y 是 5 次单项式;④5x y-是多项式.其中正确的是( ) A. ①③ B. ②④C. ②③D. ①④【答案】B 【解析】①∵当a=0时,﹣a=0,不是负数,故不正确;②绝对值最小的有理数是0,正确;③∵3×102x 2y 是3次单项式,故不正确;④5x y-是多项式,正确. 故选B.10.正整数按如图的规律排列,请写出第 15 行,第 17 列的数字是( )A. 271B. 270C. 256D. 255【答案】A 【解析】 【分析】首先观察出第2、3、4、5、6列的第一个数为1+1、4+1、9+1、16+1、25+1,由此进一步解决问题. 【详解】由于第2、3、4、5、6列的第一个数为1+1、4+1、9+1、16+1、25+1. 那么第17列的第一个数为162+1=257,∴第15行,第17列的数字是257+15﹣1=271. 故选A .【点睛】本题考查了数字的变化规律,培养观察分析和归纳总结规律的能力,解答此题的关键是找出每列第一个数与列数的规律.二、填空题(本大题共 6 题,每题 3 分,共 18 分)11.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.【答案】3- 【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣3, 故答案为﹣3. 考点:正数和负数12.《战狼 2》在 2017 年暑假档上映 36 天,取得历史性票房突破,共收获5490000 000 元,数据 5 490 000 000 用科学记数法表示为_________. 【答案】5.49×109 【解析】试题解析:95490000000 5.4910.=⨯ 故答案为95.4910.⨯点睛:科学记数法的表示形式为:10n a ⨯,其中110.a ≤<13.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温 y ℃与向上攀登的高度 x km 的几组对应值如表:若每向上攀登 1km ,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为 2.5km 时,登山队所在位置的气温约为___________.【答案】-10【解析】【分析】根据题意和表格中各个数据的变化规律即可推测向上攀登的海拔高度为 2.5km 时,登山队所在位置的气温大于是多少.【详解】解:由表格中的数据可知,每上升0.5km,温度大约下降3℃,∴向上攀登的海拔高度为2.5km 时,登山队所在位置的气温约为﹣10℃, 故答案为﹣10.【点睛】本题考查正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义,此题答案不唯一,在﹣10.8≤t≤﹣9.6 范围内即可.14.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是____________.【答案】+2ab【解析】(2a2+3ab- b2)-(-3a2+ab+5b2)=2a2+3ab- b2+3a2-ab-5b2=5a2+2ab-6b2,所以被墨水弄脏的一项是+2ab,故答案为+2ab.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,括号前是正号,括号里的各项不变号;括号前是负号,括号里的各项要变号.15.已知线段AB 在数轴上且它的长度为7,点A 在数轴上对应的数为3,则点B在数轴上对应的数为_______________.【答案】10或-4【解析】当点B在点A的左边时,3−7=−4;当点B在点A的右边时,3+7=10.则点B在数轴上对应的数为−4或10.故答案为10或−4.16.如图,数轴上,点A 的初始位置表示的数为1,现点A 做如下移动:第1 次点A 向左移动3 个单位长度至点A1,第2 次从点A1 向右移动6 个单位长度至点A2,第3 次从点A2向左移动9 个单位长度至点A3,…,按照这种移动方式进行下去,点A4 表示的数,是__________ ,如果点A n与原点的距离不小于20, 那么n 的最小值是________________ .【答案】7,13.【解析】试题分析:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19, 所以点A n与原点的距离不小于20,那么n的最小值是13.故答案为7,13.考点:1.规律型:数字的变化类;2.数轴.三、解答题(本大题共8 题,共72 分,解答时写出必要的文字说明,演算步骤或推证过程)17.计算:(1)﹣4﹣28+19﹣24(2)(﹣1)100﹣16×[3﹣(﹣3)2](3)(1572612+-)×(﹣36)【答案】(1)-37;(2)2;(3)-27.【解析】【分析】(1)根据有理数的加减法可以解答本题;根据有理数的乘法和减法可以解答本题;根据乘法分配律可以解答本题.【详解】(1)﹣4﹣28+19﹣24=(﹣4)+(﹣28)+19+(﹣24)=﹣37;(2)(﹣1)100﹣16×[3﹣(﹣3)2]=1﹣16⨯(3-9)=1﹣16×(﹣6)=1+1 =2;(3)(1572612+-)×(﹣36)=(﹣18)+(﹣30)+21=﹣27.【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.18.先化简,再求值:y2+(5xy﹣8x2)﹣4(xy﹣2x2),其中x=-12,y=2.【答案】3.【解析】试题分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.试题解析:原式=y2+5xy-8x2-4xy+8x2=y2+xy,当x=-12,y=2时,原式=4-1=3.考点:整式的加减—化简求值.19.某天上午小李驾驶出租车沿东西向公路接送乘客.早晨从A 地出发,最后收工时到到B 地,约定向东为正方向,当天上午的行驶记录如下(单位:千米):+3,﹣14,+11,﹣10,﹣8,+9,﹣2,+9.(1)问B 地在A 地的哪个方向?它们相距多少千米?(2)若汽车耗油量为0.2 升/千米,这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为5 元,起步里程为3km(包括3km),超过部分每千米加收【答案】(1)B地在A 地的正西方,它们相距2 千米;(2)出租车共耗油13.2 升;(3)小李这天上午共得车费104.5 元.【解析】【分析】(1)要求B 地在A 地的哪个方向以及B 地与A 地的距离,只需要将行走记录相加即可;(2)要求总耗油,需要将行走记录的绝对值相加,再乘以0.2 即可;(3)不超过3km 的按5 元计算,超过3km 的在5 元的基础上,再加上超过部分每千米乘以1.5 元,即可.【详解】解:(1)+3﹣14+11﹣10﹣8+9﹣2+9=(3+11+9+9)﹣(14+10+8+2)=32﹣34=﹣2.所以B 地在A 地的正西方,它们相距2 千米;(2)(+3+14+11+10+8+9+2+9)×0.2=66×0.2=13.2(升).所以出租车共耗油13.2 升;(3)5×8+(11+8+7+5+6+6)×1.5=40+64.5=104.5(元).答:小李这天上午共得车费104.5 元.【点睛】本题考查了有理数的加法和正负数的意义,正负数的实际应用是重点又是难点.20.若|a|=8,|b|=5,且a+b>0,那么a﹣b 的值是多少?【答案】3 或13.【解析】试题分析:由a+b>0得,a,b同为正数或正数的绝对值较大,结合|a|=8,|b|=5得到a,b的值.试题解析:解:由题可知:a的值可以取8 , b的值可以去5和—5所以a - b的值是3 或13.点睛:本题主要考查了绝对值的意义和有理数加减法的法则,难点是确定a,b的值,由绝对值的意义,a,b的值各有两个,再结合a+b>0知a,b同为正数或正数的绝对值较大,得到a=8,b=±5,即可求解.21.(8 分)2013 年4 月起泉州市区居民生活用水开始实行阶梯式计量水价,据了解,此次实行的阶梯式计量水价分为三级(如表所示):例:若某用户2013 年6 月份的用水量为35 吨,按三级计算则应交水费为:20×1.65+(30﹣20)×2.48+(35﹣30)×3.30=74.3(元)(1)如果小东家2013 年6 月份的用水量为20 吨,则需缴交水费多少元?(2)如果小明家2013 年7 月份的用水量为a 吨,水价要按两级计算,则小明家该月应缴交水费多少元?(用含a 的代数式表示,并化简)(3)若一用户2013 年7 月份应该水费90.8 元,则该户人家7 月份用水多少吨?【答案】(1)33;(2)2.48a-16.6;(3)40【解析】试题分析:(1)小东家2013年6月份的用水量为20吨,所以根据第1级的水价和用水量列代数式计算即可;(2)根据水价要按两级计算,用每一级的价格乘以每一级的用水量,再把所得的结果相加,最后进行化简即可;(3)根据所给的例子知:90.8>74.3,所以7月份的用水量大于35吨,所以算出第三级的用水量与30吨的和即是7月份的用水量,试题解析:解:(1)(元) 3分 (2)6分 (3)(吨) 8分(吨) 9分考点:列代数式. 22.阅读下面的解题过程: 计算:(﹣130)÷(211231065-+-) 方法一:原式=(﹣130)÷[(21+36)﹣(12+105)]=(﹣ 130)÷(5162-)=-130×3=﹣110 方法二:原式的倒数为(211231065-+-)÷(﹣ 130))=( 211231065-+-))×(﹣30)=﹣20+3﹣5+12=﹣10 故原式=﹣110通过阅读以上解题过程,你认为哪种方法更简单,选择合适的方法计算下题:(﹣142)÷(132261437-+-). 【答案】. 【解析】试题分析:根据题目中所给的方法,类比解决即可.试题解析:解:所以原式=.考点:阅读理解;有理数的混合运算.23.定义一种新运算:观察下列式子:1⊗3=1×4+3=7,3⊗(﹣1)=3×4﹣1=11,5⊗4=5×4+4=24,4⊗(﹣3)=4×4﹣3=13 (1)请你想一想:a⊗b=;(2)若a≠b,那么a⊗b b⊗a;(填入“=”或“≠”)(3)若[a⊗(﹣6)]⊗3=3⊗a,请求出a 的值.【答案】(1)4a+b;(2)≠;(3)a=6.【解析】试题分析:(1)观察所对的等式可得到a⊗b=4×a+b=4a+b;(2)根据(1)中得到的新定义得到b⊗a=4b+a,由于a≠b,所以a⊗b≠b⊗a;(3)根据新定义得到4a﹣6=3×4+a,然后解关于a的一元一次方程.解:(1)a⊗b=4×a+b=4a+b;(2)∵a⊗b=4a+b,b⊗a=4b+a,而a≠b,∴a⊗b≠b⊗a;(3)由题意得4a﹣6=3×4+a,移项、合并得3a=18,解得a=6.考点:有理数的混合运算;解一元一次方程.24.有理数 a 、b 、c 在数轴上的位置如图所示:(1)比较 a 、|b |、c 的大小(用“<”连接);(2)若 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |,求 1﹣2013•(m +c )2013 的值;(3)若 a =﹣2,b =﹣3,c =23,且 a 、b 、c 对应的点分别为 A 、B 、C ,问在数轴上是否存在一点 P ,使 P 与 A 的距离是 P 与 C 的距离的 3 倍?若存在,请求出 P 点对应的有理数;若不存在,请说明理由.【答案】(1)a <c <|b|;(2)2014;(3) 0 或 2.【解析】【分析】(1)根据数轴可得 b <0,因此|b |=﹣b ,在数轴上表示出﹣b 的位置, 再根据数轴上的数,左边的数总比右边的小可得答案;(2)首先根据 a 、b 、c 的位置得到 a +b <0,b ﹣1<0,a ﹣c <0,然后再把 m =|a +b |﹣|b ﹣1|﹣|a ﹣c |化简可得 m +c =﹣1,再代入计算出代数式的值即可;(3)设 P 点对应的有理数为 x ,然后分情况讨论:①当点 P 在点 A 的左边时;②当点 P 在点A 和点 C 之间时;③当点 P 在点 C 的右边时.【详解】(1)如图所示:a <c <|b |;(2)由 a 、b 、c 在数轴上的位置知:a +b <0,b ﹣1<0,a ﹣c <0, 所以m =﹣(a +b )+(b ﹣1)+(a ﹣c ),=﹣a ﹣b +b ﹣1+a ﹣c ,=﹣1﹣c ,所以 m +c =﹣1,即 1﹣2013•(m +c )2013=1﹣2013•(﹣1)2013=1+2013=2014;(3)存在.设 P 点对应的有理数为 x .①当点 P 在点 A 的左边时,有﹣2﹣x =3(23﹣x ),解之得:x =2(不合条件,舍去),②当点 P 在点 A 和点 C 之间时,有 x ﹣(﹣2)=3(23﹣x ),解之得:x =0,③当点P 在点C 的右边时,有x﹣(﹣2)=3 (x﹣23),解之得:x=2,综上所述,满足条件的P 点对应的有理数为0 或2.【点睛】此题主要考查了数轴和一元一次方程的应用,解题关键是正确掌握数轴上两点之间的距离如何计算.。
人教版七年级上册数学期中试题(附答案)

人教版七年级上册数学期中试题一、单选题(共24分)1.甲地海拔高度为7m ,乙地比甲地低11m ,乙地的海拔高度为( )A .-18mB .-4mC .4mD .18m2.大于-2.5而小于π的整数共有( )A .6个B .5个C .4个D .3个 3.若||4,||2,a b ==且<0,a b -则+a b 的值等于( )A .2或6B .2或−6C .−2或−6D .−2或6 4.如果单项式22m x y +与n x y 的和仍然是一个单项式,则m 、n 的值是( ) A .=2m ,=2n B .1m =-,=2n C .2m =-,=2n D .=2m ,1n =-5.若|1||3|0a b -++=,则12a b ⨯-的值是( ) A .-312 B .-412 C .-112 D .2126.已知||3x =,24y =,且0xy >,则x y -的值为( )A .7或-7B .5或-5C .1或-1D .1或-57.下列结论中,正确的是( )A .单项式237xy 的系数是3,次数是2 B .单项式a 的次数是1,没有系数 C .单项式3xy z -的系数是1-,次数是5 D .多项式253x xy -+是三次三项式 8.刘敏同学用木棒和硬币拼成如图所示的“小列车”形状,每个图固定用两枚硬币,第1个图需要4根木棒,第2个图需要7根木棒,照这样的方式摆下去,第n 个图需要的木棒数可表示为( )A .4nB .41n -C .31n +D .23n +二、填空题(共24分)9.()22022112⎛⎫-+-= ⎪⎝⎭___________. 10.比较大小:(1)13-______0;(2)23-______-0.611.()()56-⨯-=_____,()56-÷=_____.12.截止2022年5月16日,美国新冠疫情累计确诊人数达84230829人,请把数84230829用科学记数法表示为______.13.如果整式252n x x -+-是三次三项式,那么n 等于___________14.已知||3x =,||4y =,且x 、y 异号,则x y +=___________.15.如果x 是最大的负整数,y 是绝对值最小的整数,则xy x y -+的值是____________. 16.若矩形的两邻边分别为a ,b ,周长为16,面积为15,则()ab a b +的值为 ___________.三、解答题(共66分)17.计算题(1)()()611-++ (2)()()2842924-+-++-(3)()1230.6372464⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭(4)()34312424-⨯⨯-÷-18.计算:(1)222322(3())a a a a a +---; (2)2237(43)2[]x x x x ----.19.先化简,再求值221(557)(41014)2x y xy x x y xy x +--+-,其中1,23x y ==-20.已知8a =,2=b .(1)求+a b 的值;(2)若0a <,求b a的值.21.已知多项式23A x xy y +=+,2B x xy =-.(1)若()2250x y ++-=,求2A B -的值.(2)若2A B -的值与y 的值无关,求x 的值.22.一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(926x <<,单位:km ):(1)直接说出这辆出租车第二次和第三次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置;(3)这辆出租车一共行驶了多少路程?23.2022年中考当天,为了考生出行方便,出租车司机小王从A 地出发,在东西向的公路上免费接送考生,如果规定向东为正,向西为负,出租车的行程如下(单位:千米): +16,5-,13+,10-,12-,+2,12-,17-.(1)若出车地记为0,最后一名考生被送到目的地时,小王在出发地的什么方向,距离出发地点多少千米?(2)若汽车耗油量为0.4升/千米,小王出发前加满了40升油,当他送完最后一名考生后,问他能否开车顺利返回A 地?为什么?24.已知a 是最小的正整数,b 是7-的相反数,|2|c =--,且a 、b 、c 分别是点A 、B 、C 在数轴上对应的数.(1)a =___________,b =___________,c =___________;(2)如果表示数m 和A 的两点之间的距离是3,那么m =___________.(3)数轴上表示A 和B 的两点之间的距离是___________;表示B 和C 两点之间的距离是___________;(4)若数轴上表示数n 的点位于A 与C 之间,则|2||1|n n ++-的值为___________;(5)利用数轴找出所有符合条件的整数点x ,使得|3||5|8x x ++-=,这些点表示的数的和是___________.参考答案:1.B2.A3.C4.B5.A6.C7.C8.C9.5 410.<<11.305 6 -12.78.423082910⨯13.514.1或1-15.116.120 17.(1)5(2)27-(3)14 115 -(4)8-18.(1)5a (2)2533--x x19.23x y,2 3 -20.(1)10±或6±(2)1 4±21.(1)56-(2)2-22.(1)第二次是向西,第三次是向东(2)A地向东113km2x⎛⎫-⎪⎝⎭处(3)923km 2x⎛⎫-⎪⎝⎭23.(1)小王在出发地的西边,距离出发地点25千米(2)当他送完最后一名考生后,不能顺利返回,24.(1)1,7,2-;(2)4或2-;(3)6,9;(4)3;(5)9.。
人教版七年级上册数学期中考试试卷(含答案)

人教版七年级上册数学期中考试试卷(含答案)人教版七年级上册数学期中考试试卷(含答案)一、选择题1. 以下哪个数是整数?A. √2B. 3/4C. -5D. 0.752. 下列有理数中,绝对值最大的是:A. -3B. 1/3C. 0D. -5/63. 对于非零有理数a,以下等式成立的是:A. a^2 = -aB. a * a = -aC. a * a = aD. a^2 = a二、填空题1. 计算:5/6 + 2/3 = ____2. 将72cm^2写成平方分米为____(注:1平方分米=100平方厘米)3. 若a = -2/3,b = 1/2,求ab的值。
三、解答题1. 线段AB的长度为3.2厘米,线段CD的长度为7.5厘米,求AB与CD的比值。
2. 小明从家到学校的距离为4千米,他刚走了2千米,这时他离学校还有多远?3. 将小数-0.125改写成分数。
四、应用题1. 一块长方形花坛长为12米,宽为8米,小明要用花砖铺满这个花坛。
每块花砖的正方形面积为0.25平方米,小明需要多少块花砖?2. 甲乙两个人同时从A地出发,以相同的速度向B地行驶,甲车开车时图示速度为75千米/小时,乙车开车时图示速度为80千米/小时。
若甲车到达B地用时比乙车早30分钟,求A到B地的距离。
五、解答题1. 有理数运算的要点是什么?请分析有理数的加法、减法、乘法和除法运算的规律和特点。
2. 计算题:5/12 + 4/9 - 1/3 + 2/5 = ____ ---答案:一、选择题1. C2. D3. A二、填空题1. 11/62. 0.723. -1/3三、解答题1. AB与CD的比值为 32/752. 离学校还有 2千米3. -0.125可以写成 -1/8四、应用题1. 需要 384 块花砖2. A到B地的距离为 100 千米五、解答题1. 有理数运算的要点是:符号相同的有理数相加减,绝对值大的数保留符号;符号相反的有理数相加减,先求绝对值相加减,再给结果加上原来的符号;有理数相乘除,符号相同为正,符号不同为负。
人教版七年级上学期期中数学试题(含答案)

人教版七年级上学期期中数学试卷及答案一、选择题(每小题2分,共12分) 1.8的相反数是( ) A .8B .18C .8-D .18-2.计算2(3)-的结果等于( ) A .6B .6-C .9D .—93.在下列选项中,既是分数,又是负数的是( ) A .8B .15-C .12D .2-4.下列式子中:a -,23abc ,x y -,3x ,32872x x -+,整式有( ) A .2个B .3个C .4个D .5个5.若单项式235y a b 与单项式32x a b 是同类项,则x y +的值是( ) A .3B .5C .7D .86.一个长方形的周长为l ,若长方形的长为a ,则该长方形的宽为( ) A .2la - B .12a- C .l a -D .12a二、填空题(每小题3分,共24分) 7.23-的倒数是_______. 8.单项式2445x y -的系数是_______.9.多项式2312245xy x y --的常数项是_______. 10.据统计,全国共有学生团员48300000名,数据48300000用科学记数法表示为_______. 11.用四舍五入法将5.1289精确到百分位的近似值为_______.12.数轴上点A 表示的数为0.3点.B 表示的数为13-,则这两点中距离原点较近的是点______(填“A ”或“B ”). 13.我市某天最低气温是5C -︒,最高气温比最低气温高8℃,则这天的最高气温是_______℃. 14.如果关于x 、y 的多项式21(2)13axy a y --+是三次三项式,则a 的值为_______. 三、解答题(每小题5分,共20分) 15.计算:216()32⨯-.16.计算:3221(2)9()()32-+⨯-÷-. 17.化简:()()32232x y x y ---.18.把下列各式的序号填入相应集合的括号内;①22123a b ab +;②1a b-;③0;④223m n +;⑤15mm -;⑥235x y -=;⑦263a abc k ++单项式集合:{ …}; 多项式集合:{ …}. 四、解答题(每小题7分,共28分)19.(1)请把下面不完整的数轴画完整,并在数轴上标出下列各数:-3,12-,4,2.5. (2)比较(1)中各数的大小(用“<”号连接).20.先化简,再求值:()22222336x y x y⎡⎤----+⎣⎦,其中 x 、y 满足()2110x y ++-=.21.已知a 、b 互为相反数;c 、d 互为倒数,2m =,求()()20223612a cd m +-+--的值.22.已知多项式2134331m x y x y x --+--与单项式42x y 的次数相同.(1)求m 的值;(2)把这个多项式按x 的降幂排列. 五、解答题(每小题8分,共16分)23.某同学计算22256x xy y -+减去某个多项式.由于粗心,误算为加上这个多项式,而得到22744y xy x --+,请你帮他求出正确的答案.24.如图是一块长为30cm ,宽为2xcm 的长方形铁片,从中挖去直径分别为2x cm .2y cm 的四个半圆(已知2230x y +<).(1)用含x 、y 的式子表示剩下铁片的面积;(2)当6x =,2y =时,剩下铁片的面积是多少平方厘米(结果保留π)? 六、解答题(每小题10分,共20分)25.某灯具厂为抓住商业契机,计划每天生产某种景观灯300盏以便投入市场进行销售.但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入,下表是该灯具厂上周的生产情况(增产记为正,减产记为负):(1)求该灯具厂上周实际生产景观灯多少盏?(2)该灯具厂实行每天计件工资制,每生产一盏景观灯可得50元,若超计划完成任务,则超过部分每盏另外奖励15元,少生产一盏扣20元,那么该灯具厂工人上周的工资总额是多少元?26.如图.点A 、C 、B 在数轴上表示的数分别是→3,1、5.动点P 、Q 同时出发,动点P 从点A 出发,以每秒4个单位长度的速度沿A →B →A 运动.回到点A 时停止运动;动点Q 从点C 出发,以每秒1个单位长度的速度沿C →B 向终点B 运动,设点P 的运动时间为t (s ).(1)当点P 到达点B 时,点Q 表示的数为______; (2)当t =1时,求点P 、Q 之间的距离;(3)当点P 沿A →B 运动时,用含t 的式子表示点P 、Q 之间的距离;(4)当点P 沿B →A 运动时,若点P 、B 之间的距离是2,直接写出点Q 、B 之间的距离.参考答案一、1.C 2.C 3.B 4.C 5.B 6.A二、7.32-8.45- 9.22 10.74.8310⨯ 11.5.13 12.A 13.3 14.-2 三、15.解:原式216643132=⨯-⨯=-=.16.解:原式16=-. 17.解:原式y =18.解:单项式集合:{③,⑤,…}; 多项式集合{①,④,⑦…}; 四、19.解:(1)数轴如下:(2)13 2.542-<-<<. 20.解:原式2266x y =--.∵2|1|(1)0x y ++-=,∴1x =-, 1y =,∴原式11=-. 21.解:根据题意,每0a b +=,1cd =,2m =或2-.当2m =时,原式20223(01)(1)223146=⨯-+--⨯=-+-=-;当2m =-吋,原式20223(01)(1)2(2)3142=⨯-+--⨯-=-++=.22.解:(1)4m =.(2)按x 的降幂排列为4323331x x y x y -+--.五、23.解:由题意可得()()2222744256y xy x x xy y --+--+222222744256132y xy x x xy y y xy x =--+-+-=-++,∴()2222256132x xy y y xy x -+--++22222256132619x xy y y xy x xy y =-++--=-+, 即正确的答案是2619xy y -+.24.解:(1)剩下铁片的面积为()22260cm x x y ππ--. (2)当6x =, 2y =时,剩下铁片的面积为2(36040)cm π-.六、25.解:(1)()()()()()()30043006300330010300530011(3002)2109++-+-+++-+++-=(盖) 答:该灯具厂上周实际生产景观灯2109盏..(2)()()4101115635220 37532055++⨯-+++⨯=-=(元). 55210950105505+⨯=(元). 答:该灯具厂工人上周的工资总额是105505元. 26.解:(1)3.(2)当1t =时,点P 表示的数是3411-+⨯=,点Q 表示的数是1+1=2,所以点P 、Q 之间的距离是1. (3)当点P 沿A →B 运动时,若点P 、Q 重合前,则点Q 表示的数大于点P 表示的数,所以()13443t t t +--+=-,所以点P 、Q 之间的距离为4—3t ;当点P 、Q 重合时,点P 、Q 之间的距离是0;当点P 超过点Q 时,则点P 表示的数大于点Q 表示的数,所以()34134t t t -+-+=-,所以点P 、Q 之间的距离为3t -4. (4)1.5.。
人教版七年级上册数学《期中检测卷》附答案

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共36分)1.下列立体图形属于棱柱..的有( )A. 2个B. 3个C. 4个D. 5个2.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( )A. ①②相同‘③④相同B. ①③相同;②④相同C. ①④相同;②③相同D. 都不相同4.下列四个数中,比﹣3小的数是( )A. 0B. 1C. ﹣1D. ﹣55.如图所示几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.6.某粮店出售三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差( ). A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏7.下列计算正确是( ) A. ﹣5+2=﹣7B. (﹣1)2017=1C. ﹣22=4D. 6÷(﹣2)=﹣38. 5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( ) A.B.C.D.9.下列说法中,正确的是( )A. 24m n不是整式B. ﹣32abc的系数是﹣3,次数是3 C. 3是单项式D. 多项式2x 2y ﹣xy 是五次二项式10.若232n x y 与2m -5xy 是同类项,则m n -的值是( ) A. 0B. 1C. 7D. -111.下列运算中,正确的是( ). A. 325a b ab +=B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=12. 小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( ) A. 3B. -3C. 9D. -3或9二、填空题(每小题4分,共24分)13.笔尖在纸上快速滑动写出英文字母C ,这说明了_____.14.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为 个.15.计算(111678++)﹣2×(11112678---)﹣3×(11116789++-)的结果是_____.16.有一种“24点”游戏,其游戏规则是这样,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:_____.17.若“△”是新规定的某种运算符号,设a△b=2a–3b,则(x+y)△(x–y)运算后的结果为__________.18.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用_____根火柴棒,搭n条“小鱼”所需火柴棒的根数为_____(填写化简后的结果).三、解答题(本题6个小题,满分60分)19.你来算一算!千万别出错!(1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).20.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=﹣124925×5=﹣12495=﹣24945;明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:291516×(﹣8)21.将6个棱长为2cm的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.22.解下列各题:(1)化简:(5a2b﹣3ab2)﹣2(a2b﹣7ab2).(2)先化简,再求值:3x2y﹣[2xy﹣2(xy﹣32x2y)+xy],其中x=3,y=﹣13.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x﹣1)=x2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.24.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km 到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?25.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入 3 2 -2 13…输出答案0 …(2)你发现规律是____________.(3)用简要过程说明你发现的规律的正确性.答案与解析一、选择题(每小题3分,共36分)1.下列立体图形属于棱柱..的有( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】根据棱柱的意义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.由此分析判定即可.解:第一、二、四个几何体属于棱柱.故选B.2.小陆制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是( )A. B. C. D.【答案】A【解析】【分析】对面图案均相同的正方体礼品盒,则两个相同的图案一定不能相邻,据此即可判断.【详解】解:根据分析,图A折叠成正方体礼盒后,心与心相对,笑脸与笑脸相对,太阳与太阳相对,即对面图案相同;图B、图C和图D中对面图案不相同;故选A.【点睛】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.3.如图,用一个平面从不同的角度去截一个正方体,则截面大小、形状相同的是( )A. ①②相同‘③④相同B. ①③相同;②④相同C. ①④相同;②③相同D. 都不相同【答案】A【解析】①②都是棱长为边的正方形,故相同;③④为对角面,故相同.所以选A.4.下列四个数中,比﹣3小的数是( )A. 0B. 1C. ﹣1D. ﹣5【答案】D【解析】试题分析:﹣5<﹣3<﹣1<0<1,所以比﹣3小的数是﹣5,故选D.考点:有理数大小比较.5.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )A. B. C. D.【答案】A【解析】A选项通过旋转得到两个圆柱;B选项通过旋转得到一个圆柱,一个圆桶,本选项错误;C选项通过旋转得到一个圆柱,两个圆桶,本选项错误;D选项通过旋转得到三个圆柱,本选项错误.故选A.点睛:圆柱体可以由矩形绕着一边旋转得到.6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差().A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏【答案】B【解析】【分析】根据题意给出三袋面粉的质量波动范围,从而求出任意两袋质量相差的最大数.【详解】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg,则相差0.3-(-0.3)=0.6kg.故选:B.【点睛】此题主要考查了正数和负数表示的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.7.下列计算正确的是( )A. ﹣5+2=﹣7B. (﹣1)2017=1C. ﹣22=4D. 6÷(﹣2)=﹣3【答案】D【解析】A选项错误,-5+2=-3;B选项错误,(﹣1)2017=-1;C选项错误,-22=-4;D选项正确.故选D.8.5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( )A. B. C. D.【答案】B【解析】试题分析:44亿==4.4×109,故选B.考点:科学记数法—表示较大的数.9.下列说法中,正确的是( )A.24m n不是整式 B. ﹣32abc的系数是﹣3,次数是3C. 3是单项式D. 多项式2x2y﹣xy是五次二项式【答案】C 【解析】 【分析】由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式;系数就是一个单项式中的常数项;次数是指所有字母的指数之和;多项式的项数是指这个多项式中单项式的个数;多项式中各单项式的最高次数作为这个多项式的次数.【详解】根据定义可知:24m n是整式;﹣32abc 的系数是﹣32,次数是3;多项式2x 2y ﹣xy 是三次二项式;故选择C .10.若232n x y 与2m -5xy 是同类项,则m n -的值是( ) A. 0 B. 1 C. 7 D. -1【答案】B 【解析】 【分析】直接利用同类项的概念得出n ,m 的值,再利用绝对值的性质求出答案. 【详解】∵232nx y 与2m-5xy 是同类项,∴2n =1,2m =3,解得:m =32,n =12, ∴|m−n|=|32−12|=1.故选:B .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键. 11.下列运算中,正确的是( ). A. 325a b ab += B. 325235a a a +=C. 22330a b ba -=D. 22541a a -=【答案】C 【解析】试题分析:3a 和2b 不是同类项,不能合并,A 错误;32a 和23a 不是同类项,不能合并,B 错误;22330a b ba -=,C 正确;22254a a a -=,D 错误,故选C . 考点:合并同类项.12. 小明做这样一道题“计算:|(-3)+■|”,其中“■”是被墨水污染看不清的一个数,他翻开后面的答案知该题计算的结果是等于6,那么“■”表示的数是( )A. 3B. -3C. 9D. -3或9【答案】D【解析】本题考查的是绝对值的定义和有理数的加减法法则先根据计算的结果是等于6得到绝对值里面的数,再根据有理数的加减法法则即可求得结果.,,当时,,当时,,故选D.二、填空题(每小题4分,共24分)13.笔尖纸上快速滑动写出英文字母C,这说明了_____.【答案】点动成线【解析】笔尖在纸上快速滑动写出英文字母C,这说明了点动成线.故答案为点动成线.14.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数最少为个.【答案】5【解析】【详解】由俯视图可以看出组成这个几何体的底面小正方体有4个,由左视图可知第二层最少有1个,故组成这个几何体的小正方体的个数最少为:4+1=5(个),故答案为5.15.计算(111678++)﹣2×(11112678---)﹣3×(11116789++-)的结果是_____.【答案】2 3【解析】【分析】将16+17+18看成一个整体,利用分配律进行计算即可.【详解】原式=(16+17+18)-2×12+2×(16+17+18)-3×(16+17+18)+3×19=-1+1 3=-23.故答案为-23.16.有一种“24点”游戏,其游戏规则是这样的,将4个1~13之间的数,进行加减乘除四则运算(每个数且只能用一次),使运算结果为24,例如,1,2,3,4可作如下运算:(1+2+3)×4=24,1×2×3×4=24.现有四个有理数3,4,﹣6,10,你能运用上述规则,写出一种运算式,使其结果等于24.你写出算式是:_____.【答案】3×[4+10+(﹣6)]=24【解析】3×[4+10+(-6)]=24或3×(10-4)-(-6)=24等.故答案为3×[4+10+(-6)]=24.17.若“△”是新规定的某种运算符号,设a△b=2a–3b,则(x+y)△(x–y)运算后的结果为__________.【答案】–x+5y【解析】【详解】(x+y)△(x-y)=2(x+y)-3(x-y)=2x+2y-3x+3y=-x+5y.故答案为-x+5y.18.如图,用火柴棒搭“小鱼”,则搭10条“小鱼”需用_____根火柴棒,搭n条“小鱼”所需火柴棒的根数为_____(填写化简后的结果).【答案】(1). 62(2). 6n+2【解析】搭第1条小鱼需要的火柴棒个数为:2+6=8;搭第2条小鱼需要的火柴棒个数为:2+6×2=14;搭第3条小鱼需要的火柴棒个数为:2+6×3=20;…搭第n条小鱼需要的火柴棒个数为:2+6n.搭第10条小鱼需要的火柴棒个数为:2+6×10=62. 故答案为(1)62 ;(2) 6n+2.三、解答题(本题6个小题,满分60分)19.你来算一算!千万别出错!(1)计算:251(5)()0.813-÷-⨯-+-;(2)计算:﹣36×111()4912--÷(﹣2).【答案】(1)415;(2)1.【解析】试题分析:(1)先对乘方和绝对值进行运算,然后进行乘除运算,最后进行加法运算;(2)利用乘法分配律将式子展开,计算出括号里面的数值再进行除法运算.试题解析:解:(1)原式=-1×125×(-53)+0.2=415;(2)原式=(-9+4+3)÷(-2)=-2÷(-2)=1.点睛:有理数混合运算时,有时运用乘法分配律会简化运算.20.学习有理数得乘法后,老师给同学们这样一道题目:计算:492425×(﹣5),看谁算的又快又对,有两位同学的解法如下:聪聪:原式=﹣124925×5=﹣12495=﹣24945;明明:原式=(49+2425)×(﹣5)=49×(﹣5)+2425×(﹣5)=﹣24945;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:291516×(﹣8)【答案】(1)明明解法较好;(2)还有更好的解法;解法见解析;(3)1 2392 -.【解析】【分析】(1)根据计算过程的步骤长短判断出明明的解法好;(2)把492425写成(50-125),然后利用乘法分配律进行计算即可得解; (3)把191516写成(20-116),然后利用乘法分配律进行计算即可得解. 【详解】解:(1)因为明明计算步骤比较少,所以明明的解法较好(2)还有更好的解法24149(5)(50)(5)2525150(5)()(5)251250542495⨯-=-⨯-=⨯-+-⨯-=-+=- (3)1529(8)161(30)(8)16130(8)()(8)161240212392⨯-=-⨯-=⨯-+-⨯-=-+=- 【点睛】本题考查有理数的乘法分配律,解题的关键是掌握乘法分配律.21.将6个棱长为2cm 的小正方体在地面上堆叠成如图所示的几何体,然后将需露出的表面部分染成红色.(1)画出分别从正面、左面、上面观察所看到这个几何体的形状图.(2)求该几何体被染成红色部分的面积.【答案】(1)见解析;(2)84cm 2.【解析】试题分析:(1)分别作出主视图、主视图、俯视图;(2)数出露出表面正方形的个数,再用计算出的个数乘以每个正方形的面积即可.试题解析:解:(1)作图如下:(2)(4+4+4+4+5)×(2×2)=21×4=84(cm 2)答:该几何体被染成红色部分的面积为84cm 2.点睛:计算露出表面的正方形个数时,要考虑前面,后面,左面,右面,上面,不能遗漏.22.解下列各题:(1)化简:(5a 2b ﹣3ab 2)﹣2(a 2b ﹣7ab 2).(2)先化简,再求值:3x 2y ﹣[2xy ﹣2(xy ﹣32x 2y)+xy],其中x=3,y=﹣ 13. 【答案】(1)3a 2b+11ab 2;(2) 1.【解析】试题分析:(1)先去括号,再合并同类项;(2)先去小括号,再去中括号,最后合并同类项得到最简形式,接着将x 、y 的值分别代入化简后的式子求出结果.试题解析:解:(1)原式=5a 2b -3ab 2-2a 2b +14ab 2=3a 2b +11ab 2;(2) 原式=3x 2y -2xy +2xy -3x 2y -xy =-xy ,当x =3,y =-13时,原式=-3×(-13)=1. 点睛:去括号的时候注意符号问题.23.老师在黑板上书写了一个正确的演算过程,随后用一张纸挡住了一个二次三项式,形式如下:+3(x ﹣1)=x 2﹣5x+1(1)求所挡的二次三项式;(2)若x=﹣1,求所挡的二次三项式的值.【答案】(1)x 2﹣8x+4;(2)13.【解析】试题分析:(1)根据题意确定出所挡的二次三项式即可;(2)把的值代入计算即可求出值.试题解析:(1)所挡的二次三项式为:()222513151338 4.x x x x x x x x -+--=-+-+=-+ (2)当1x =-时,原式=1+8+4=13.24.邮递员骑摩托车从邮局出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行9km 到C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1个单位长度表示1km,请你在数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)若摩托车每1km耗油0.03升,这趟路共耗油多少升?【答案】(1)见解析;(2)点C与点A的距离为6 km;(3)这趟路共耗油0.54升.【解析】试题分析:(1)再数轴上分别表示出A、B、C三个村庄位置;(2)用A点表示的数减去C点表示的数;(3)计算出邮递员行驶的总路程,再用总路程乘以每千米的耗油量.试题解析:解:(1)依题意得,数轴为:;(2)依题意得:C点与A点的距离为:2-(-4)=6km;(3)依题意得邮递员骑了:2+3+9+4=18km,∴共耗油量为:18×0.03=0.54升.点睛:数轴上两个点所表示的数之差的绝对值即为这两个点之间的距离.25.按下列程序计算,把答案填写在表格里,然后看看有什么规律,想想为什么会有这个规律?(1)填写表内空格:输入 3 2 -2 13…输出答案0 …(2)你发现规律是____________.(3)用简要过程说明你发现的规律的正确性.【答案】(1)0,0,0;(2)输入任何数的结果都为0;(3)理由见解析【解析】(1)利用计算程序:x→平方→+x→÷2→-12x 2→-12x→答案,即可求出结果. (2)由前几项都为0可得出规律:输入任何数的结果都为0.(3)根据程序可写出关于x 的方程式,此方程式的值为0,所以无论x 取任何值,结果都为0. 解:(1)0,0,0;(2)输入任何数的结果都为0;(3)因为222211111102222222x x x x x x x x +--=+--=222211111102222222x x x x x x x x +--=+--=, 所以无论x 取任何值,结果都为0,即结果与字母x 的取值无关“点睛”本题是找规律题,计算程序实际是整式的运算.。
人教版七年级数学上册期中测试卷-有参考答案

人教版七年级数学上册期中测试卷-有参考答案一、选择题(本题共12小题 每小题4分 共48分 在每小题给出的四个选项中 只有一项是符合题目要求的 请用2B 铅笔把答题卡上对应题目答案标号涂黑)1.(4分)古人都讲“四十不惑” 如果以40岁为基准 张明50岁 记为+10岁 那么王横25岁记为( )A .25岁B .﹣25岁C .﹣15岁D .+15岁【分析】以40岁为基准 张明50岁 记为+10岁 25减去40即可解答.【解答】解:以40岁为基准 张明50岁 记为+10岁那么王横25岁记为25﹣40=﹣15(岁).故选:C .2.(4分)中国信息通信研究院测算.2020﹣2025年 中国5G 商用带动的息消费规模将超过8万亿元 直接带动经济总产出达10.6万亿元 其中数据10.6万亿用科学记数法表示为( )A .10.6×104B .1.06×1013C .10.6×1013D .1.06×108【分析】科学记数法的表示形式为a ×10n 的形式 其中1≤|a |<10 n 为整数.确定n 的值时 要看把原数变成a 时 小数点移动了多少位 n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时 n 是正整数;当原数的绝对值<1时 n 是负整数.【解答】解:10.6万亿=10600000000000=1.06×1013.故选:B .3.(4分)下列说法正确的是( )A .52xy 的系数是﹣5 B .单项式a 的系数为1 次数是0C .﹣5232b a 的次数是6D .x y +x ﹣1是二次三项式 【分析】直接利用单项式的次数与系数确定方法、多项式的次数与项数确定方法分别判断得出答案.【解答】解:A .﹣的系数是﹣ 故此选项不合题意;B .单项式a 的系数为1 次数是1 故此选项不合题意;C.﹣的次数是﹣故此选项不合题意;D.xy+x﹣1是二次三项式故此选项符合题意;故选:D.4.(4分)下列各组整式中不是同类项的是()A.3a2b与﹣2a2b B.2xy与5yxC.2x3y2与﹣x2y3D.5和0【分析】根据同类项的定义:所含字母相同相同字母的指数也相同判断即可.【解答】解:A、3a2b与﹣2a2b所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;B、2xy与5yx所含字母相同相同字母的指数也相同是同类项故本选项不符合题意;C、2x3y2与﹣x2y3所含字母相同但相同字母的指数不相同不是同类项故本选项符合题意;D、5和0都是常数项所有常数项都是同类项故本选项不符合题意;故选:C.5.(4分)如图A B C D E为某未标出原点的数轴上的五个点且AB=BC=CD=DE则点C所表示的数是()A.2B.7C.11D.12【分析】先根据点A、E表示的数求出线段AE的长度再根据长度相等的线段表示相同的单位长度求出AB、BC、CD、DE的长即可解答【解答】解:∵AE=17﹣(﹣3)=20又∵AB=BC=CD=DE AB+BC+CD+DE=AE∴DE=AE=5∴D表示的数是17﹣5=12 C表示的数是17﹣5×2=7故选:B.6.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A .∵32=9 23=8∴32≠23 故本选项不符合题意;B .∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3 故本选项符合题意;C .∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2 故本选项不符合题意;D .∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2 故本选项不符合题意;故选:B .7.(4分)如果a b 互为相反数 c d 互为倒数 m 的绝对值是2 那么cd m m b a 2212-++⨯的值( ) A .2 B .3 C .4 D .不确定【分析】根据a b 互为相反数 c d 互为倒数 m 的绝对值是2 可以得到a +b =0 cd =1 m 2=4 然后代入所求式子计算即可.【解答】解:∵a b 互为相反数 c d 互为倒数 m 的绝对值是2∴a +b =0 cd =1 m 2=4∴=×+4﹣2×1=0+4﹣2=2故选:A .8.(4分)某快递公司受新一次疫情影响 4月份业务量比3月份下降了30% 由于采取了科学的防控措施 5月份疫情明显好转 该快递公司5月份业务量比4月份增长了40% 若设该快递公司3月份业务量为a 则5月份的业务量为( )A .(1﹣30%+40%)aB .(30%+40%)aC .(40%﹣30%)aD .(1﹣30%)(1+40%)a 【分析】先表示出4月份业务量是(1﹣30%)a 再根据5月份业务量比4月份增长了40% 即可列出代数式.【解答】解:∵该快递公司3月份业务量为a 4月份业务量比3月份下降了30%∴4月份业务量是(1﹣30%)a∵5月份业务量比4月份增长了40%∴5月份业务量是(1+40%)(1﹣30%)a故选:D .9.(4分)已知m n 满足6m ﹣8n +4=2 则代数式12n ﹣9m +4的值为( )A .0B .1C .7D .10【分析】将6m ﹣8n +4=2移项变形后 可以与12n ﹣9m +4建立联系 进而计算即可.【解答】解:∵6m ﹣8n +4=2∴8n ﹣6m ﹣2=0∴4n ﹣3m ﹣1=0∴12n ﹣9m ﹣3=0∴12n ﹣9m +4=7 故选:C .10.(4分)下列说法正确的个数有( )(1)若a 2=b 2 则|a |=|b |;(2)若a 、b 互为相反数 则1-=ba ;(3)绝对值相等的两数相等;(4)单项式7×102a 4的次数是6;(5)﹣a 一定是一个负数;(6)平方是本身的数是1 A .1 B .2 C .3D .4 【分析】根据去绝对值法则 相反数的定义 绝对值的性质 单项式的定义 有理数的分类以及性质作答.【解答】解:(1)若a 2=b 2 则|a |=|b | 原说法正确;(2)若a 、b 互为相反数且ab ≠0时 原说法错误;(3)绝对值相等的两数相等或互为相反数 原说法错误;(4)单项式7×102a 4的次数是4 原说法错误;(5)当a =0时 说法“﹣a 一定是一个负数”错误;(6)平方是本身的数是1或0 原说法错误.故选:A .11.(4分)已知|a |=2 b 2=25 3c =27 且ab >0 则a ﹣b +c 的值为( )A .10B .6C .3D .6或者0【分析】先根据绝对值的性质 乘方的性质求得a 、b 、c 再根据ab >0 分情况代值计算便可.【解答】解:∵|a |=2 b 2=25 3c =27∴a =±2 b =±5 c =3∴a、b同号∴当a=2 b=5 c=3时a﹣b+c=2﹣5+3=0;当a=﹣2 b=﹣5 c=3时a﹣b+c=﹣2+5+3=6;故选:D.12.(4分)如图在矩形ABCD中放入正方形AEFG正方形MNRH正方形CPQN点E在AB上点M、N在BC上若AE=4 MN=3 CN=2 则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【分析】设AB=DC=a AD=BC=b用含a、b的代数式分别表示BE BM DG PD.再表示出图中右上角阴影部分的周长及左下角阴影部分的周长然后相减即可.【解答】解:矩形ABCD中AB=DC AD=BC.正方形AEFG中AE=EF=FG=AG=4.正方形MNRH中MN=NR=RH=HM=3.正方形CPQN中CP=PQ=QN=CN=2.设AB=DC=a AD=BC=b则BE=AB﹣AE=a﹣4 BM=BC﹣MN﹣CN=b﹣3﹣2=b﹣5 DG=AD﹣AG=b﹣4 PD=CD﹣CP=a﹣2.∴图中右上角阴影部分的周长为2(DG+DP)=2(b﹣4+a﹣2)=2a+2b﹣12.左下角阴影部分的周长为2(BM+BE)=2(b﹣5+a﹣4)=2a+2b﹣18∴图中右上角阴影部分的周长与左下角阴影部分的周长的差为(2a+2b﹣12)﹣(2a+2b﹣18)=6.故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应13.(4分)已知x y满足|x﹣5|+(x﹣y﹣1)2=0 则(x﹣y)2021的值是.【分析】根据绝对值和偶次方的非负数的性质求出x、y的值再代入计算即可.【解答】解:∵|x﹣5|+(x﹣y﹣1)2=0 而|x﹣5|≥0 (x﹣y﹣1)2≥0∴x﹣5=0 x﹣y﹣1=0解得x=5 y=4∴(x﹣y)2021=12021=1.故答案为:1.14.(4分)如图a b c d e f均有有理数图中各行各列及两条对角线上三个数的和都相等则a﹣b+c﹣d+e﹣f的值为.a4﹣1b3cd e f【分析】先找出具有已知量最多且含有公共未知量的行或列即4﹣1+a=d+3+a得到d=0 再以4+b+0=b+3+c解得c=2 以此类推求出各个字母的值即可得出结论.【解答】解:由题意得:4﹣1+a=d+3+a解得:d=0.∵4+b+0=b+3+c∴c=1.∵4﹣1+a=a+1+f∴f=2.∴a﹣1+4=4+3+2∴a=6 b=5 e=7.∴a﹣b+c﹣d+e﹣f=6﹣5+1﹣0+7﹣2=7.故答案为:7.15.(4分)若多项式2x3﹣8x2+x﹣1与多项式x3+(3m+1)x2﹣5x+7的差不含二次项则m的值为.【分析】先列式化简代数式 再根据条件得出x 的二次项系数为0 列出m 的方程进行解答便可.【解答】解:(2x 3﹣8x 2+x ﹣1)﹣[x 3+(3m +1)x 2﹣5x +7]=2x 3﹣8x 2+x ﹣1﹣x 3﹣(3m +1)x 2+5x ﹣7=x 3﹣(3m +9)x 2+6x ﹣8∵多项式2x 3﹣8x 2+x ﹣1与多项式x 3+(3m +1)x 2﹣5x +7的差不含二次项∴3m +9=0∴m =﹣3.故答案为:﹣3.16.(4分)如M ={1 2 x } 我们叫集合M 其中1 2 x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在) 互异性(如x ≠1 x ≠2) 无序性(即改变元素的顺序 集合不变).若集合N ={x 1 2} 我们说M =N .已知集合A ={1 0 a } 集合B ={a 1 |a | ab } 若A =B 则b ﹣a 的值是 .【分析】根据集合的定义和集合相等的条件即可得到答案.【解答】解:∵A =B a ≠0≠0 ∴=0 =1 |a |=a 或=0=a |a |=1 ∴b =0 a =1(舍去)或b =0 a =﹣1∴b ﹣a =0﹣(﹣1)=1故答案为:1.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)计算:(1)2+(﹣3)﹣(﹣5);(2)(﹣143)﹣(+631)﹣2.25+310; (3)(﹣81)÷49×94÷(﹣16); (4)(﹣21+43﹣31)÷(﹣241). 【分析】(1)先化简符号 再计算;(2)把减化为加 再将相加得整数的先相加;(3)把除化为乘 再约分即可;(4)把除化为乘 再用乘法分配律计算.【解答】解:(1)原式=2﹣3+5=4;(2)原式=(﹣1.75﹣2.25)+(﹣6+3)=﹣4﹣3=﹣7;(3)原式=﹣81×××(﹣)=1;(4)原式=(﹣+﹣)×(﹣24)=24×﹣24×+24×=12﹣18+8=2.18.(8分)已知A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y若A+B﹣C=0 求C+A.【分析】直接利用已知得出C进而利用整式的加减运算法则计算得出答案.【解答】解:∵A=8x2y﹣6xy2﹣3xy B=7xy2﹣2xy+5x2y A+B﹣C=0∴C=8x2y﹣6xy2﹣3xy+7xy2﹣2xy+5x2y=13x2y+xy2﹣5xy∴C+A=13x2y+xy2﹣5xy+8x2y﹣6xy2﹣3xy=21x2y﹣5xy2﹣8xy.19.(10分)东江湖蜜桔是我们湖南郴州的特产口感香甜入口即化.科技改变生活当前网络销售日益盛行.湖南某网红主播为了帮助农民脱贫致富在某直播间直播销售东江湖蜜桔计划每天销售20000千克但实际每天的销售量与计划量相比有增减超过计划量记为正不足计划量记为负.下表是该主播在直播带货期间第一周销售蜜桔的情况:星期一二三四五六日蜜桔销售情况(单位:千克)+300﹣400﹣200+100﹣600+1200+500(1)该主播在直播带货期间第一周销售蜜桔最多的一天比最少的一天多销售多少千克?(2)若该主播在直播期间按6元/千克进行蜜桔销售平均快递运费及其它费用为2元/千克则该主播第一周直播带货销售蜜桔为当地农民一共创收多少元?【分析】(1)7天销量求和即可;(2)由7天的总销量即可求解;【解答】解:(1)+1200﹣(﹣600)=1800(千克)答:第一周销售蜜桔最多的一天比最少的一天多销售1800千克.(2)∵20000×7+300﹣400﹣200+100﹣600+1200+500=140900(千克)∴(6﹣2)×140900=563600(元).答:该主播第一周直播带货销售蜜桔为当地农民一共创收563600元.20.(10分)(1)化简:﹣5a ﹣(4a +3b )+(9a +2b );(2)先化简 再求值:2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3) 其中x =3 y =﹣2.【分析】(1)把整式去括号、合并同类项即可;(2)把整式去括号、合并同类项化简后 代入计算即可得出答案.【解答】解:(1)﹣5a ﹣(4a +3b )+(9a +2b )=﹣5a ﹣4a ﹣3b +9a +2b=﹣b ;(2)2(x 3﹣2y 2)﹣(x 3﹣4y 2+2x 3)=2x 3﹣4y 2﹣x 3+4y 2﹣2x 3=﹣x 3当x =3时原式=﹣33=﹣27.21.(12分)(1)如图 数轴上的点A B C 分别表示有理数a b c .化简:|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |;(2)已知关于x 、y 的多项式(3y ﹣ax 2﹣3x ﹣1)﹣(﹣y +bx ﹣2x 2)中不含x 项和x 2项 且22x a ﹣x +b =0 求代数式:2332x x a ﹣x ﹣b 的值.【分析】(1)由数轴可知 a <﹣2<b <﹣1 0<c <1 据此可得b +2>0 a +c <0 b +1<0 1﹣c >0 再根据绝对值性质去绝对值符号化简可得;(2)多项式合并后 根据结果中不含x 3项和xy 2项 求出a 与b 的值 代入原式计算即可得到结果.【解答】解:(1)∵a <﹣2<b <﹣1 0<c <1∴b +2>0 a +c <0 b +1<0 1﹣c >0∴|a |﹣|b +2|﹣|a +c |﹣|b +1|+|1﹣c |=﹣a ﹣(b +2)﹣(﹣a ﹣c )﹣(﹣b ﹣1)+1﹣c=﹣a ﹣b ﹣2+a +c +b +1+1﹣c=0.(2)原式=3y ﹣ax 2﹣3x ﹣1+y ﹣bx +2x 2=(2﹣a )x 2﹣(b +3)x +4y ﹣1由题意得2﹣a =0 b +3=0解得a =2 b =﹣3∵x 2﹣x ﹣3=0∴x 2﹣x =3∴原式=x 3﹣3x 2﹣x +3=x 3﹣x 2﹣2x 2﹣x +3=x (x 2﹣x )﹣2x 2﹣x +3=3x ﹣2x 2﹣x +3=2x ﹣2x 2+3=﹣2(x 2﹣x )+3=﹣6+3=﹣3.∴﹣x ﹣b 的值为﹣3.22.(12分)对于含绝对值的算式 在有些情况下 可以不需要计算出结果也能将绝对值符号去掉 例如:|7﹣6|=7﹣6;|6﹣7|=7﹣6;|3121-|=3121-;|2131-|=2131-. 观察上述式子的特征 解答下列问题:(1)把下列各式写成去掉绝对值符号的形式(不用写出计算结果):①|23﹣47|= ;②|5232-|= ; (2)当a >b 时 |a ﹣b |= a ﹣b ;当a <b 时 |a ﹣b |= b ﹣a ;(3)计算:2021120221...31412131121-++-+-+-. 【分析】(1)结合有理数加法减法运算法则以及绝对值的意义进行化简;(2)根据绝对值的意义进行化简;(3)根据有理数减法运算法则结合绝对值的意义先化简绝对值 然后根据数字的变化规律进行分析计算.【解答】解:(1)①|23﹣47|=47﹣23;②=﹣;故答案为:47﹣23 ﹣;(2)当a>b时|a﹣b|=a﹣b;当a<b时|a﹣b|=b﹣a;故答案为:a﹣b b﹣a;(3)原式=1﹣+﹣+﹣+•+﹣=1﹣=.23.(12分)【知识回顾】七年级学习代数式求值时遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关求a的值”通常的解题方法是:把x、y看作字母a看作系数合并同类项因为代数式的值与x的取值无关所以含x项的系数为0 即原式=(a+3)x﹣6y+5 所以a+3=0 则a=﹣3.(1)若关于x的多项式(2x﹣3)m+m2﹣3x的值与x无关求m的值【能力提升】(2)7张如图1的小长方形长为a宽为b按照图2方式不重叠地放在大长方形ABCD内大长方形中未被覆盖的两个部分(图中阴影部分)设右上角的面积为S1左下角的面积为S2当AB的长变化时S1﹣S2的值始终保持不变求a与b的等量关系.【分析】(1)根据含x项的系数为0建立方程解方程即可得;(2)设AB=x先求出S1、S2从而可得S1﹣S2再根据“当AB的长变化时S1﹣S2的值始终保持不变”可知S1﹣S2的值与x的值无关由此即可得.【解答】解:(1)(2x﹣3)m+m2﹣3x=2mx﹣3m+m2﹣3x=(2m﹣3)x+3m+m2∵关于x的多项式(2x﹣3)m+m2﹣3x的值与x的取值无关∴2m﹣3=0解得m=.(2)设AB=x由图可知S1=a(x﹣3b)=ax﹣3ab S2=2b(x﹣2a)=2bx﹣4ab则S1﹣S2=ax﹣3ab﹣(2bx﹣4ab)=ax﹣3ab﹣2bx+4ab=(a﹣2b)x+ab.∵当AB的长变化时S1﹣S2的值始终保持不变∴S1﹣S2的值与x的值无关∴a﹣2b=0∴a=2b.24.(14分)定义:数轴上有A B两点若点A到原点的距离为点B到原点的距离的两倍则称点A为点B的2倍原距点.已知点A M N在数轴上表示的数分别为4 m n.(1)若点A是点M的2倍原距点①当点M在数轴正半轴上时则m=;②当点M在数轴负半轴上且为线段AN的中点时判断点N是否是点A的2倍原距点并说明理由;(2)若点M N分别从数轴上表示数10 6的点出发向数轴负半轴运动点M每秒运动速度为2个单位长度点N每秒运动速度为a个单位长度.若点M为点A的2倍原距点时点A恰好也是点N的2倍原距点请直接写出a所有可能的值.【分析】(1)①点A到原点的距离为4 根据定义可知点M到原点距离为2 点M在数轴正半轴进而可求出m.②m<0 则m=﹣2 4﹣(﹣2)=﹣2﹣n得出n的值再根据定义来判断.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点;由|10﹣2t|=2×4求出t 的值将t代入4=2×|6﹣at| 求出a的所有可能值即可.【解答】解:(1)①∴m=±2.∵m>0∴m=2.故答案为:2.②∵m<0∴m=﹣2.∵点M为线段AN的中点∴4﹣(﹣2)=﹣2﹣n解得n=﹣8.∴ON=8 ON=2OA故N点是点A的2倍原距点.(2)设t秒时点M为点A的2倍原距点点A恰好也是点N的2倍原距点.∴解①得:t1=9 t2=1.将t1=9代入②得:4=2×|6﹣9t|解得:;将t2=1代入②得:4=2×|6﹣a|解得:a3=4 a4=8.故a所有的可能值为:4 8 .。
人教版七年级上册数学《期中考试卷》(带答案)

人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和23.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×1055.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<09.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a =﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个 10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m +n )C. 4nD. 4(m ﹣n )二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.12.已知13(3)m m x y +- 是关于x ,y 的七次单项式,则222m m -+的值为________13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).15.若2210m m +-=,则2425m m ++的值为__________16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______. 17.一条数轴由点A 处对折,表示﹣30数的点恰好与表示4的数的点重合,则点A 表示的数是_____. 18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭ (3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×99717220.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +值. 22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.23.邮递员骑车从邮局出发,先向西骑行 2 km 到达 A 村,继续向西骑行 3 km 到达 B 村, 然后向东骑行 9 km 到达 C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用 1 cm 表示 1 km 画数轴,并在该数轴上表示 A ,B ,C 三个村庄的位置;(2)C 村离 A 村有多远?(3)邮递员一共骑行了多少千米?24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星 一 二 三 四 五 六 日增 +6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产 个;(2)产量最多的一天比产量最少的一天多生产 个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?25.如图,四边形ABCD 与四边形CEFG 是两个正方形,边长分别为a ,b ,其中B ,C ,E 在一条直线上,G 在线段CD 上,三角形AGE 的面积为S .(1)①当a=5,b=3时,求S 值;②当a=7,b=3时,求S 的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代《九章算术)中注有“今两算得失相反,要令正负以名之”.意思是今有两数若其意义相反,则分别叫做正数与负数如果向北走5步记作+5步,那么向南走7步记作( )A. +7步B. ﹣7步C. +12步D. ﹣2步【答案】B【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向北走5步记作+5步,∴向南走7步记作﹣7步.故选B.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.单项式-3x2y系数和次数分别是( )A. -3和2B. 3和-3C. -3和3D. 3和2【答案】C【解析】试题解析:∵单项式-3x2y的数字因数是-3,所有字母指数的和=1+2=3,∴此单项式的系数是-3,次数是3.故选C.3.下列不是同类项的是( )A. 3x2y与﹣6xy2B. ﹣ab3与b3aC. 12和0D. 2xyz与-12zyx【答案】A【解析】【分析】根据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一判断即可.【详解】A. 相同字母指数不同,不是同类项;B. C.D都是同类项,故选:A.【点睛】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关.4.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A. 2.18×106B. 2.18×105C. 21.8×106D. 21.8×105【答案】A【解析】【分析】科学记数法表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.用四舍五入法按要求对0.050 19分别取近似值,其中错误..的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.05(精确到千分位)D. 0.050 2(精确到0.000 1)【答案】C【解析】【分析】一个近似数的有效数字是从左边第一个不为0的数字起,后面所有的数字都是这个数的有效数字,精确到哪位,就是对它后边一位进行四舍五入.【详解】A:0.05019精确到0.1是0.1,正确;B:0.05019精确到百分位是0.05,正确;C:0.05019精确到千分位是0.050,错误;D:0.05019精确到0.0001是0.0502,正确本题要选择错误的,故答案选择C.【点睛】本题考查的是近似数,近似数和精确数的接近程度可以用精确度表示.一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确度就是精确程度.6.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】先对每个数进行化简,然后再确定负数的个数.【详解】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选B.【点睛】本题考查绝对值,有理数的乘方、正数和负数的意义,正确化简各数是解题的关键.7.下列去括号正确的是( )A. a-(b-c)=a-b-cB. x2-[-(-x+y)]=x2-x+yC. m-2(p-q)=m-2p+qD. a+(b-c-2d)=a+b-c+2d【答案】B【解析】【分析】根据去括号法则即可求解.【详解】A. a-(b-c)=a-b+c,故错误;B. x2-[-(-x+y)]= x2-[x-y]=x2-x+y,正确;C. m-2(p-q)=m-2p+2q,故错误;D. a+(b-c-2d)=a+b-c-2d,故错误;故选B.【点睛】此题主要考查整式的加减,解题的关键是熟知去括号法则.8.如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是( )A. ab<0B. a+b<0C. a-b<0D. a2b<0【答案】D【解析】试题解析:A、由ab异号得,ab<0,故A正确,不符合题意;B、b>0,a<0,|a|>|b|,a+b<0,故B正确,不符合题意;C、由b>0,a<0,|得a-b<0,故C正确,不符合题意;D、由ab异号得,a<0,b>0,a2b>0,故D错误;故选D.点睛:根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.9.下列说法:①若|a|=a,则a=0;②若a,b互为相反数,且ab≠0,则ba=﹣1;③若a2=b2,则a=b;④若a<0,b<0,则|ab﹣a|=ab﹣a.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a,则a=0或a为正数,错误;②若a,b互为相反数,且ab≠0,则ba=−1,正确;③若a2=b2,则a=b或a=−b,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a,正确;故选B.【点睛】此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.10.把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是( )A. 4mB. 2(m+n)C. 4nD. 4(m﹣n)【答案】A【解析】【分析】设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【详解】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选A.【点睛】本题考查整式的运算,解题的关键是设2张形状大小完全相同的小长方形卡片的长和宽分别为x 、y ,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题(本大题共8小题,每题3分,满分24分,将答案填在答题纸上)11.鄂州位于中纬度地区,冬冷夏热,四季分明.冬季的某天最高气温是6 ℃,最低气温是-4 ℃,则当天的温差为___________℃.【答案】10【解析】【分析】根据“某天的温差=当天的最高温度-当天的最低温度”计算即可得出答案.【详解】根据题意可得,温差=6℃-(-4℃)=10℃,故答案为10.【点睛】本题考查的是有理数的运算,熟练掌握有理数的运算法则是解决本题的关键.12.已知13(3)m m x y+- 是关于x ,y 的七次单项式,则222m m -+的值为________ 【答案】17【解析】分析】根据单项式次数的定义即可求出m 的值,再将m 代入后面的式子即可得出答案. 【详解】∵13(3)m m x y +- 是关于x ,y 的七次单项式 ∴3014m m -≠⎧⎨+=⎩解得33m m ≠⎧⎨=±⎩ 综上所述:m=-3将m=-3代入2222=(-3)-2(-3)+2=17m m -+⨯故答案为17.【点睛】本题主要考查的是单项式次数的定义,单项式的次数指单项式中所有字母的指数和.13.一个多项式减去-5x 等于3x 2-5x +9,这个多项式是___________.【答案】3x 2-10x +9【解析】【分析】将3x 2-5x +9加上-5x 即可得出答案.【详解】由题意可得:3x 2-5x +9+(-5x )=3x 2-10x +9故答案为3x 2-10x +9.【点睛】本题考查的是整式的加减,熟练掌握整式加减的运算法则是解决本题的关键,14.规定图形表示运算a b c -+,图形表示运算x z y w +--,则__________(直接写出答案).【答案】0【解析】【分析】 根据“规定图形表示运算a b c -+,图形表示运算x z y w +--.”得出新的运算方法,再根据新的运算方法,解答即可.【详解】原式=1-2+3+(4+6-7-5)=2-2=0,故答案为:0.【点睛】解答此题的关键是,根据所给的式子,找出新的计算方法,再运用新的计算方法,解答即可. 15.若2210m m +-=,则2425m m ++的值为__________【答案】7【解析】【分析】根据2210m m +-=得出22=1-m m ,将22=1-m m 代入2425m m ++中即可得出答案.【详解】∵2210m m +-=∴22=1-m m将22=1-m m 代入2425m m ++中得原式=2(1-m )+2m+5=7故答案为7.【点睛】本题考查的是求代数式的值,整体代入法是解决本题的关键.16.一组按规律排列的数:95、1612、2521、3632、……,请推断第7个数是_______.【答案】81 77【解析】【分析】由题中数据可知第n个数的分子为(n+2)2,分母为(n+2)2-4=n2+4n.故可求得第7个数.【详解】第一个数的分子为(1+2)2=9,分母为1×1+4×1=5;第二个数的分子为(2+2)2=16,分母为2×2+4×2=12;第三个数的分子为(3+2)2=25,分母为3×3+4×3=21;第四个数的分子为(4+2)2=36,分母为4×4+4×4=32;第n个数的分子为(n+2)2,分母为n2+4n.第7个数是=()22727487771=++⨯.故答案为:81 77.【点睛】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.17.一条数轴由点A处对折,表示﹣30的数的点恰好与表示4的数的点重合,则点A表示的数是_____.【答案】-13【解析】【分析】根据对称的知识,若﹣30表示的点与4表示的点重合,则对称点是两个点的表示的数的和的平均数,由此求得点A表示的数.【详解】解:点A表示的数是(-30+4)÷2=﹣13.故答案为﹣13.【点睛】此题考查数轴,掌握点和数之间的对应关系以及中心对称的性质是解决问题的关键.18.如图所示,用同样大小的黑、白两种颜色的棋子摆成正方形图案,则第5个图形中有白子___________个,有黑子___________个.【答案】 (1). 白子24个 (2). 黑子25个【解析】【分析】本题以正方形的周长计算公式为基础,分析图形规律,即可得出答案.【详解】第一个图形:棋子共有23个,其中黑子有1个,白子有231-个;第二个图形:棋子共有个,其中黑子有个,白子有2242-个;第三个图形:棋子共有25个,其中黑子有23个,白子有2253-个;……由此可以推出,第n 个图形:棋子共有()22n +个,其中黑子有2n 个,白子有()222n n +-个;故第五个图形:棋子共有2749=个,其中黑子有2525=个,白子有2275492524-=-=个; 故答案为24,25.【点睛】本题是图形类找规律类题型,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 19.计算下列各题(1)10﹣(﹣19)+(﹣5)﹣167(2)411(1)6232⎛⎫--⨯-⨯÷ ⎪⎝⎭(3)3111838318382427⎛⎫⨯-÷⨯ ⎪⎝⎭ (4)(﹣36)×997172【答案】(1)-143;(2)12;(3)5;(4)﹣359912. 【解析】根据有理数的混合运算的法则计算即可.【详解】解:(1)原式=10+19﹣5﹣167=29﹣172=﹣143;(2)原式=﹣1×(13 ﹣12 )×6÷2 =﹣6×(13﹣12)÷2 =(﹣6×13+6×12 )÷2 =(﹣2+3)÷2 =12; (3)原式=278 ×(253 ﹣258)÷2524 ×827 =278 ×(253 ﹣258)×2425 ×827 =(253 ﹣258 )×2425 =253 ×2425 ﹣258×2425 =8﹣3=5;(4)(﹣36)×997172=﹣36×(100﹣172) =﹣3600+12=﹣359912 . 故答案为(1)-143;(2)12 ;(3)5;(4)﹣359912. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则及其运算律. 20.先化简,再求值:22225(3)2(3)a b ab ab a b --+,其中a =-2,b =-1.【答案】化简结果为:229-7a b ab ,值为:-22.【分析】根据整式的加减法则先化简22225(3)2(3)a b ab ab a b --+,再将a =-2,b =-1代入化简后的式子即可得出答案.【详解】解:222222225(3)2(3)=15-5-2-6a b ab ab a b a b ab ab a b --+22=9-7a b ab将a =-2,b =-1代入得原式22=9(2)(1)-7(2)(1)22⨯-⨯-⨯-⨯-=-【点睛】本题考查的是整式的化简求值,注意先化简再求值.21.已知代数式43232235762x ax x x x bx x +++--+-合并同类项后不含,2x 项,求23a b +的值.【答案】-22【解析】【分析】根据多项式不含有的项的系数为零,求出a,b 的值代入2a+3b 即可.【详解】解:原式4332223(5)(37)62x ax x x x bx x =+++--+-=432(5)(4)62x a x b x x +++--+-由题意,得50a +=,40b --=,解得5a =-,4b =-,所以232(5)3(4)22a b +=⨯-+⨯-=-.【点睛】本题考查了合并同类项,利用多项式不含有的项的系数为零得出a ,b 是解题关键.22.有理数a ,b 在数轴上所对应的点的位置如图所示:(1)用“<”连接 : 0,-a ,-b ,-1,1,a ,b ;(2)化简: 11a a b b a -+----.【答案】(1)a <-1<-b <0<b <1<-a ;(2)a【解析】【分析】(1)根据数轴得出a<-1<0<b<1,再比较,即可得出答案;(2)先根据第(1)问的结果判断出每个绝对值的正负并去掉绝对值,再进行计算即可得出答案.【详解】解:(1)根据题意可得:a<-1<-b<0<b<1<-a(2)∵a<0,a+b-1<0,b-a-1>0∴原式=-a-[-(a+b-1)]-(b-a-1)=-a+(a+b-1)-(b-a-1)=-a+a+b-1-b+a+1=a【点睛】本题考查了数轴、绝对值、合并同类项以及有理数的大小比较等知识点,能正确去掉绝对值符号是解决本题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.23.邮递员骑车从邮局出发,先向西骑行2 km 到达A村,继续向西骑行3 km到达B 村,然后向东骑行9 km到达C 村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1 cm 表示1 km 画数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)C村离A 村有多远?(3)邮递员一共骑行了多少千米?【答案】(1)答案见解析;(2)6km;(3)18km【解析】【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据数轴列出算式即可得出答案;(3)根据题意可求出从邮局到C处所走的路程为:2+3+9=14km,再由数轴可得C到邮局的距离为4km,相加即可得出答案.【详解】解:(1)根据题意可得:(2)C村离A村的距离为9-3=6(km)(3)邮递员一共行驶了2+3+9+4=18(千米)【点睛】本题考查的是正负数的应用,解题的关键是理解题目中“正”和“负”的相对概念.24.某厂一周计划生产700个玩具,平均每天生产100个,由于各种原因实际每天生产量与计划量相比有出入,如表是某周每天的生产情况(增产为正,减产为负,单位:个)星一二三四五六日增+6 ﹣3 ﹣5 +11 ﹣8 +14 ﹣9(1)根据记录可知前三天共生产个;(2)产量最多的一天比产量最少的一天多生产个;(3)该厂实行计件工资制,每生产一个玩具50元,若按周计算,超额完成任务,超出部分每个65元;若未完成任务,生产出的玩具每个只能按45元发工资.那么该厂工人这一周的工资总额是多少?【答案】(1)298;(2)23;(3)该厂工人这一周的工资是35390元.【解析】【分析】(1)三天的计划总数加上三天多生产的辆数的和即可;(2)求出超产的最多数与最少数的差即可;(3)求得这一周生产的总辆数,然后按照工资标准求解.【详解】解:(1)前三天生产的辆数是100×3+(6﹣3﹣5)=298(个).答案是:298;(2)14﹣(﹣9)=23(个),故答案是23;(3)这一周多生产的总辆数是6﹣3﹣5+11﹣8+14﹣9=6(个).50×700+65×6=35390(元).答:该厂工人这一周的工资是35390元.【点睛】本题考查有理数的运算,理解正负数的意义,求得这一周生产的总数是关键.25.如图,四边形ABCD与四边形CEFG是两个正方形,边长分别为a,b,其中B,C,E在一条直线上,G在线段CD上,三角形AGE的面积为S.(1)①当a=5,b=3时,求S值;②当a=7,b=3时,求S的值;(2)从以上结果中,请你猜想S 与a ,b 中的哪个量有关?用字母a ,b 表示S ,并对你的猜想进行证明.【答案】(1)①4.5;②4.5;(2)S =12b 2,证明见解析 【解析】【分析】(1)①根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG ,即可得出答案;②方法同①;(2)结论S =12b 2,根据S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG 即可证明. 【详解】(1)①∵四边形ABCD 与四边形CEFG 是两个正方形,AB =5,EC =3,∴DG =CD -CG =5-3=2.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=25+9-12×8×5-12×5×2-12×3×3=4.5. ②∵四边形ABCD 与四边形CEFG 是两个正方形,AB =7,EC =3,∴DG =CD -CG =7-3=4.∴S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=49+9-12×10×7-12×7×4-12×3×3=4.5 (2)结论S =12b 2. 证明:∵S △AEG =S 正方形ABCD +S 正方形ECGF -S △ABE -S △ADG -S △EFG=a 2+b 2-12(a +b )•a -12•a (a -b )-12b 2 =a 2+b 2-12a 2-12ab -12a 2+12ab -12b 2 =12b 2, ∴S =12b 2. 【点睛】本题主要考查的是整式的加减,需要熟练掌握整式的加减规律.26.已知2|4|(2)0a b ++-=,数轴上A B 、两点所对应的数分别是和.(1)填空:a = ,b = ;(2)数轴上是否存在点,点在点的右侧,且点到点的距离是点到点的距离的2倍?若存在,请求出点表示的数;若不存在,请说明理由;(3)点以每秒2个单位的速度从点出发向左运动,同时点Q 以每秒3个单位的速度从点出发向右运动,点M 以每秒4个单位的速度从原点点出发向左运动.若为PQ 的中点,当16PQ =时,求M N 、两点之间的距离.【答案】(1)-4,2;(2)0或8;(3)MN=8.【解析】【分析】(1)由“几个非负数和为0,则这几个数都为0”列出方程解答;(2)分两种情况:点C 在A 、B 之间;点C 在B 的右侧.列出方程进行解答;(3)设运动时间为t 秒,根据PQ=16,列出t 的方程求得t ,再求得运动后的M 、N 点表示的数即可.【详解】:(1)由题意得,a+4=0,b-2=0,解得,a=-4,b=2,故答案为:-4,2;(2)设C 点表示的数为x ,根据题意得,①当点C 在A 、B 之间时,有x+4=2(2-x ),解得,x=0;②当点C 在B 的右侧时,有x+4=2(x-2),解得,x=8.故点C 表示的数为0或8;(3)设运动的时间为t 秒,根据题意得, 2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:P :-4-2×2=-8,Q :2+3×2=8,M :0-4×2=-8,N :2808-+=, ∴MN=0-(-8)=8.【点睛】本题主要考查了一元一次方程的应用,用数轴上的点表示数,数轴上的动点问题,两点间的距离,非负数的性质,解题的关键是正确列出一元一次方程.。
人教版七年级数学上册期中测试卷【含答案】

人教版七年级数学上册期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?A. 36平方厘米B. 40平方厘米C. 44平方厘米D. 48平方厘米二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何两个奇数相加的和都是偶数。
()3. 1是最大的质数。
()4. 任何两个偶数相加的和都是偶数。
()5. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 两个质数相乘得到的一个数是______。
3. 2的平方是______。
4. 5的立方是______。
5. 1千米等于______米。
四、简答题(每题2分,共10分)1. 请简述偶数和奇数的定义。
2. 请简述质数和合数的定义。
3. 请简述正方形的特点。
4. 请简述三角形的特点。
5. 请简述平行四边形的特点。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个正方形的边长是8厘米,求这个正方形的面积。
3. 一个三角形的底是6厘米,高是4厘米,求这个三角形的面积。
4. 一个平行四边形的底是10厘米,高是6厘米,求这个平行四边形的面积。
5. 一个梯形的上底是5厘米,下底是10厘米,高是6厘米,求这个梯形的面积。
六、分析题(每题5分,共10分)1. 请分析一下为什么两个奇数相加的和是偶数。
2. 请分析一下为什么两个偶数相加的和是偶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级上册数学期中测试题(含答案)(考试时间:120分钟满分:120分)分数:____________第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.当A地高于海平面150米时,记作“+150米,”那么B地低于海平面25米时,记作(B)A.+25米B.-25米C.+175 D.+125米2.四个数-3,0,1,2中的负数是(A)A.-3 B.0 C.1 D.23.由四舍五入法得到近似数4.6×103,下列说法中正确的是(C)A.精确到十分位B.精确到个位C.精确到百位D.精确到千位4.下列说法中正确的是(B)A.x+y是一次一项式B.x的系数和次数都是1C.多项式2πa3+a2-1的次数是4D.单项式3×103y2的系数是35.国产动画电影《哪吒之魔童降世》最终票房收入将近50亿元人民币.50亿用科学记数法表示为(B)A.50×108B.5×109C.5×1010D.0.5×10106.数轴上A,B,C三点表示的有理数分别为a,b,c,若ab<0,a+b>0,a+b+c <0,则下列数轴符合题意的是(B)A.B.C.D.7.在数学课上,老师让甲、乙、丙、丁四位同学分别做了一道有理数运算题,你认为做对的同学是(C)甲:9-32÷8=0÷8=0;乙:24-(4×32)=24-4×6=0;丙:(36-12)÷32=36×23-12×23=16; 丁:(-3)2÷13×3=9÷1=9. A .甲 B .乙 C .丙 D .丁8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.⎝⎛⎭⎫-x 2+3xy -12y 2-⎝⎛⎭⎫-12x 2+4xy -32y 2=-12x 2+y 2,阴影部分即为被墨水弄污的部分.那么被墨水遮住的一项应是( C )A .-7xyB .+7xyC .-xyD .+xy9.如图①,将一个边长为a 的正方形纸片剪去两个小长方形,得到一个“”形的图案如图②所示,再将剪下的两个小长方形拼成一个新的长方形如图③所示,则新长方形的周长可表示为( B )A .2a -3bB .4a -8bC .2a -4bD .4a -10b10.已知整数a 1,a 2,a 3,…,满足下列条件:a 1=0,a 2=-||a 1+1,a 3=-||a 2+2,a 4=-||a 3+3,…,依此类推,a 2 020的值为( C )A .-1 008B .-1 009C .-1 010D .-2 020第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共24分)11.-2.5的倒数是 -25 ,-⎝⎛⎭⎫-53的相反数是 -53. 12.多项式a 3-3ab 2+3a 2b -b 3是 三 次 四 项式,按字母b 降幂排列为 -b 3-3ab 2+3a 2b +a 3 .13.若单项式2x 2y m 与-4x n y 3是同类项,则2m 2-5n -4的值为 4 .14.已知A =x 2-2xy ,B =y 2-3xy ,则化简3A -2B 是 3x 2-2y 2 .15.若4x +3y =5,则3(8y -x )-5(x +6y +2)的值为 -20 .16.★点A 在数轴上距离原点3个单位长度,将点A 先向左移动2个单位长度,再向右移动4个单位长度,则点A 所表示的数是 -1或5 .17.★定义运算符号“△”:对于两个有理数a ,b ,有a △b =ab -(a +b ),例如:-3△2=-3×2-(-3+2)=-6+1=-5.则[(-1)△(m -1)]△4= -6m +5 .18.★下列图形都是由同样大小的正方形按一定的规律组成,其中第①个图形一共有2个正方形,第②个图形一共有8个正方形,第③个图形一共有18个正方形,…,则第⑥个图形中正方形的个数为 72 .三、解答题(共66分)19.(8分)填空.9,-23,+4.3,||-0.5,-(+7),18%,(-13)4,-6,0. 正分数:{+4.3,||-0.5,18%,…};负分数:⎩⎨⎧⎭⎬⎫-23, …; 整数:{9,-(+7),(-13)4,-6,0,…};非负整数:{9,(-13)4,0,…}.20.(9分)计算:(1)-10+8÷(-2)3-(-40)×(-3)+(-1)2 020;解:原式=-10+8÷(-8)-120+1=-10-1-120+1=-130.(2)57÷⎝⎛⎭⎫-225-57×512-53÷4; 解:原式=57×⎝⎛⎭⎫-512-2584-53×14=-2584-2584-3584=-8584. (3)⎣⎡⎦⎤30-⎝⎛⎭⎫79+56-1112×36÷⎝⎛⎭⎫-15. 解:原式=⎣⎡⎦⎤30-⎝⎛⎭⎫79×36+56×36-1112×36÷⎝⎛⎭⎫-15 =[30-(28+30-33)]×(-5)=5×(-5)=-25.21.(8分)化简:(1)3x 2+2x +1-2(x 2+x -1);解:原式=3x 2+2x +1-2x 2-2x +2=x 2+3.(2)(-4ab +3a )-3(a -b )-2(a 2-2ab ).解:原式=-4ab +3a -3a +3b -2a 2+4ab=3b -2a 2.22.(10分)先化简,再求值:(1)-a 2b +(3ab 2-a 2b )-2(2ab 2-a 2b ),其中a =-1,b =-2;解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b=-ab 2.当a =-1,b =-2时,原式=-(-1)×(-2)2=1×4=4.(2)2x 2-⎣⎡⎦⎤3⎝⎛⎭⎫-13x 2+23xy -2y 2-2(x 2-xy +2y 2),其中x =12,y =-1. 解:原式=2x 2-(-x 2+2xy -2y 2)-2(x 2-xy +2y 2)=2x 2+x 2-2xy +2y 2-2x 2+2xy -4y 2=x 2-2y 2,当x =12,y =-1时,原式=14-2=-74. 23.(10分)如图是某市设计的长方形休闲广场,两端是两个半圆形的花坛,中间是一个直径为长方形宽度一半的圆形喷水池.(1)用图中所标字母表示广场空地(图中阴影部分)的面积;(2)若休闲广场的长为80米,宽为40米,求广场空地的面积(计算结果保留π).解:(1)广场空地的面积为xy -π⎝⎛⎭⎫x 22-π⎝⎛⎭⎫x 42=xy -516π x 2. (2)当x =40,y =80时,广场空地的面积为40×80-516π×402=3 200-500π(平方米). 24.(9分)如图,将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中左上角的一个小正方形按同样的方法剪成四个小正方形,再将其中左上角的一个小正方形按同样的方法剪成四个小正方形,如此循环进行下去.(1)填表:(2)如果剪了100(3)如果剪n 次,那么共剪出多少个小正方形?(4)如果要剪出100个小正方形,那么需要剪多少次?解:(1)(2)4+3×(100-1)=301,所以如果剪了100次,那么共剪出301个小正方形.(3)如果剪了n 次,那么共剪出(3n +1)个小正方形.(4)令3n +1=100,解得n =33.答:如果要剪出100个小正方形,那么需要剪33次.25.(12分)【阅读理解】||a 的几何意义是数轴上表示数a 的点与原点的距离,那么||a -1可以看作是数轴上表示数a 的点与表示1的点的距离,||a -1+||a -2可以看作是数轴上表示数a 的点与表示1和2两个点的距离之和.下面我们结合数轴研究||a -1+||a -2的最小值,我们先看a 的三种可能情况:如图,①a <1;②1≤a ≤2;③a >2.,①),②),③)由图可以看出,当a <1时,||a -1+||a -2>1;当1≤a ≤2时,||a -1+||a -2=1;当a >2时,||a -1+||a -2>1.那么我们可以得到当1≤a ≤2时,||a -1+||a -2有最小值的结论.【问题解决】(1)||a -1+||a -2+||a -3的几何意义是________________;(2)||a -1+||a -2+||a -3的最小值是________,并在如图所示的数轴上描出得到最小值时a 所在的位置.【深入探究】通过材料的阅读和问题的解决,你现在对求||a -1+||a -2+||a -3+…的最小值问题有所了解吗?在数轴上找到表示数a 的点的位置可以帮助我们顺利解决问题,下面请你结合数轴算一算||a -1+||a -2+||a -3+||a -4+||a -5的最小值;(3)求||a -1+||a -2+||a -3+…+||a -2 019的最小值.解:(1)数轴上表示数a 的点与表示1,2,3三个点的距离之和.(2)2;如图所示:【深入探究】根据题意,得当a =3时,||a -1+||a -2+||a -3+||a -4+||a -5取得最小值,最小值为2+1+0+1+2=6.(3)根据题意,得当a =1 010时,||a -1+||a -2+||a -3+…+||a -2 019取得最小值,最小值为1 009+1 008+1 007+…+1+0+1+…+1 009=1 009×(1 009+1)=1 019 090.。