生物传感器介绍、分类和应用
微生物传感器

引言概述:微生物传感器是一种新兴的生物传感技术,其利用微生物的特性来检测和监测环境中的化学物质。
微生物传感器可以应用于环境监测、食品安全、医学诊断等领域,具有高灵敏度、低成本和快速响应等优点。
本文将针对微生物传感器的原理、分类、应用以及未来发展进行详细阐述。
正文内容:1. 微生物传感器的原理1.1 生物识别元素的特性微生物传感器通过选择合适的生物识别元素,如细菌、真菌或酵母等微生物,将其与传感器设备相结合,实现对目标物质的识别和检测。
1.2 信号转化机制微生物传感器通过生物发酵、免疫反应、酶促反应等生物学机制将目标物质转化成可测量的电信号或光信号,实现对目标物质的定量分析。
2. 微生物传感器的分类2.1 按生物识别元素分类微生物传感器可根据所采用的生物识别元素的种类进行分类,分为细菌传感器、酵母传感器、真菌传感器等。
2.2 按应用领域分类微生物传感器可根据其应用领域进行分类,如环境监测传感器、食品安全传感器、医学诊断传感器等。
3. 微生物传感器的应用3.1 环境监测微生物传感器可用于监测水质、空气质量、土壤污染等环境参数,具有高灵敏度和实时监测的优势。
3.2 食品安全微生物传感器可用于检测食品中的致病菌、重金属等有害物质,提高食品安全水平和追溯能力。
3.3 医学诊断微生物传感器可用于检测病原微生物、药物残留等,为临床诊断提供快速、准确的结果。
4. 微生物传感器的优势与挑战4.1 优势4.1.1 高灵敏度微生物传感器在目标物质的识别和检测方面具有高灵敏度,能够实现低浓度物质的检测。
4.1.2 低成本与传统的化学分析方法相比,微生物传感器具有较低的成本,可以降低实验室设备和试剂的使用成本。
4.1.3 快速响应微生物传感器在目标物质的检测过程中具有较快的响应时间,能够实现快速的监测与分析。
4.2 挑战4.2.1 生物复杂性微生物传感器在设计和应用过程中需要解决生物复杂性的问题,如生物识别元素的选择、生物体对外界环境的响应等。
生物传感器的类型及其适用范围

生物传感器的类型及其适用范围近年来,生物传感器在生命科学和环境监测等领域中得到了广泛的应用。
生物传感器通过检测生物分子(如蛋白质、核酸和细胞等)或生物过程(如细胞增殖、代谢和病理生理等)来实现信号的转换,将生物信息转化为可测量的电学、光学或化学信号。
生物传感器具有高灵敏度、高选择性、快速响应和低成本等特点,成为实现生命科学研究和环境监测的重要工具。
本文将介绍几种常见的生物传感器及其适用范围。
1. 蛋白质生物传感器蛋白质生物传感器主要用于检测生物体内的蛋白质分子。
蛋白质具有多种功能,如生物催化、传递信号、细胞结构和免疫防御等。
因此,蛋白质生物传感器在生命科学研究中具有广泛的应用,如酶的活性测定、蛋白质质量测量和基因表达分析等。
目前,蛋白质生物传感器的种类有许多,包括基于荧光、近红外线、拉曼散射等技术的传感器。
例如,荧光共振能量转移技术(FRET)可将荧光信号转换为酶的活性信号,从而实现酶活性的测定。
2. DNA生物传感器DNA生物传感器主要用于检测DNA分子的序列、结构和功能。
DNA是遗传信息的基本单位,因此DNA生物传感器在生命科学和医学研究中应用广泛。
DNA生物传感器常用的检测方法包括电化学、荧光、近红外线等技术。
例如,电化学DNA传感器可通过检测DNA与电极表面的作用力来实现DNA的定量分析。
荧光DNA传感器可将DNA结构变化转化为荧光信号,从而实现异构体的分析。
3. 生物合成材料传感器生物合成材料传感器利用生物合成材料的特殊性质来实现信号的转换。
生物合成材料是一种由生物物质(如细胞、蛋白质和核酸等)和人工材料(如纳米颗粒和聚合物等)组成的复合材料体系。
生物合成材料具有高灵敏度、高选择性和快速响应等特点,因此在细胞学、免疫学和化学分析等领域中具有广泛的应用。
例如,利用倍半胱氨酸(Bcy)与金纳米颗粒的作用力,可以制备出具有单分子灵敏度的DNA传感器。
4. 细胞生物传感器细胞生物传感器通过检测细胞的生理过程和代谢活动来实现信号的转换。
生物传感器分类及应用

生物传感器分类及应用生物传感器是一种可以基于生物分子、细胞或整个生物系统进行检测和识别的传感器。
它可以通过测量生物分子的相互作用或细胞内的生物反应来识别和量化目标分子。
根据生物传感器所使用的方法和技术,可以将其分为多个分类。
以下是对生物传感器分类及应用的详细介绍。
1. 免疫传感器:免疫传感器是利用免疫反应原理进行检测的生物传感器。
常见的免疫传感器包括酶联免疫吸附测定(ELISA)和免疫传感电极。
免疫传感器广泛应用于临床诊断、环境监测和食品安全等领域。
例如,ELISA可以用于检测病原体、肿瘤标志物和药物残留物等。
2. DNA传感器:DNA传感器是通过识别和测量DNA分子的特异性序列来检测和识别目标分子的生物传感器。
常见的DNA传感器包括基于聚合酶链反应(PCR)和DNA芯片技术。
DNA传感器可以应用于基因诊断、基因测序和基因表达等领域。
例如,PCR可以用于检测病原体和基因突变等。
3. 蛋白质传感器:蛋白质传感器是通过检测和测量蛋白质的相互作用和生物活性来识别和定量分析目标分子的生物传感器。
常见的蛋白质传感器包括生物传感电极和质谱法。
蛋白质传感器广泛应用于疾病诊断、蛋白质组学和药物筛选等领域。
例如,质谱法可以用于鉴定和定量蛋白质样本中的肽段。
4. 细胞传感器:细胞传感器是通过利用细胞的生物反应来检测和识别目标分子的生物传感器。
常见的细胞传感器包括细胞生物传感器和细胞芯片技术。
细胞传感器可以应用于细胞毒性测试、药物筛选和环境污染检测等领域。
例如,细胞生物传感器可以用于检测污染物对人体细胞的毒性。
5. 微生物传感器:微生物传感器利用微生物的生物反应来检测和识别目标分子的生物传感器。
常见的微生物传感器包括酵母传感器和细菌传感器。
微生物传感器可以应用于环境监测、食品安全和农业生产等领域。
例如,酵母传感器可以用于检测水中的有机物和重金属。
6. 光学传感器:光学传感器是利用光学信号变化来检测和识别目标分子的生物传感器。
生物传感器在疾病检测中的应用

生物传感器在疾病检测中的应用近年来,随着科学技术的迅猛发展,生物传感器在医学领域的应用得到了广泛关注。
生物传感器是一种能够实时、快速地检测生物样品中病原体或生物分子的设备。
这些传感器能够以高度的灵敏度和特异性识别目标分子,并通过电信号、光信号或其他信号形式进行输出,使得其在疾病检测、健康监测等方面展现出巨大的潜力。
本文将探讨生物传感器在疾病检测中的应用,包括其基本原理、分类、实用案例及未来发展方向。
生物传感器的基本原理生物传感器由生物识别元件和信号转换元件两部分组成。
生物识别元件通常是酶、抗体、核酸或细胞等生物大分子,这些材料能够特异性地与目标分子结合。
而信号转换元件则将生物识别过程中产生的化学或生物信号转换为电信号、光信号或者其他可检测的信号。
最终,这些信号可以被分析仪器或计算机系统进行处理,从而获得定量或定性的检测结果。
生物传感器的分类按照不同的工作原理,生物传感器可以分为多种类型,主要包括以下几类:电化学传感器: 这类传感器利用电化学反应来检测目标分子。
例如,使用酶促反应产生电流变化来指示样品中某种代谢产物浓度的变化。
目前,电化学传感器已经广泛应用于血糖监测、乳酸测定等疾病检测中。
光学传感器: 光学传感器利用光学效应(如吸收、荧光或表面等离子共振)来检测分子。
这类传感器具有较高的灵敏度与选择性,被广泛用于癌症标志物检测、感染性疾病诊断等方面。
机械传感器: 机械传感器主要通过监测质点质量变化以及流动阻力的改变来实现对目标分子的检测。
这类传感器适用于病原体检测和细胞活性监测。
热量传感器: 热量传感器通过测量反应过程中释放或吸收的热量变化来进行检测。
这种方法可以用于药物筛选及代谢产物监测。
生物传感器在疾病检测中的应用案例糖尿病监测糖尿病是一种全球范围内日益严重的慢性疾病。
传统的血糖测试通常需要通过刺破皮肤提取血液样本。
这不仅给患者带来了不适,也增加了操作复杂性。
而基于电化学原理的穿戴式血糖监测生物传感器则解决了这一问题。
生物传感器的工作原理与应用

生物传感器的工作原理与应用随着科技的不断发展,生物传感器已成为重要的生命科学研究工具和应用技术。
它可以精准地检测生物分子的存在和浓度,从而实现生物诊断、药物筛选、环境监测等诸多应用。
本文将从生物传感器的工作原理、分类、应用以及发展前景等方面进行探讨。
一、生物传感器的工作原理生物传感器是由生物分子识别和转换技术和电化学分析技术组成的一种分析工具。
它的工作原理就是利用生物分子对特定物质的选择性识别和结合作用,将生物识别信号转化为电信号或光信号,通过电化学或光计量手段实现测量。
生物传感器的基本组成包括识别层、变换层和信号处理层。
识别层是生物传感器中最核心的组成部分,它的主要功能是识别特定的生物分子。
一般而言,识别层包括生物分子、表面修饰剂和介体层。
其中,生物分子可以是抗体、DNA、RNA、酶、细胞、分子印迹聚合物等,它们通过特定的结构和化学亲和力与待检测物质发生特异性结合,从而实现分析。
表面修饰剂是将生物分子固定到传感器固体表面的化合物,包括硅酸酯、氨基磷酸酯等。
介体层则是位于生物分子和表面修饰剂之间的部分,起到缓冲作用,帮助生物分子在固体表面保持活性和稳定性。
变换层是将生物信号转化为电信号或光信号的关键环节。
变换层包括电化学变换、发光变换、等离子体共振(SPR)变换等。
其中,电化学变化属于较常见的变换方式,它直接将生物分子和待检测物质的相互作用转化为电信号,如电流和电势。
发光变化则是将荧光蛋白或量子点等材料与识别层结合,通过激光或紫外线的照射来诱发信号的产生。
等离子体共振变化则是利用金属薄膜上的等离子体振荡,实现生物分子与待测物质的相互作用的共振信号放大。
信号处理层负责将变换层得到的信号转化为数字信号,并对其进行放大、滤波和计算等操作,进一步得到有用的分析信息。
信号处理层通常由微处理器、存储器、显示器等组成。
二、生物传感器的分类生物传感器根据其识别层不同,可以分为抗体传感器、DNA传感器、酶传感器、细胞传感器等。
生物传感器的原理及其应用

生物传感器的原理及其应用生物传感器是一种能够检测生物活性物质的分析仪器,它通过测量生物系统中的某种物理量来获得对特定生物体系中生物活性物质的检测。
生物传感器主要分为生物电化学传感器和光学传感器两大类。
下面我们将介绍生物传感器的原理及其应用。
一、生物传感器的原理生物电化学传感器是一种基于化学反应和电化学检测的传感器,它检测生物体系中的生物活性物质。
根据化学反应的机制和电化学反应的特征,生物电化学传感器可以分为两种类型:纯化学反应型和酶反应型传感器。
纯化学反应型生物传感器基于物理现象的直接检测,如氧化还原反应、离子选择性电极、光度法等,可以用来检测某些离子和小分子。
而酶反应型生物传感器则是通过特定酶的生物催化作用来检测特定生物分子。
在酶反应中,生物活性分子将被酶特异性催化转化为电活性物质,然后检测电化学反应的结果。
光学传感器基于检测微小的光学信号的转换,比如荧光、吸收和散射等。
光学传感器通常使用荧光蛋白或其他发光物来标记检测物质。
检测物质与荧光蛋白相互作用后,荧光就会改变,这种改变可以通过光学测量来检测。
二、生物传感器的应用生物传感器的应用十分广泛,下面将介绍它们的几个主要应用领域。
1. 医学与生命科学生物传感器在医学和生命科学中的应用可被用于诊断和治疗疾病。
生物传感器可以快速、准确地检测血糖、尿酸、胆固醇和血氧等指标。
在治疗方面,生物传感器可通过蛋白质表达、蛋白质识别等机制来释放药物或激活特定细胞。
2. 环境检测生物传感器可被用于确保食品、水源和环境中的安全。
生物传感器可以检测某些污染物,例如重金属离子、溶解氧等,以帮助防止环境污染和生物物种死亡。
3. 工业化学生物传感器还可以用来检测过程维护、质量控制等制造业活动的特定参数。
通过不断监测这些参数,可以提高产品质量并降低制造成本。
4. 农业生物传感器也可以用于农业生产。
现在的农业生产多是化学农业,但这样对环境污染比较大,而生物传感器可以检测和管理害虫病害,从而帮助农民提高作物产量。
生物传感器技术在食品质量检测中的应用

生物传感器技术在食品质量检测中的应用随着科技的发展,生物传感技术在食品质量检测领域得到了广泛应用。
生物传感器是一种能够将生物体内的生化检测转换为电信号或光信号的装置,其具有高灵敏度、高选择性和高速度等优点。
本文将从生物传感器技术在食品质量检测中的原理、优势以及实际应用等方面进行详细阐述。
一、生物传感器技术的原理和分类生物传感器技术主要基于生物分子(如蛋白质、核酸等)与非生物物质(如金属、半导体等)之间相互作用的原理,采用灵敏度高的生物感受器件,利用物理、化学、光学等技术实现快速、准确、可靠的检测分析。
根据传感元件的选择,可将生物传感器分为免疫传感器、酶传感器、细胞传感器、DNA传感器等多种类型。
其中,免疫传感器是以免疫反应为基础的传感器技术,主要用于检测生物活性物质的含量和活性。
免疫传感器其灵敏度高、特异性强,能够完成对特定生物分子的快速、可靠、定量检测,广泛应用于医学、农业、环境和工业等领域。
而酶传感器则是利用将底物转化为可检测产物的酶活性实现检测的传感器。
其优点在于实现了对不易检测或缺乏灵敏检测方法的生物活性物质的快速检测。
此外,细胞传感器主要是利用细胞的代谢反应或生存状态对环境中某些成分发生响应实现检测,而DNA传感器则主要以DNA分子为传感元件,以DNA序列的特异性识别实现对基因别序列的快速检测等。
二、生物传感器技术在食品质量检测领域的优势食品一直是人们生活中不可或缺的重要组成部分。
然而,食品中存在各种可能对人体健康产生潜在隐患的污染物,如化学农药、重金属、细菌、真菌等。
因此,食品质量检测成为了现代食品生产不可或缺的环节。
生物传感器技术在食品质量检测中具有以下优势:1. 高灵敏度和高选择性:生物传感器能够快速、准确的检测分析食品中存在的污染物,具有高灵敏度和高选择性,检测结果准确可靠。
2. 低成本和易操作:生物传感器采用简单便捷的操作方式,传感器制备和检测成本相对较低,且操作流程简单。
3. 快速检测:传统的实验室检测方法需要大量时间和检测人员,而生物传感器技术则能够在数分钟内完成检测,大大方便了食品生产过程中的质量监测。
生物传感器技术

生物传感器技术生物传感器技术近年来在生物医学、环境监测、食品安全等领域得到广泛应用。
它具有快速、高灵敏度、高选择性、便携性等优点,可以对生物分子进行检测和分析。
本文将介绍生物传感器技术的原理、分类、应用以及未来发展趋势。
一、生物传感器技术的原理生物传感器技术是基于生体过程或生物材料与物理信号或化学信号的相互作用实现的一种检测技术。
其原理主要包括生物识别元件(如抗体、酶、核酸等)与物理或化学传感元件(如电极、有机分子等)之间的作用。
通过生物识别元件与待测物质之间的特异性反应,产生信号变化,进而被物理或化学传感元件检测到并转化为可量化的电信号。
二、生物传感器技术的分类根据生物识别元件的类型,生物传感器技术可分为抗体传感器、酶传感器、核酸传感器、细胞传感器等。
抗体传感器利用抗体与特定抗原结合发生免疫反应,实现对抗原的检测和分析。
酶传感器则是利用酶与底物之间的特异性反应来检测和分析底物的存在和浓度。
核酸传感器通过测定DNA或RNA的序列或特定结构来实现对目标核酸的检测。
细胞传感器则基于细胞活性和代谢产物的变化来检测和分析生物分子。
三、生物传感器技术的应用生物传感器技术在医学领域具有广泛的应用价值。
例如,血糖传感器可以通过检测血液中的葡萄糖浓度,实现对糖尿病患者血糖水平的监测和调控。
DNA传感器可以帮助人们进行遗传病的早期诊断。
此外,生物传感器技术还可以应用于环境监测领域,如检测环境中的有害物质浓度和种类,以及水质、空气质量等的监测。
在食品安全方面,生物传感器可以大大提高食品中有害物质如农药残留、重金属等的检测灵敏度和准确性。
四、生物传感器技术的未来发展趋势随着生物传感器技术的不断发展,人们对其性能和应用的要求也越来越高。
未来,生物传感器技术可能出现以下发展趋势:首先,生物传感器的灵敏度将得到进一步提高,可以检测到更低浓度的物质。
其次,传感器将变得更加小型化和便携化,方便实时检测和现场应用。
此外,多功能和多参数传感器的研究和应用也将成为发展的趋势,实现复合分析和全面监测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶FET 酶光二极管
4
生物传感器的发展史(2)
生物传感器发展的整体划分:
❖ 第一代生物传感器以将生物成分截留在膜上或结合在膜 上为基础,这类器件由透析器(膜)、反应器(膜)和电化学 转换器所组成,其实验设备相当简单。
❖ 第二代生物传感器是指将生物成分直接吸附或共价结合 在转换器的表面上,从而可略去非活性的基质膜。
压电晶体生物传感器
22
生物传感器的固定方法
固定化技术:把生物活性材料与载体固定化成 为生物敏感膜。
1. 物理方法:夹心法、吸附法、包埋法; 2. 化学方法: 共价连接法、交联法; 3. 近年来, 由于半导体生物传感器迅速发展,
因而又出现了采用集成电路工艺制膜技术。
23
夹心法
❖ 将生物活性材料封闭 在双层滤膜之间,形 象地称为夹心法。
❖ 此方法的特点是一般不产 生化学修饰,对生物分子 活性影响较小;缺点是分 子量大的底物在凝胶网格 内扩散较固难。
18
生物传感器的特点
1. 根据生物反应的奇异和多样性,从理论上讲可以制 造出测定所有生物物质的多种多样的生物传感器;
2. 这类生物传感器是在无试剂条件下工作的(缓冲液 除外),比各种传统的生物学和化学分析法操作简 便、快速、准确;
3. 可连续测量、联机操作、直接显示与读出测试结果。
19
生物传感器的分类 ❖ 按分子识别元件分类 ❖ 按换能器分类
3
生物传感器的发展史(1)
❖ 最先问世的生物传感器是酶电极, Clark和Lyons最先提出组成酶电极 的设想。
❖ 70年代中期,人们注意到酶电极的 寿命一般都比较短,提纯的酶价格也 较贵,而各种酶多数都来自微生物或 动植物组织,因此自然地就启发人们 研究酶电极的衍生型:微生物电极、 细胞器电极、动植物组织电极以及免 疫电极等新型生物传感器,使生物传 感器的类别大大增多;
20
按分子识别元件分类
微生物 传感器
固定化 微生物
酶传感器
固定化酶
分子识别 固定化免疫物质
元件
免疫传感器
固定化细胞器
生物组织切片
细胞器传感器
组织传感器
21
按器件分类
生物电极
电化学电极
介体
介体生物传感器
传递系统
热敏电阻
光生物传感器
光学换能器
半导体
换能器 换能器
半导体生物 传感器
压电晶体
热生物传感器
13
生物传感器的工作原理
1. 将化学变化转变成电信号(间接型) 2. 将热变化转换为电信号(间接型) 3. 将光效应转变为电信号(间接型) 4. 直按产生电信号方式(直接型)
被测 物质
生
化学物质
物
敏 物理
热
感 化学 (产生 光 )
膜 变化
声
电化学器件 热敏元件 光敏元件 声敏元件
电信号
14
将化学变化转变成电信号的生物传感器
生物传感器的基本组成和工作原理
❖ 生物传感器的基本组成 ❖ 生物传感器的工作原理分类
10
生物传感器基本构成示意图
敏感元件
+
酶、抗体、核酸、细胞等。
酶 (Enzyme)
DNA
转换器
电化学电极 光学检测元件 场效应晶体管 压电石英晶体
抗体(Antibody)
11
生物传感器的分子识别元件 (敏感元件)
❖ 进入本世纪80年代之后,随着离子 敏场效应晶体管的不断完善,于 1980年Caras和Janafa率先研制成 功可测定青霉素的酶FET。
年代
特点
研究内容
60 生物传感 器初期
酶电极
微生物传感器, 70 发展时期 免疫传感器,
细胞类脂质传 感器,组织传 感器,生物亲
和传感器
进入生物 80 电子学传
❖ 这种方法的特点是操 作简单,不需要任何 化学处理,固定生物 量大,响应速度快, 重复性好。
24
吸附法
❖ 用非水溶性固相载体 物理吸附或离子结合, 使蛋白质分子固定化 的方法。
❖ 载体种类较多,如活 性炭、高岭土、硅胶、 玻璃、纤维素、离子 交换体等。
25
包埋法
❖ 把生物活性材料包埋并固 定在高分子聚合物三维空 间网状结构基质中。
分子识别元件
酶膜 全细胞膜 组织膜 细胞器膜 免疫功能膜
生物活性材料
各类酶类 细菌,真菌,动植物细胞 动植物组织切片 线粒体,叶绿体 抗体,抗原,酶标抗原等
12
生物传感器的工作原理
待测物质经扩散作用进入 固定生物膜敏感层,经分子 识别而发生生物学作用,产 生的信息如化学物质、光、 热、质量等被相应的信号转 换器变为可定量和处理的电/ 光信号,再经二次仪表放大 并输出,以电极测定其电流 值或电压值,从而换算出被 测物质的量或浓度。
15
将热变化转换为电信号的生物传感器
热辐射 热传导
16
将光效应转变为电信号的生物传感器
被测物——
固
定 ——h——
化 酶
光 检 ——电信号 测 器
17
直按产生电信号方式的生物传感器
反应直接在电极表面上发生
例:Cass 等提出一种测定葡萄糖的传感器,是用二茂 络铁为电子传递体。
➢ G、GL代表葡萄糖和葡萄糖内脂,GODox和GODred为氧化型 和还原型的葡萄糖氧化酶,而Fecp2R和Fecp2R+则为还原型和氧 化型二茂络铁。 ➢ 葡萄糖被GOD氧化的同时,GOD被还原成GODred,氧化型 的电子传递体2Fecp2R+可将GODred再氧化成GODox, 2Fecp2R 在阳极上电化学氧化生成2Fecp2R+。
生 物 传 感 器介 绍、分类和应用
1
目录
❖ 11.1 简要介绍 ❖ 11.2 酶传感器 ❖ 11.3 微生物传感器 ❖ 11.4 免疫传感器 ❖ 11.5 半导体生物传感器 ❖ 11.6 生物传感器应用与未来 ❖ 本章小结
2
11.1 简要介绍
❖ 生物传感器的发展史 ❖ 定义及说明 ❖ 生物传感器的基本组成和工作原理 ❖ 生物传感器的分类 ❖ 生物传感器的固定方法 ❖ 生物传感器的特点
❖ 第三代生物传感器是把生物成分直接固定在电子元件上, 例如FET的栅极上,它可直接感知和放大界面物质的变化, 从而将生物识别和电信号处理集合在一起。这种放大器 可采用差分方式以消除干扰。
5
快速葡萄糖分析仪
6
7
血糖乳酸自动分析仪
8
生物传感器定义及说明
❖ 生物传感器利用生物活性物质选择性的识别和 测定实现测量,主要由两大部分组成:一为功 能识别物质(分子识别元件),由其对被测物 质进行特定识别;其二是电、光信号转换装置 (换能器),由其把被测物所产生的化学反应 转换成便于传输的电信号或光信号。