表面肌电信号采集概论

合集下载

表面肌电分析

表面肌电分析

表面肌电简介及分析方法一、表面肌电信号概念表面肌电信号 (surface electrom yographic signal, sEMG 信号)是从皮肤表面通过电极引导并放大,显示记录神经肌肉活动时的生物电信号,主要是浅层肌肉和神经干综合的电活动。

表面肌电信号主要有参与活动的运动单位数量、放电频率、同步化程度、募集的模式等有关。

二、表面肌电信号主要是通过时阈和频阈两个方面进行分析1、sEMG 信号的时域分析方法时域分析用于刻画肌电图时间序列的振幅特征,主要指标包括积分肌电(integrete EMG,iEMG)、均方根值(root mean square,RMS)、平均振幅(MA)。

积分肌电值(integrated EMG, iEMG)是一段时间内肌肉中参与活动的运动单位放电总量,其值大小在一定程度上反映参加工作的运动单位的数量多少和每个运动单位的放电大小。

用来分析在单位时间内肌肉的收性。

平均振幅表示肌电信号的强弱,其大小与参与活动的运动单位数目和放电频率的同步化程度有关。

2、sEMG 信号的频域分析方法频阈方面的分析主要是在频率维度上反映 sEMG 的变化,表面肌电信号的频域分析广泛应用于肌肉疾病诊断和肌肉疲劳检测。

利用表面肌电信号进行傅立叶转换(FFT),获得的频谱或功率谱反映信号在不同频率上的变化。

常用指标有平均功率频率(Mean Power Frequency, MPF)和中位频率(Median Frequency, MF)。

MF 指放电频率的中间值,即肌肉收缩过程中放电频率的中间值,一般也是随着运动时间的增大而呈递减的趋势。

由于骨骼肌中快慢肌纤维组成比例不同,导致不同部位骨骼肌之间的 MF 值不同。

快肌纤维兴奋表现在高频放电,慢肌纤维则在低频。

一般在中高强度的运动时,MPF 和 MF 值会有所下降,频谱左移,则说明局部肌肉出现疲劳。

并且导致反映频谱曲线特征的 MPF 和 MF 产生相应的下降。

表面肌电的原理与应用

表面肌电的原理与应用

表面肌电的原理与应用1. 引言肌电图(electromyogram,EMG)是记录肌肉活动的一种方法,通过检测肌肉表面的电活动来分析肌肉的收缩情况。

表面肌电(surface EMG,sEMG)是指通过电极贴附在肌肉表面来获取肌电信号的一种方法。

本文将介绍表面肌电的原理和它在医学和科学研究中的应用。

2. 表面肌电的原理表面肌电是通过贴附在肌肉表面的电极来检测肌肉产生的电信号。

当肌肉收缩时,肌肉纤维会发生电活动,这些电活动可以在肌肉表面被电极捕捉到。

表面肌电信号主要包括两种类型的活动:肌电阶跃和肌电波形。

•肌电阶跃:肌电阶跃是指肌肉在开始收缩时的电信号变化,通常表现为一个电压阶跃。

肌电阶跃的幅度和速度可以反映肌肉收缩的强度和快慢。

•肌电波形:肌电波形是指肌肉收缩过程中的电信号变化,通常表现为一个周期性的波形。

肌电波形的形态可以反映肌肉收缩的时程和模式。

表面肌电信号在获取后可以进行信号处理和分析,以提取相关的特征参数和信息。

3. 表面肌电的应用3.1 生物医学研究表面肌电在生物医学研究中有广泛的应用。

它可以用于研究肌肉生理功能,如肌肉的力量和疲劳特性。

通过分析表面肌电信号,可以评估肌肉的力量和稳定性,并了解肌肉的疲劳程度。

表面肌电还可以用于研究肌肉运动控制和协调,如运动技能的学习和训练。

3.2 运动医学表面肌电在运动医学中有重要的应用价值。

它可以用于评估肌肉功能和运动性能,以及运动损伤的康复。

通过分析表面肌电信号,可以判断肌肉的活动模式和协调性,发现潜在的运动损伤风险。

表面肌电还可以用于指导运动康复训练,根据肌电信号的变化调整训练计划,促进康复效果。

3.3 人机交互表面肌电在人机交互领域也有广泛的应用。

通过捕捉肌电信号,可以实现人体姿势和手势的识别。

通过分析表面肌电信号,可以识别人体肌肉的活动模式,并将其转化为相应的控制指令,实现与计算机、智能设备的交互。

3.4 生物反馈训练表面肌电也可以被应用于生物反馈训练中。

表面肌电信号特征

表面肌电信号特征

表面肌电信号特征表面肌电信号(Surface Electromyography,简称sEMG)是通过测量肌肉表面电位变化来反映肌肉活动的技术。

在运动学、工程学、物理学、医学、运动康复等领域,sEMG技术被广泛应用于肌肉活动的研究中。

下面将介绍sEMG信号的特征。

一、频率特征sEMG信号的频率特征是指信号中包含的频率成分。

sEMG信号频率范围通常为10-500 Hz。

通常将sEMG信号分为三个频带,即低频段(10-100 Hz)、中频段(100-250 Hz)和高频段(250-500 Hz)。

其中,低频段反映了肌肉的肌力变化,中频段反映了肌肉的疲劳状态,高频段反映了肌肉的颤动和抖动。

二、幅值特征sEMG信号的幅值特征是指信号电位的均方根值(Root Mean Square,简称RMS)。

RMS值越大,代表肌肉收缩的力度越强,反之,RMS值越小,肌肉收缩的力度越弱。

三、时域特征时域特征分为两个方面:幅度分布特征和波形轮廓特征。

幅度分布特征是指sEMG信号在时间轴上的分布情况,可以反映肌肉收缩的强度和肌肉的功能。

波形轮廓特征是指sEMG信号波形的上升、下降、持续时间等特征,可以反映肌肉收缩的速度和肌肉的协调性。

四、空间特征空间特征是指不同位置肌肉间的sEMG信号差异。

当肌肉活动时,sEMG 信号的强度和形态在不同的位置上可能会有所不同。

综上所述,sEMG信号与肌肉活动密切相关,sEMG信号的频率、幅值、时域和空间特征等特征均可用来量化肌肉收缩的情况,进而为肌肉活动的研究提供依据。

在未来的发展中,sEMG技术将会得到更广泛的应用。

人体表面肌电信号采集系统研究

人体表面肌电信号采集系统研究
根据肌电信号的特点和采集系统特性的研究,通过软件仿真和噪声控制等措施设计了 一种较好的肌电信号采集系统。研究内容和创新点如下:
1.肌电信号提取 利用表面电极提取肌电信号,并且通过利用 INA128 芯片及周边电路软件设计,以实 现能够将微弱肌电信号顺利提取进采集系统; 2.肌电信号放大滤波电路的设计 肌电信号滤波电路是肌电信号采集系统的关键。根据肌电信号的幅频特性以及外界对 肌电信号的影响,设计了较好的滤波电路,特别是设计了一种新型的 50Hz 工频电路,能 够很好的解决工频噪声对肌电信号的影响; 3.真有效值电路设计 真有效值电路能够很好的将肌电信号波形进行整流滤波,方便肌电信号的观测,也实 现日后单片机处理肌电信号; 4.肌电信号数据显示 为了更好采集到得肌电信号使其完整性、准确地显示于计算机,通过利用软件仿真的 方式对系统的硬件电路进行验证,并通过利用 Matlab 软件最终将肌电信号在计算机上显 示出来。 本文通过对肌电信号特点的研究和设计,实现了肌电信号的采集显示功能。并且依据 设计方法可以推广到低频微弱信号在强电磁波噪声干扰下的采集。 关键词:表面肌电信号,滤波电路,50Hz 工频陷波,数据采集。
§1-3 研究内容
国外公司肌电采集系统能很好的完成肌电信号的提取采集,但是由于高昂的价格和较差的兼容性, 以及较差的便携性,对于我们的康复工程和假肢控制带来不便。
在国内生理信号采集技术已有几十年的技术积累。70 年代末,国内医学信息技术进入了新的发展 阶段。许多专家开始了以赶超国际医学研究水平为目标的课题实施。而真正以微型计算机为基础的革 命性生物医学工程研究则从 80 年代初开始。83 年后,由 Z--80 至 8086/8088 CPU 及 PC 总线机种与 DOS 系统的普及,尤其是国产化优质价廉的采集控制接口产品的推广,给国内生理医学工程技术的发 展,注入了强有力的增长剂。国内近几年肌电采集放大系统发展迅速。南京大学微弱信号研究中心研 制的 HB-851 系统能采集到原始的肌电信号,能够比较好的消除噪声的影响。Pclab 生物信号采集处理 系统是国内对生理信号采集研究的最新科研成果,它主要由硬件与软件两大部分组成。硬件主要完成 对各种生物电信号(如:心电、肌电、脑电)与非电生物信号(如:血压、张力、呼吸)的采集,并 对采集到的信号进行调理、放大,进而对信号进行模/数(A/D)转换,使之进入计算机。特别是近 2

表面肌电信号检测电路的原理与设计方法

表面肌电信号检测电路的原理与设计方法

表面肌电信号检测电路的原理与设计方法表面肌电信号(Surface Electromyographic Signals, sEMG)是一种用于检测人体肌肉活动的生物电信号。

sEMG信号检测电路的设计是为了提取和测量这些信号,用于各种应用,如康复医学、运动控制、人机交互等。

本文将介绍sEMG信号检测电路的原理、设计方法和相关考虑因素。

一、表面肌电信号简介表面肌电信号是通过肌肉纤维活动而产生的电信号,由肌肉活动引起的离子流动引起了肌肉组织的生物电势变化。

sEMG信号具有较低的幅度和较高的噪声水平,需要通过合适的电路设计和信号处理技术来提取有用的信息。

二、表面肌电信号检测电路的原理表面肌电信号检测电路主要由前置放大器、滤波器和增益控制器组成。

其工作原理如下:1. 前置放大器:前置放大器用于增强sEMG信号的幅度,以便后续的信号处理。

由于sEMG信号的幅度较小,前置放大器应具有高放大倍数、低噪声和宽频带特性。

常用的前置放大器电路包括差分放大器和双电源放大器。

2. 滤波器:滤波器用于去除sEMG信号中的噪声和无关频率成分,以提取感兴趣的信号。

常用的滤波器包括低通滤波器和带通滤波器。

低通滤波器主要用于去除高频噪声,带通滤波器可选择性地通过感兴趣的频率范围。

3. 增益控制器:增益控制器可根据需求调整sEMG信号的放大倍数,以适应不同的应用场景。

它可以通过选择不同的反馈电阻或电压增益控制电路来实现。

三、表面肌电信号检测电路的设计方法在设计表面肌电信号检测电路时,需要考虑以下因素:1. 电源选择:应选择适宜的电源电压和电流,以满足电路的工作要求,并保证信号的质量和稳定性。

2. 前置放大器设计:根据sEMG信号的幅度和噪声水平,选择合适的放大倍数和前置放大器电路。

同时,注意选择低噪声、宽频带的运算放大器和适当的反馈电路。

3. 滤波器设计:根据应用需求,选择合适的滤波器类型和截止频率。

滤波器的设计应考虑滤波器特性、阶数和滤波器电路的实现方式。

表面肌电采集

表面肌电采集

表面肌电采集
表面肌电采集(Surface electromyography,sEMG)是一种通
过外部电极放置在皮肤表面来测量和记录肌肉活动的技术。

它通过测量肌肉组织中的电位差来反映肌肉的电活动。

表面肌电采集的操作比较简单,只需要将电极贴在身体的肌肉表面即可。

常见的电极有单极和双极两种,单极电极只记录肌肉的总体电位,而双极电极则可以记录肌肉间的电位差。

使用表面肌电采集技术可以获取到肌肉的电活动信号,进而了解肌肉的收缩程度和模式。

这对于运动研究、康复训练、人机交互等领域都具有重要意义。

例如,在康复训练中,可以利用表面肌电采集技术帮助康复者正确执行运动,并监测康复者的肌肉恢复情况。

虽然表面肌电采集技术操作简单,但是由于信号受到肌肉发电、电极脱落、噪声干扰等因素的影响,数据质量可能存在一定的限制。

因此,在采集和分析数据时需要注意噪声的去除和信号处理的方法,以获得准确可靠的结果。

2014课程设计_表面肌电信号采集

2014课程设计_表面肌电信号采集

课程设计任务书
表面肌电信号采集
一、任务指南
肌肉收缩时伴随的电信号,表面肌电信号是各个运动单元动作电位在表面电极处之和,是在体表无创检测肌肉活动的重要方法。

本研究分析表面肌电信号的检测与分析方法,实现对手指运动或抓握力量的估计。

图1 表面肌电信号及其分解
图2 手指运动的肌电识别
二、设计原理
原理框图如图3所示,输入为差分输入,AD转化采用我们购买的NI的AD 采集卡(16位),PC机上可采用matlab或Labview对采集的肌电信号的处理,显示手指运动或握力大小。

图3 表面肌电采集电路结构
三、技术指标
(1)肌电信号采集电路
4通道差分输入,CMRR>100dB,噪声<2uV,输入阻抗>110M欧姆,频带:0.1-500Hz,放大倍数1000,测量精度: 1uV/最小刻度。

(2)应用matlab/Labview对肌电信号分析
肌电信号的时域和频域特征分析,能区分手指的弯曲与伸展或握力的大小。

四、设计要求
1、查阅文献,了解表面肌电信号特点和采集电路。

2、按设计要求,独立完成肌电采集电路的设计,使用电路设计软件(PROTEL/Altium Designer/orCAD/Multisim)完成检测电路图和PCB板绘制。

3、在通用板上完成电路的焊接与调试。

五、参考器件
AD8220 4片;OP4177 3片
电阻、电容、导线、电极若干。

表面肌电信号处理

表面肌电信号处理

表面肌电信号处理
表面肌电信号处理是一种用于研究肌肉活动的技术。

它通过测量肌肉表面的电信号来分析肌肉的活动情况。

这种技术可以用于研究肌肉的运动控制、肌肉疲劳、肌肉损伤等方面。

表面肌电信号处理的基本原理是利用肌肉收缩时产生的电信号来反映肌肉的活动情况。

这些电信号可以通过肌肉表面的电极来测量。

测量到的信号经过放大、滤波等处理后,可以得到肌肉的活动情况。

表面肌电信号处理可以用于研究肌肉的运动控制。

通过测量肌肉的电信号,可以了解肌肉在不同运动状态下的活动情况。

这对于研究肌肉的运动控制机制非常重要。

例如,可以研究肌肉在不同运动强度下的活动情况,以及肌肉在不同运动方式下的活动情况。

表面肌电信号处理还可以用于研究肌肉疲劳。

肌肉疲劳是肌肉长时间运动后的一种生理现象,会导致肌肉力量下降、肌肉酸痛等症状。

通过测量肌肉的电信号,可以了解肌肉在疲劳状态下的活动情况。

这对于研究肌肉疲劳机制、预防肌肉疲劳等方面非常重要。

表面肌电信号处理还可以用于研究肌肉损伤。

肌肉损伤是肌肉受到外力或过度使用等因素导致的一种损伤。

通过测量肌肉的电信号,可以了解肌肉在损伤状态下的活动情况。

这对于研究肌肉损伤机制、预防肌肉损伤等方面非常重要。

表面肌电信号处理是一种非常重要的技术,可以用于研究肌肉的运
动控制、肌肉疲劳、肌肉损伤等方面。

随着技术的不断发展,表面肌电信号处理将会在更多领域得到应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面肌电信号采集(硬件部分)报告一.研究背景
肌肉收缩时伴随的电信号,表面肌电信号是各个运动单元动作电位在表面电极处之和,是在体表无创检测肌肉活动的重要方法。

本课程设计通过表面肌电信号幅值的检测,实现对手指运动或抓握力量的识别。

图一表面肌电信号
图2 手指运动的肌电信号
肌电信号特性
设计肌电信号采集系统,首先要了解并分析肌电信号的特性,明确肌电信号的特性能够更好的滤除噪声,更好的设计肌电采集系统。

肌电信号发源于作为中枢神经一部分的脊髓中的运动神经元。

运动神经元的细胞体处在
其中,其轴突伸展到肌纤维处,经终板区(哺乳类神经肌肉接头为板状接头,故称终板或称运动终板motor endplate)与肌纤维耦合(是生化过程性质的耦合)。

与每个神经元联系着的肌纤维不只一条。

这些部分合在一起,构成所谓运动单位,如图(2.1)。

运动单位是肌肉的最小功能单位并能被随意地激活,它由受同一运动神经支配的一群肌肉纤维组成,肌电信号(EMG)是由不同运动单位的运动单位动作电位motor unit action potential,MUAP)组成。

肌电信息与肌肉收缩的关系可以概述如下:由中枢神经系统发出传向运动神经末梢分支的运动电位,传递着驱使肌肉收缩的信息。

由于神经末梢分支的电流太小,常不足以直接兴奋大得多的肌纤维,但是通过神经肌肉接头处的特殊终板的类似放大作用,这样就爆发一个动作电位沿着肌纤维而传播,在动作电位的激发下随之产生一次肌肉收缩。

这种兴奋和收缩之间的联结是通过肌纤维内部特殊的传导系统实现的,因此,可以明确以下概念:1)动作电位不是肌肉收缩的表现,而是发动肌肉收缩机制的重要部分。

2)由于肌肉信号只与给予肌肉的指令成比例,因此肌肉实际上不需要产生力,但工作了的肌肉仍然是发放肌电的适当源泉。

各肌纤维在检测点上表现出的电位波形,其极性与
终板和检测点的相对位置有关(例如图2.2上纤维1和n引起的电位波形与纤维2,3引起的电位波形反向)。

又和纤维与检测点间的距离有关,相距愈远,幅度愈小。

各肌纤维在检测点间引起电位的总和构成运动单元的动作电位(MUAP)。

由于轴突上的电发放是脉冲序列,因此检测点间引起的也是动作电位的序列(MUAPT),如图2.3所示。

二、设计原理
采集电路原理如图3所示,本次任务要求采集人体前臂指浅屈肌的表面肌电信号,通过示波器观察采集的肌电信号随手指握力大小变化而变化。

图3 表面肌电信号调理电路结构图
1、前级运放的噪声是仪器引入噪声的主要来源,因此前级运放需选用具有低噪声性能的仪表放大器。

前级仪表放大器的选用:
(1)输入电压噪声和输入电流噪声小。

(2)共模抑制比CMRR大。

(3)差模输入阻抗大。

(4)输入偏置电流小。

根据这个要求我们比较选取了AD公司的AD8220仪表放大器
AD8220产品特性:
1)输入电压噪声:14Nv/Hz.
2)输入电流噪声:1Fa/Hz.
3)共模抑制比CMRR:100.
4)输入偏置电流:10Pa
根据图3,肌电信号处理步骤总体设计图如下
图1-1
二.设计方案
1.前级放大部分
采用AD8220仪表放大器
图2-1 该部分由三个芯片组成u1为AD8220放大 前置放大倍数为G 1
)
32(*1/)321(4.49++++Ω
=
R R R R R R K G
Ω
=K R 12.41
Ω=K R 9.242
Ω=K R 9.243 总体 G=30
AD8220的设置电阻中点接入两个op07进行缓冲、反转并放大这点的共模电压驱动回身体。

Multism 上仿真如下图
2.高通、低通滤波部分
图2-2-1 高通滤波 图2-2-2 低通滤波器
本次方案采用低通+高通形成带通的方式进行滤波,频率成分主要分布在20Hz~500Hz 之间,选用的芯片均为OP07,价格较为便宜,且使用方便,同时也可满足题目所需。

高通滤波器:其放大倍数G=1.9998=2,经RC
f π21
=计算,Hz f 20=。

Multism 上仿真如下
低通滤波器: 其放大倍数G=8.333,经计算RC
f π21
=,f =500Hz Multism 上仿真如下
3.50hz限波
50hz工频对表面肌电信号的采集有很大的影响,频率在肌电信号频率范围内且幅度大于肌电信号,因此要滤去。

Multism仿真如下
4.后级放大部分
电路图如下:
Multism仿真如下
,Rf=10k,R=1.1k,G=10.9.
6.电平抬升
使用一个op07组成的累加器,对前级输出进行抬升。

Multism 仿真如下
7.总体电路图
R Rf
G +
=1
二.测试
1.输入肌电信号:舒张紧握:
2.结果分析
实验结果并未达到预期的1000倍,只有几百倍。

但并不妨碍肌电信号的采集输出。

三.总结
今次实验课对我来说并不容易,当我准备开始本次课程设计时,我甚至不知道从何处下手!辛亏我和搭档在网上查阅了大量资料,然后通过好搭档的简单交流,了解到本次课程设计的重点是滤波电路,于是我们研究了相关滤波电路。

跟某些组来比,我们组开始的进度并未不快,直到第三次实验课结束才最终确定了总体电路,幸运的是仿真成功了。

我并不擅长焊接电路,所以我很感谢我的搭档,她一个人利用空闲时间完成了整个电路的焊接。

焊接后我们开始了调试,然而调试的过程中并不一帆风顺,一个简单的跟随器电路居然出了差错!我们用一个晚上才最终找出来问题的所在——电路某些部分焊接失误,排除了这个错误后,我们继续测试,然后几个芯片op07又不能发挥正常功能,幸亏其他组借了我们几个芯片给我们,调试才能继续下去。

终于到了第九周,我们开始了最后的测试阶段,可是在进行人体试验的时候,差分反向段电极也没能发挥正常功能。

除却以上所说的,整个实验过程还是比较顺利的,在长达九周的时间里,我们凭借自己的努力和帮助我门的人,终于圆满的结束此次实验设计课程,我知道自己还有很多不足,所以接下来我会更加严格要求自己,让这条路越走越宽敞。

生物医学工程学院
题 目:表面肌电信号采集
指导老师:李正义
年 级:2013级
小组成员:
张梦莎 201321121113
瞿康为 201321121094
报告内容:
● 系统方案设计与比较
● 单元电路设计与计算
● 系统测试
● 总结
报告撰写者:瞿康为。

相关文档
最新文档