地震属性的含义
地震属性含义

1、属性名称:反射强度(Reflection Strength),振幅包络(Amplitude Envelope),瞬时振幅(Instaneous Amplitude)REFLSTAN (缩写)定义:在解释中的应用:用于振幅异常的品质分析;用于检测断层、河道、地下矿床、薄层调谐效应;从复合波中分辨出厚层反射。
属性特征:提供声阻抗差的信息。
横向变化常与岩性及油气聚集有关。
值总是正的。
2、属性名称:瞬时相位(Instaneous Phase)INSTPHAS(缩写)定义:在解释中的应用:进行地震地层层序和特征的识别;加强同相轴的连续性,因此使得断层、尖灭、河道更易被发现。
可对相位反转成图,有可能指示含气与否。
属性特征:描述了复相位图中实部和虚部之间的角度。
它的值总在±180°之间。
瞬时相位是不连续的,从+180°到-180°的反转可引起锯齿状波形3、属性名称:瞬时频率(Instaneous Frequency)INSTFREQ(缩写)定义:在解释中的应用:用于气体聚集带和低频带的识别;确定沉积厚度;显示尖灭、烃水界面边界等突变现象属性特征:瞬时相位对时间的变化率。
值域为(-fw, + fw)。
然而,大多数瞬时相位都为正。
可提供同相轴的有效频率吸收效应及裂缝影响和储层厚度的信息4、属性名称:正交道(Quadrature Trace),希尔伯特变换(Hilbert Transform)QUADRATR(缩写)定义:h(t)是f(t)的希尔伯特变换,也是f(t)的90°相移在解释中的应用:用于复数道分析的品质控制属性特征:当实地震道代表地震响应中质点位移的动能时,正交道相当于质点位移的势能5、属性名称:视极性(Apparent Polarity)APPAPOLA(缩写)定义:在振幅包络峰值处实地震道的极性在解释中的应用:用于振幅异常的品质分析属性特征:为实地震道的符号位,假设零相位子波、视极性与反射系数的极性相同6、属性名称:响应相位(Response Phase)RESPPHAS(缩写)定义:在振幅包络峰值处的瞬时相位值在解释中的应用:地震地层层序的识别、检测。
地震属性精讲

地震属性精讲什么是地震属性?地震属性指的是那些由叠前或叠后地震数据,经过数学变换而导出的有关地震波的几何形态、运动学特征和统计特征,其中没有任何其它类型数据的介入。
长时间以来,我们使用地震属性进行地震解释。
自60年代起,利用薄层调谐厚度的概念,进行薄层解释。
70年代以来,使用了反射波振幅变化特征——亮点、暗点、平点,对含气砂岩储集体进行预测。
80年代,出现了AVO分析技术,改进了含气砂岩和岩石孔隙中的饱和液成分的预测;给出了岩石柏松比对比度增大的标志,以鉴别岩性和岩石孔隙度。
在这个期间,地震属性多半是基于振幅测量的瞬时属性。
70年代后期到80年代,地震地层学解释迅速发展,广泛应用。
通过分析地震反射特征,确定地震相类型并作岩相转换,这是地震地层学分析的基本方法。
瞬时振幅和瞬时频率被用于岩性解释,瞬时相位被用于检测地层的接触关系。
90年代以来,由于储层描述和3D数据体解释的需要,地震属性技术急剧发展。
利用地震属性技术进行储层不均匀性描述。
一般是利用测井资料解释储层物性参数与井旁地震道地震属性之间的相关性,将地震属性转换成储层物性,并推算到井间或无井区。
这项工作被称为地震引导测井储层物性估计,用以制作岩石物性剖面。
因此,地震属性技术在储层预测、储层特征参数描述、储层动态监视等方面的应用,已成为石油工业注意的焦点。
3D地震数据能形成3D的地震属性体,如倾角、方位、相干体和方差体等,所解决的问题是地下空间范围的问题;高速发展的计算机技术(硬件)和计算技术(软件),大大地提高了测量地震波的几何学、运动学、动力学和统计学的能力,使得地震属性的提取简便、快捷;人机交互工作站的使用和强大的功能,使得解释人员能正确选用地震属性,合理地解释地质现象;物探、地质和油藏技术人员的结合,赋予地震属性更加有效的地质意义,尤其是对储层的研究开辟了一个新的途径。
这些都是地震属性技术能够快速发展的重要因素。
地震属性技术在我国的发展,起步于80年代中后期。
3 地震属性技术

3 地震属性技术3.1 地震属性的概念与分类3.1.1 地震属性的概念地震属性是指从叠前和叠后地震数据中提取出来的运动学、动力学和统计学地震特殊测量值,过去的文献常称为地震属性参数,现在已统称为地震属性。
地震属性技术是指提取、显示、分析和评价地震属性的技术,在煤田地震勘探中包括地震属性的提取、地震属性的分析、利用地震属性区分构造、岩性并进行目的层预测。
3.1.2 地震属性分类地震属性的分类没有统一的标准,不同的学者分别提出过不同的属性分类。
结合煤田地震勘探的特点,可以根据运动学/动力学特征把地震属性分成八个类别:时间、振幅、频率、相位、波形、相关、吸收衰减、速度。
地震属性的类型很多,要根据解决的地质问题来选择相应的地震属性。
地震属性技术的关键在于属性提取,提取方式包括同相轴属性提取和数据体属性提取。
1.提取同相轴属性同相轴属性是与某个界面有关的地震属性,具体提取方法包括瞬时提取法、单道分时窗提取法和多道分时窗提取法。
瞬时提取法即传统的“三瞬”参数,瞬时振幅、瞬时相位和瞬时频率。
单道分时窗提取法是在一个地震道上用“可变时窗”提取各类属性参数,通过解释出的反射同相轴来定义可变时窗的上界和下界。
常用的有时间域属性参数、频率域属性参数和分形分维属性参数。
多道分时窗提取法是在多个地震道上用可变时窗提取各类属性参数,除了要定义可变时窗的上界和下界外,还需要定义处理道数。
将所得到地震属性放到中心道位置上。
常用的有品质因素和二维分形参数。
2.提取数据体属性基于数据体的地震属性将产生一个完整的属性体,其最大优点是能产生相关型的数据,从而提供逐道之间地震信号相似性和连续性的有用信息。
将固定的三维数据体转化为能反映一定地球物理特征的新三维数据体。
最常见的是相干数据体和方差数据体。
3.2 地震属性提取煤层地震波中含有大量地震信息,无论是煤层的构造变化或岩性变化都会引起它们的变化。
煤层的构造或岩性变化主要反映在密度、速度及其它弹性参量的差异上,这些差异导致了地震波在传播时间、振幅、相位、频率等方面的变化或异常。
地震属性含义及其应用

地震属性含义及其应用一、瞬时属性19 假定复数道表示为:u(t) = x(t) • iy(t),则1. 瞬时实振幅IReAmp ( In sta nta neous Amplitude )是在选定的采样点上地震道时域振动振幅。
是振幅属性的基本参数。
广泛用于构造和地层学解释。
用来圈定高或低振幅异常,即亮点、暗点。
反映不同储集层、含气、油、水情况及厚度预测。
2. 瞬时虚振幅IQuadAmp (I nst. Quadrature Amplitude)是复数地震道的虚部,与复数地震道的相位为90o时的时域振动振幅。
即正交道,为虚振幅。
因它只能在特定的相位观测到,多用来识别与薄储层中的AVO异常。
3. 瞬时相位IPhase ( Instantaneous Phase)(t)二Atan(y(t).x(t)),定义为正切,输出相位已转换为角度,数值范围是[-180o,180°]。
为q(t)/f(t)的一个角,是采样点处地震道的相位。
有助于加强储层内部的弱反射同相轴,但同时也加强了噪声,可用于指示横向连续性;显示与波传播有关的相位部分;用于计算相速度;因为没有振幅信息因此能够显示所有同相轴;用于显示不连续;断层、显示层序边界。
由于烃类聚集常引起局部相位变化,也可以做烃类直接指示之一。
4. 瞬时相位余弦CIP ( Cos ine of In st. Phase )是瞬时相位导出的属性。
其计算式为Cos( (t))常用来改进瞬时相位的变异显示。
并用于相位追踪和检查地震剖面对比、解释的质量。
多与瞬时相位联用。
5. 瞬时频率IFreq (I nst. Freque ney)定义为瞬时相位对时间的函数 d (t) dt (以度/毫秒或弧度/毫秒表示),其量纲为频率的量纲(Hz),是地震道在频率方面的瞬时属性。
用来计算、估算地震波的衰减。
油气储层常引起高频成分衰减及杂乱反射显示,所以横向上可用于碳氢指示。
高频成份多显示为尖锐的界面或薄层,亦可反映岩相的粗、细变化及地层旋回。
地震解释7地震属性分析技术及其应用

如:交会分析,回归分析,地质统计分析等
6
6
一.地震属性的概述 2.地震属性技术的发展历程
地震剖面的彩色显示(Balch,1971;Anstey,1972)
Balch的成果被称为一个用颜色进行地震资料分析的时代的开始。 Anstey代表了把颜色和属性引入地震世界的里程碑。 亮点技术(Anstey,1972) 包括超强振幅、平点、频率损失、反射时间下弯、时间阴影、 极性倒转、暗点、低频阴影、Q 属性,…… 复地震道分析技术(Taner,1976)
振 幅 类
瞬 时 类
频 谱 类
层 序 类
非 线 性 类
21
21
二.地震属性的分类
用于隐蔽型油气藏研究的具体属性参数表
(五大类46个属性参数)
22
22
二.地震属性的分类
振幅类属 瞬时类属 性 性
反映了岩石波 阻抗差、地层 厚度、岩石成 分、地层压力、 孔隙度及含流 体成分的变化。 基于小波变换 的实部与虚部 提取。 某一道能量在 给定时刻的稳 定性、平滑性 和极性变化的 一种度量。 给定时刻信号 的复能量密度 函数(即功率 )的初始瞬间 中心频率(均 值)的一种度 量。
能 量
比 率
17
17
根据波运动学/动力学特征进行的地震属性分类(Quincy Chen)
振
瞬时真振幅 瞬时振幅积分 瞬时真振幅乘以瞬时相位 的余弦 反射强度 基于分贝的反射强度 反射强度的中值滤波能量 反射强度基于分贝的能量 反射强度的斜率 滤波反射强度乘以瞬时相 位的余弦
幅
波
视极性
形
频
瞬时振幅
率
①瞬时振幅对声阻抗中的变化敏感,所以对岩性、孔隙度、烃和薄层调谐也很敏感 ②瞬时相位对追踪反射层连续性很有用处,所以可以用来探测不整合、断层和地层的横向变化
地震属性文字部分

4.地震属性分类
• 地震属性内容十分丰富,多达百种。 • 从计算角度可以分为两类:
一类是单道计算的地震属性;如频率、 相位和振幅类属性。 另一类是多道计算的地震属性。如相干 体(差异性)和波形聚类(相似 性)。 • 从地震属性的拾取方式可分为: 沿层和层间地震属性
5.沿层和层间地震属性提取方法
PAL 画一个使这三个采样点适合曲线并且 沿这一曲线确定出最大值。 Maximum Peak Amplitude = 125
(4)、平均波峰振幅 (Average Peak Amplitude) 平均峰值振幅是对每一道在分析时窗里的所有正振幅值相加,得到总数除以时 窗里的正振幅值采样数得到的。
(5)、最大波谷振幅 (Maximum Trough Amplitude) 最大波谷振幅的求取方法是,对于每一道,PAL 在分析时窗里做一抛物线, 恰好通过最大负的振幅值和它两边的两个采样点,沿着这曲线内插可得到最大波谷 振幅值。
专题4:地震属性分析技术
一、地震属性的基本概念 二、地震属性的分类 三、地震属性的计算方法 四、常用地震属性的意义和应用 五、地震属性与储层参数数值关系分析 六、应用实例
1.地震属性(Seismic attribute)的定义
• 地震属性是指从地震数据中导出的,与地震波 几何学、运动学、动力学及统计特征有关的具 体参数值。
Байду номын сангаас
6.地震属性的计算方法
单道计算地震属性理论
复数地震道公式:
x(t) xr (t) ixi (t)
瞬时相位计算公式:
(t) arctan(xr (t) xi (t))
瞬时频率计算公式:
f (t) d (t)
dt
瞬时振幅计算公式:
地震属性

一、地 震 属 性
一、Amplitude Statistics(振幅统计)
15、振幅峰态
用途: 识别振幅异常或刻画地层层序特征 识别岩性或含气砂岩变化 区分连续沉积和杂乱反射
二、复数道概念
复数道,包括实分量(传统的地震道)和虚分量(正交道) F(t)=f(t)+ih(t) f(t) 实地震道 h(t) 正交道 i -1开方 利用希尔伯特变换, 实地震道f(t)可以转换成正交道h(t)
用途: 识别岩性或含气砂岩变化, 适用于刻画层序地层内或沿特定反射 异常的平面展布
振幅
一、地 震 属 性
一、Amplitude Statistics(振幅统计)
4、平均峰值振幅
时窗内所有的峰值(正值)加起来;然后用总数除以窗口内的正样点数
用途:识别岩性、含气砂岩和地层变化等沉积造成的地震异; 区分连续沉积和杂乱反射
用途:识别岩性或含气砂岩变化 区分连续沉积和杂乱反射 适用于刻画层序地层内的振幅变化
一、地 震 属 性
一、Amplitude Statistics(振幅统计) 11、总 能 量
对每一道,计算指定时窗内振幅的平方之和
12、平均振幅
对每一道,在时窗内把所有振幅的相加,除以时窗内的非零样 点值的样点数。如时窗太大,建议时窗小一点(20到100ms)
4、反射强度的斜率
• PAL把每道转换成反射强度,然后在时窗内,做一个与反射强度匹配的 最小平方回归曲线。曲线的斜率即为反射强度的斜率。如反射强度向下 增加,斜率为正;如反射强度向下减小,斜率为负。 • 应用 反射强度斜率对画出主要垂直地层的趋势很有用。如,海进和海退序列 可以产生高振幅砂岩相和低振幅页岩相之间的垂直梯度。这些垂直变化 在反射强度斜率中非常明显,反射强度斜率属性,可以提供砂岩和页岩 的横向位置。同样,反射强度斜率对储层流体的变化也有反应。通过平 面图可以确定气和油的横向位置。
地震属性

地震属性(seismic attribute)指的是那些由叠前或叠后地震数据,经过数学变换而到处的有关地震波的几何学、运动学、动力学或统计学特征。
其中没有任何其他类型数据的介入。
到目前为止,还没有一个公认的地震属性分类。
Quincy Chen等以波的运动学和动力学特征将地震属性分为:振幅、频率、相位、能量、波形、衰减、相关和比率等八大类,每一大类包含几至二十几类不等。
从地震属性的基本定义看,它是表征地震波形态、运动学特征、动力学特征和统计特征的物理量,有这明确的物理意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*说明:谱属性(Spectral Attribute)谱分解(Spectral Decompose)轨迹属性类(Local Attribute)*瞬时频率(Inst Frequency ):定义为瞬时相位对时间的导数,用Hz 表示。
经常用来估计地震振幅的衰减,往往油气的存在引起高频成分的衰减,可用这一属性检测油气。
瞬时相位(Inst Phase ):表示在所选样点上各道的相位值,以度或弧度表示。
主要用于增强油藏内弱同相轴,对噪音也有放大作用,最终成图的彩色色标应考虑到反射强度(Reflection Magnitudes ):反映了岩性差异、地层连续、地层空间、孔隙度的变化。
反(负)二阶微商变换(Negative of Second Derivative ) :显著地提升了连续性,有助于更快、更准确的层位解释。
道积分(Integrated Seismic Trace ):能起到伪波阻抗剖面的作用. 并不是说用它替代反演, 它可以起到快速指示孔隙度变化的作用.谱分解技术(Spectral Decomposition )—— 分频:用于揭示薄层岩性横向的变化,指示可能的含烃地层圈闭。
最后分频属性和井砂岩厚度结合作出目标层段的砂岩厚度图。
由于不同频率段所看到的东西是有区别的,所以分频还可以观察到河道的形状更清晰,河道内的岩性细节变化。
砂岩厚度图流程图:Find the Power Spectrum usingSYNTHETICS Extract Tuning FrequencySATK Run Spectral DecompositionSATK Net Thickness DeterminationCorrelate using LPM等频体(Iso Frequency):结果是一个某一特定频率的相关数据体。
一旦确定了某一关键频率,可以处理一个该频率的时间或深度数据体。
均方根振幅(RMS)的沿层切片:反映了特定时窗内的地震波振幅的平均变化水平,其数值的大小与储层性质、岩石成分和流体性质等有关,还可以反映地层的平均吸收性质。
均方根振幅可识别亮点、暗点。
扇体、河道砂的横向变化引起的RMS 振幅变化特征明显,同时,储层含气也容易引起RMS 振幅异常。
能量半衰时(Half Energy ):是指在给定的分析时窗内,计算能量达到1/2时的相对时间位置。
能量半时可用来测定时窗内能量变化的速度。
从能量半时可以指示2i平均能量Average Magnitude :这个属性计算定义数据体内每一道平均绝对振幅最大振幅Maximum Amplitude :是测量在时窗内(时间或深度)的反射率。
在时窗内最大正极数并且它是用来正极振幅直接探测烃类显示,如“亮点”。
最小振幅Minimum Amplitude :与最大振幅相反,如“暗点”。
平均振幅Mean Amplitude :这个算法是测量道斜线。
正或负斜线可能指示亮点的存在。
岩性的横向变化或含气砂岩容易导致的中值振幅改变,地层层序的变化往往弧长(Arc Length ):是测量反射异常,反射关系的横向变化。
它是地层层序的指示,可用于区别同是高振幅特征,但有高频,低频之分的地层情况,在砂、泥岩互层中可识别富砂或富泥的地层。
同时,对流体的聚集性质改变比较敏感,尤其是含气储层。
轨迹属性类(Local Attributes)下半周持续时间上半周持续时间下半周面积上半周面积上半周偏斜度峰度不对称度这类属性反映了目标层内波阻抗的变化规律、沉积层序、地层层理特征、古代剥蚀面、古构造特征、沉积过程及其连续性、沉积盆地的大小等。
持续时间属性类(Duration Attributes)与轨迹属性类似, 只是使用了时窗负半周平均持续时间正半周平均持续时间平均持续时间最小周期持续时间最大周期持续时间持续时间的标准偏差时窗层间内属性类(Interval Attributes)振幅标准偏差:计算在层间振幅的变化。
时差厚度平均负振幅平均正振幅波峰平均值波谷平均值最小振幅时间最大振幅时间转译属性类(Cipher Attributes):这类属性反映了地层平均吸收性质。
频谱类属性(Spectral Attributes):这类属性主要反映了地层厚度、岩性及含流体成分的变化,常用来检测由于上覆地层异常,如气饱和或裂缝存在所致的选频吸收,也可识别由于地层学特征、岩相等改变而引起的细小的频率变化。
VRS Attributes :Volume Reflection Spectrum attributes (VRS) 是从3D体层段的地震信号的多项式分解,该属性常用于识别岩性的横向变化。
VRS 数学算法:•最小二乘法多项式拟合(任何曲线都可以用多项式来拟合)•在时间域重构地震道重构方程S(t) = C0 + C1(t) + C2(t)^2 + C3(t)^3 +…+Cn(t)^n重构相关系数C0、C1、C2、C3、C4…代表了与地震数据的相关性,系数越大越与地震道相似。
如图中的C0表示地震道背景值;C1为地震道的变化趋势等。
VRS相关系数变化的属性图可能关系到岩性的变化。
在实际应用中不一定所有的系数都有意义,一般来说,需要依据物源,油源或依据工区的沉积或构造发育背景判断某一个本征值能够代表某种岩性或某种沉积背景等的信息。
因此,通过将地震道分解成不同频率、振幅的简单谐波,就有可能通过分析不同频率、振幅的简单谐波来研究不同规模、不同层次的地质体的分布特征,某一种规模或层次的地质体或储层展布所反映的某一本征值就是我们所需要的。
•不要猜测相关系数变化的意义!•使用SeisClass去理解相关系数的变化并联系到地质上可以生成地震相图。
多道层属性Multi-trace Horizon Attribute:GeoFeature Mapping & Trace Correlation相关属性可以定量描述道与道的相似性,用于帮助识别•断层•尖灭•数据品质•杂乱反射The GeoFeature Mapping是计算每道对于一些临道的垂向相关系数图,计算的属性图提供测量相关系数的高低对于临道。
The Trace Correlation 是相关系数属性图,可以判断道间的倾角。
The Multi-trace horizon attribute只能单独产生一个,当一个被选择执行时,另一个不能被选择。
最大能量Maximum Magnitude:可以很直接烃类显示,岩性的变化及在探测小断层和隐藏河道很有用,也可以帮助亮点分析,纹理分析和查找薄层。
门槛值Threshold value:通过用户定义孔隙度值或者流体变化是很有用分析地震数据体中的振幅值。
显示大于或等于用于定义的值的百分率。
带宽Bandwidth:测量数据频率范围。
通常,纵向上砂泥旋回性强,反映在地震上就是带宽较窄,反之,可能频带较宽。
主频Dominant Frequency:常用的储层预测属性之一。
对于薄互层的储层,横向的主频变化能够比较准确的反映储层厚度的变化。
同时,主频也对地层的吸收性能反映敏感,主频的变化很可能是一些烃类目标的指示。
总振幅Sum of Amplitudes :测量地层厚度(Time Thickness )亮点和,大值可能指示高净砂岩比。
k amp Amp Sum ni ⨯=∑_正极振幅和Sum of Pos. Amplitudes :大值可能指示一特殊岩性类型。
负极振幅和Sum of Neg. Amplitudes :大值可能指示一高的含烃砂岩比(亮点)。
总能量Sum of Magnitudes :高反射强度通常是有区别于大量反射体的一种反射。
大多岩性的变化在邻近岩石地层,如不整合,小层岩性确认,地震层序边界,气藏和总孔隙度。
总能量(Sum of Magnitudes ):常用于判断岩性和流体的变化,如:零相位数Number of Zero Crossings :指示复杂地层变化信息,过零个数值高,表示地层纵向变化大。
平均谷值Average Through value :大值或小值可能直接烃类指示,小值可能指示气藏。
平均峰值Average Peak Value :大值或小值可能直接烃类指示,小值可能指示气藏。
另一方面,可以通过对平均波峰值的突变来研究反射波极性的变化,研究地层接触关系;Average Peak Value (Zero X) :在每一对零相位中最大的峰值。
Average Through value (Zero X):在每一对零相位中最小的峰值,当追踪复杂地质体时,这个属性很好的测量反射率。
正负振幅比Ratio of Positive to Negative :指示横向厚度,尖灭,砂泥岩层序的变化。
频谱类属性(Spectral Attributes)能量频率用户定义低截频用户定义高截频总能量: 指从用户定义的低截频到高截频之间的能谱的总面积。
能谱的十分位属性(Spectral Deciles (1-9))能量频率频谱的十分位是指能谱图上位于总面积10%、20%、30%。
处的频率值频/宽比(Spectral Band Ratios (1-10))的的义能量频率用户定义低截频用户定义高截频用户定中心频率总共可以求10个频/宽比. The first five ratios are equally divided between the “Frequency at Low End of Spectrum” and the “Center Frequency”.这类属性主要反映了地层厚度、岩性及含流体成分的变化,常用来检测由于上覆地层异常,如气饱和或裂缝存在所致的选频吸收,也可识别由于地层学特征、岩相等改变而引起的细小的频率变化。