支架强度计算

支架强度计算
支架强度计算

2、支架支护强度的选择

根据我国多年来放顶煤开采的实践和理论总结,综采放顶煤支架工作阻力有多种计算方法,设计根据经验并参考类似开采条件下矿井的压力显现情况,采用其中的统计类比法和实测统计法对支架工作阻力进行计算,取其大值对液压支架进行选型。

①按统计类比法计算综放支架工作阻力

据经验统计,综采放顶煤支架支护阻力与煤层采深、煤层强度成正比,与放顶煤高度成反比,根据经验公式:

P=k(1939+2.1H+471f+155/M d)

式中:

P—支架承受的荷载,kN;

k—支架安全系数,取1.2;

H—煤层采深,m;

f—煤层普氏硬度系数,取2.0;

M d—工作面放顶煤高度,23-25号煤层分层开采,每层厚17.03/2=8.52m,割煤厚2.6m,则放顶煤厚度为5.92m。

P=1.2×(1939+2.1×250+471×2.0+155/5.92)=4119kN

②按实测统计法计算综放支架工作阻力

P=(325×M0.21)S

式中:

P——支架承受的荷载,kN;

S——支架支护的顶板面积,按8.0m2计;

M——煤层开采最大高度,取8.52m。

P=(325×8.520.21)×8.0=4077kN

根据上述两种方法计算,所选综采放顶煤支架的工作阻力不应低

于4119kN。

满堂支架计算

精心整理 满堂支架计算 1、荷载计算 根据支架布置方案,采用满堂支架,对其刚度、强度、稳定性必须进行检算。 钢管的内径Ф41mm 外径Ф48mm 、壁厚3.5mm 。 截面积 转动惯量 1A W 砼B ((C 、人员及机器重 W=1KN/m 2(《JGJ166-2008建筑施工碗扣式脚手架安全技术规范》) D 、振捣砼时产生的荷载 W=2KN/m 2(《JGJ166-2008建筑施工碗扣式脚手架安全技术规范》) E 、倾倒混凝土时冲击产生的荷载 W=3KN/m 2(采用汽车泵取值3.0KN/m 2) F 、风荷载 W 模板W 方木22222893.44)1.48.4(14.34/)(cm d D A =÷-?=-=π2/144444187.1264)1.48.4(14.364/)(cm d D J =÷-?=-=π2/12.0105.33 .01m kN kg W =??=钢管

按照《建筑施工碗扣式脚手架安全技术规范》,风荷载W k =0.7u z u s W o 其中u z 为风压高度变化系数,按照《建筑结构荷载规范》取值为1; u s 为风荷载体型系数,按照《建筑结构荷载规范》取值为0.8; W o 为基本风压,按照贵阳市市郊离地高度5m 处50年一遇值为0.3KN/m 2。 风荷载W k =0.7×1×0.8×3=1.68KN/m 2 由风荷载产生立杆弯矩值: 式中: w M k ωα0l 22.1(1)βγW E N ——欧拉临界力; (2)立杆稳定验算 结论:立杆满足强度及稳定性要求。 (3)横向钢管(次楞)强度和刚度验算 次楞荷载组合N=1.2×(27.2+0.4)+0.9×1.4×(1+2+3+1.68)=42.8KN/m 2 按照次楞最不利位置0.3m 间距布置,单根次楞荷载q=42.8×0.3=12.8KN/m A 、横向钢管抗弯强度验算 []MPa f MPa 1704.761712.278.0108.515.12.019.01089.4728.0102.2743=≤=?-????+???=-)(σ

钢结构设计计算公式及计算用表

钢结构设计计算公式及计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表1采用。钢铸件的强度设计值应按表2采用。连接的强度设计值应按表3~5采用。

管道支吊架设计及计算

【文 摘】 用来支撑管道的结构叫管道支吊架,管道在敷设时都必须对管子进 行固定或支承,固定或支承管子的构件是支吊架。在机电工程里,管道支架是分布广、数量大、种类繁多的安装工事,同时管道支吊架的设计和安装对管道及其附件施工质量的好坏取决定性作用。如何采用安全适用、经济合理、整齐美观的管道支吊架是机电安装工程的一个重点。 【关键词】 管道布置 管道跨距 管架分析 管架内力计算 一、 管道的布置 对管道进行合理的深化和布置是管道支吊架设计的前提条件。欲设计安全使用、经济合理、整洁美观的管道支吊架,首先需对管道进行合理的布置,其布置不得不考虑以下参数: 1. 管道布置设计应符合各种工艺管道及系统流程的要求; 2. 管道布置应统筹规划,做到安全可靠、经济合理、满足施工、操作、维 修等方面的要求,并力求整齐美观; 3. 在确定进出装置(单元)的管道的方位与敷设方式时,应做到内外协调; 4. 管道宜集中成排布置,成排管道之间的净距(保温管为保温之间净距) 不应小于50mm 。 5. 输送介质对距离、角度、高差等有特殊要求的管道以及大直径管道的布 置,应符合设备布置设计的要求,并力求短而直,切勿交叉; 6. 地上的管道宜敷设在管架或管墩上,在管架、管墩上布置管道时,宜使 管架或管墩所受的垂直荷载、水平荷载均衡; 7. 管道布置应使管道系统具有必要的柔性,在保证管道柔性及管道对设备、 机泵管口作用力和力矩不超出过允许值的惰况下,应使管道最短,组成件最少; 8. 应在管道规划的同时考虑其支承点设置,并尽量将管道布置在距可靠支 撑点最近处,但管道外表面距建筑物的最小净距不应小于100mm ,同时应尽量考虑利用管道的自然形状达到自行补偿; 9. 管道布置宜做到“步步高”或“步步低”,减少气袋或液袋。不可避免 时应根据操作、检修要求设置放空、放净。 二、 管架跨距 管架的跨距的大小直接决定着管架的数量。跨距太小造成管架过密,管架数量增多,费用增高,故需在保证管道安全和正常运行的前提下,尽可能增大管道的跨距,降低工程费用。但是管架跨距又受管道材质、截面刚度、管道其它作用何载和允许挠度等的影响,不可能无限的扩大。所以设计管道的支吊架应先确定管架的最大跨距,管架的最大允许跨距计算应按强度和刚度两个条件分别计算,取其小值作为推荐的最大允许跨距。 1. 按强度条件计算的管架最大跨距的计算公式: []t W q L δφ124 .2max = L max ——管架最大允许跨距(m )

光伏支架载荷计算

支架强度计算 支架是安装从下端到上端高度为4m以下的太阳能电池阵列时使用计算因从支架前面吹来(顺风)的风压及从支架后面吹来(逆风)的风压引起的材料的弯曲强度和弯曲量,支撑臂的压曲(压缩)以及拉伸强度,安装螺栓的强度等,并确认强度。 (1)结构材料 选取支架材料,确定截面二次力矩I M和截面系数Z。 (2)假象载荷 1)固定荷重(G) 组件质量(包括边框)G M +框架自重G KI+其他G K2 固定载荷G=G M+G KI + G K2 2)风压荷重(W) (加在组件上的风压力(W M)和加在支撑物上的风压力(W K)的总和) 2 X C X V O X S)X a x I x J W=1/2 X( C w 3)积雪载荷(S)。与组件面垂直的积雪荷重。 4)地震载荷(K)。加在支撑物上的水平地震力 5)总荷重(W)正压:5) =1) +2) +3) +4)

负压:5) =1) -2) +3) +4) 载荷的条件和组合 (3)悬空横梁模型 (4)A-B间的弯曲应力 顺风时A-B点上发生的弯曲力矩: M i=WL 勺8应力(T i二M/Z (5)A-B间的弯曲 (6)B-C间的弯曲应力和弯曲形变 (7)C-D间的弯曲应力和弯曲形变 (8)支撑臂的压曲 (9)支撑臂的拉伸强度

(10)安装螺栓的强度

基础稳定性计算 1、风压载荷的计算 2、作用于基础的反作用力的计算 3、基础稳定性计算 当受到强风时,对于构造物基础要考虑以下问题: ①受横向风的影响,基础滑动或者跌倒 ②地基下沉(垂直力超过垂直支撑力) ③基础本身被破坏 ④吹进电池板背面的风使构造物浮起 ⑤吹过电池板下侧的风产生旋涡,引起气压变化,使电池板向地面吸引 对于③?⑤须采用流体解析等方法才能详细研究。研究风向只考虑危险侧的逆风状态 以下所示为各种稳定条件: a.对滑动的稳定 平时:安全率Fs> 1.5 ;地震及暴风时:安全率Fs > 1.2 b.对跌倒的稳定 平时:合力作用位置在底盘的中央1/3以内时 地震及暴风时:合力作用位置在底盘的中央2/3以内时 c.对垂直支撑力的稳定

(完整版)支架承载力计算

支架竖向承载力计算: 按每平方米计算承载力, 中板恒载标准值:f=2.5*0.4*1*1*10=10KN ; 活荷载标准值N Q = (2.5+2 )*1*1=4.5KN ; 则:均布荷载标准值为: P1=1.2*10+1.4*4.5=18.3KN ; 根据脚手架设计方案,每平方米由2根立杆支撑,单根承载力标准值为100.3KN ,故:P1=18.3/2=9.15KN<489.3*205=100.3KN 。满足要求。 或根据中板总重量(按长20m 计算)与该节立杆总数做除法, 中板恒载标准值:f=2.5*0.4*10*20*19.6=3920KN ; 活荷载标准值NQ = (2.5+2 )*20*19.6=1764KN ; 则:均布荷载标准值为: P1=1.2*3920+1.4*1764=7173KN ; 得P1=7173KN<100.3*506=50750KN 。 满足要求。 支架整体稳定性计算: 根据公式: [] N f A σ?≤= 式中: N -立杆的轴向力设计值,本工程取15.8kN ; -轴心受压构件的稳定系数,由长细比λ决定,本工程λ=136,故=0.367; λ-长细比,λ=l 0 /i =2.15/1.58*100=136; l 0-计算长度,l 0=kμh =1.155*1.5*1.2=2.15m ;

k-计算长度附加系数,取 1.155;μ-单杆计算长度系数 1.55;h-立杆步距0.75m。 i-截面回转半径,本工程取1.58cm; A-立杆的截面面积,4.89cm2; f-钢材的抗压强度设计值,205N/mm2。 σ=15.8/(0.367*4.89)=88.04N/mm2<[f]=205N/mm。 满足要求. 支架水平力计算 支架即作为竖向承力支架,也作为侧墙内撑支架,因此需计算支架水平支撑力,即侧墙施工时产生的侧压力。 混凝土作用于模板的侧压力,根据测定,随混凝土的浇筑高度而增加,当浇筑高度达到某一临界时,侧压力就不再增加,此时的侧压力即为新浇筑混凝土的最大侧压力。侧压力达到最大值的浇筑高度称为混凝土的有效压头。通过理论和实践,可按下列二式计算,并取其最小值: F=0.22γc t0β1β2V1/2 F= γc*H 式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2) γc------混凝土的重力密度(kN/m3)取26 kN/m3 t0------新浇混凝土的初凝时间(h),可按实测确定。当缺乏实验资料时,可采用t=200/(T+15)计算;t=200/(25+15)=5 T------混凝土的温度(°)取25° V------混凝土的浇灌速度(m/h);取2m/h H------混凝土侧压力计算位置处至新浇混凝土顶面的总高度(m);取5.0m β1------外加剂影响修正系数,不掺外加剂时取1.0; β2------混凝土塌落度影响系数,当塌落度小于30mm时,取0.85;50—

钢结构计算题-答案完整

《钢结构设计原理计算题》 【练习1】两块钢板采用对接焊缝(直缝)连接。钢板宽度L=250mm ,厚度t=10mm 。钢材采用Q235,焊条E43系列,手工焊,无引弧板,焊缝采用三级检验质量标准, 2/185mm N f w t =。试求连接所能承受的最大拉力?=N 解:无引弧板时,焊缝的计算长度w l 取实际长度减去2t ,即250-2*10mm 。 根据公式 w t w f t l N

【变化】若取消端焊缝,问?=N 解:上题中令03=N ,622001?-=w l ,得kN N N 344.5051==

模板支架专项方案计算书汇总

主体结构 模板支架受力计算书 计算人: 复核人:

狮山路站模板、支架强度及稳定性验算 1、设计概况 狮山路站为地下两层,双跨整体式现浇钢筋混凝土框架结构;车站内衬墙与围护桩间设置柔性防水层。在通道、风道与主体结构连接处设置变形缝。主要结构构件的强度等级及尺寸如下: 表1 狮山路站主体结构横断面尺寸表 2、模板体系设计方案概述 狮山路站全长272m,共分10段结构施工。主体结构施工拟投入8套标准段脚手架(长27.2m×宽19.8m×6.35m)。最长段模板长32m、最短段模板长24m,每段模板平均按27.2m考虑。模板主要采用胶合板模板加三角钢模板。支架采用Φ48×3.5mm碗扣式钢管脚手架支撑,中间加强杆件、剪刀撑、扫地杆采用扣件式脚手架。 (1)狮山路站侧墙模板施工采用三角支架模板系统,三角大模板支架体系分为:三角钢架支撑和现场拼装的模板系统。三角支架分为4.0m高的标准节和0.85m高的加高节,大模板采用4000(长)×1980(宽)×6.0mm(厚)钢模板。大模板竖肋、横肋和边肋均采用[8普通型热轧槽钢,背楞采用2[10,普通型热轧槽钢。 在浇注底板混凝土时,侧墙部分要比底板顶面向上浇灌300mm高。在浇灌混凝土前水平埋入一排φ25精扎螺纹钢(外露端车丝),作为侧墙大模板的底部支撑的地脚螺栓拉结点,L=700。在施工过程中必须确保此部分侧墙轴线位置和垂直度的准确,以保证上下侧墙的对接垂直、平顺。对于单面侧墙模板,采用单面侧向支撑加固。侧向支撑采用角钢三角架斜撑,通过预埋Φ25拉锚螺栓和支座垫块固定。纵向间距同模板竖龙骨间距,距离侧墙表面200mm。

光伏支架类型及常见问题

光伏支架类型及常见问题 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型 1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。

2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 1、最佳倾角固定式 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在平顶屋面电站和地面电站广泛使用。

1)平顶屋面-混凝土基础支架 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。 平顶屋面条形混凝土基础支架 a.地脚螺栓连接 b. 直接嵌入基础 平顶屋面独立混凝土基础支架 平顶屋面混凝土基础支架安装方式优点为抗风能力好,可靠性强,不破坏屋面防水结构;缺点为需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。

2)平顶屋面-混凝土压载支架 混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安装,节省施工时间,但其抗风能力相对较差,设计配重块重量时需要充分考虑到当地最大风力。 平顶屋面混凝土压载支架 3)地面电站-混凝土基础支架 地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。 现浇钢筋混凝土基础 根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。施工工艺都是先开孔,然后放入钢筋和混凝土,经养护凝固后与支架连接。其中现浇混凝土桩基础可以通过埋设地脚螺栓与支架支撑柱连接,可以直接将支撑柱嵌入混凝土,浇注锚杆基础不需成桩。现浇钢筋混凝土基础开挖土方量少,混凝土钢筋用量小,造价较低、施工速度快。但施工易受季节和天气等环境因素限制,施工要求高,一旦做好后无法再调节。 a.直接嵌入基础 b.地脚螺栓连接 c.浇注锚杆 现浇钢筋混凝土基础

支吊架受力荷载计算书

支吊架荷载分析计算 项目名称:北京首钢秀水街综合管廊工程 设计依据:管道支吊架GB17116有关设计计算 设计说明:产品应用于管廊强电舱10千伏电缆敷设,悬臂共8根,管廊两侧每侧4根,间距300mm,每根悬臂上放置10千伏电缆按6根计算。管廊剖面示意图如下: 分项计算: 第(1)项,10kv电缆悬臂计算 产品参数:YCC-41型悬臂

10kv电缆单根荷载重量按照YJV-8.7/10KV-3×95mm2铜芯交联乙烯电缆的重量进行计算,单位重量6544kg/km。 计算模型及计算公式:计算模型参照结构力学悬臂梁荷载模型计算,参见图1, 模型相关公式如下: 计算数据说明: 1、10kv电缆按照GB50217电力工程电缆设计规范要求选用3芯电缆。 2、10kv电缆单位重量:(单根按照YJV -8.7/10KV 3×240mm2,为规格进行计算, 单位重量m1=9889kg/km), 3、支架间距0.8米,单根电缆长度lx=0.8m。 4、悬臂长度l=600mm。 验算过程: 荷载计算:F=m1*lx F=9889/1000*0.8*10=79.112N, 弯矩计算:M=-((n+1)/2)Fl M=-((6+1)/2)*79.112*600 = 166135.2 N.mm 抗拉强度设计值: ft=M/w=166135.2/3366.544=49.35N/mm2< 205N/mm2 验算合格。 挠度计算:Wmax=Wa=(3n2+4n+1)*Fl3/(24nEI) Wmax=(3*6*6+4*6+1)*79.112*800*800*800/(24*6*206000*77335.231)=2.35mm, ≤(l/200=3.00mm)最大挠度极限:验算合格。 结论:经计算,实际放置电缆对悬臂的荷载可以满足悬臂钢材强度要求和挠度要 求,可以使用。

光伏支架分类

光伏支架分类 光伏支架作为光伏电站重要的组成部分,它承载着光伏电站的发电主体。支架的选择直接影响着光伏组件的运行安全、破损率及建设投资,选择合适的光伏支架不但能降低工程造价,也会减少后期养护成本。 一、光伏支架类型 1、根据材料分类 根据光伏支架主要受力杆件所采用材料的不同,可将其分为铝合金支架、钢支架以及非金属支架,其中非金属支架使用较少,而铝合金支架和钢支架各有特点。 2、根据安装方式分类 二、固定式光伏支架介绍 光伏阵列不随太阳入射角变化而转动,以固定的方式接收太阳辐射。根据倾角设定情况可以分为:最佳倾角固定式、斜屋面固定式和倾角可调固定式。 1、最佳倾角固定式 先计算出当地最佳安装倾角,而后全部阵列采用该倾角固定安装,目前在平顶屋面电站和地面电站广泛使用。

1)平顶屋面-混凝土基础支架 平顶屋面混凝土基础支架是目前平屋面电站中最常用的安装形式,根据基础的形式可以分为条形基础和独立基础;支架支撑柱与基础的连接方式可以通过地脚螺栓连接或者直接将支撑柱嵌入混凝土基础。 优点:抗风能力好,可靠性强,不破坏屋面防水结构。 缺点:需要先制作好混凝土基础,并养护到足够强度才能进行后续支架安装,施工周期较长。 2)平顶屋面-混凝土压载支架

优点:混凝土压载支架施工方式简单,可在制作配重块时同时进行支架安装,节省施工时间。 缺点:混凝土压载支架抗风能力相对较差,设计配重块重量时需要充分考虑到当地最大风力。 3)地面电站-混凝土基础支架 地面电站混凝土基础支架多种多样,根据不用的项目地质情况,可选择对应的安装方式,以下主要介绍现浇钢筋混凝土基础、独立及条形混凝土基础、预制混凝土空心柱基础等几种最常见的混凝土基础安装形式。 现浇钢筋混凝土基础 根据基础形式不同,现浇钢筋混凝土基础可分为现浇混凝土桩和浇注锚杆。

支架计算书

2m高标准联箱梁: 方案一:箱梁横梁下60cm(纵向)×90cm(横向)排距进行搭设,腹板及翼缘转角下120cm(纵向)×90cm(横向)排距进行搭设,过渡段空箱下(距桥墩中线6m范围)按120cm(纵向)×90cm(横向) 排距进行搭设,其余空箱下按120cm (纵向)×180cm(横向)排距进行搭设,步距采用150cm。 方案二:箱梁横梁下60cm(纵向)×120cm(横向)排距进行搭设,过渡段腹板空箱下(距桥墩中线6m范围)按90cm(纵向)×120cm(横向) 排距进行搭设,其余腹板下按120cm(纵向)×60cm(横向)排距进行搭设,空箱下按120cm(纵向)×120cm(横向)排距进行搭设,步距采用150cm。 ⑴主线桥2m高3跨标准联支架搭设示意图 宽2m高箱梁支架横断面搭设示意图(方案一)(单位mm) 宽2m高箱梁支架纵断面搭设示意图(方案一)(单位mm)

宽2m高箱梁支架搭设平面示意图(方案一)(单位mm) 宽2m高箱梁支架横断面搭设示意图(方案二)(单位mm) 宽2m高箱梁支架纵断面搭设示意图(方案二)(单位mm)

宽2m高箱梁支架搭设平面示意图(方案二)(单位mm) 支架体系计算书 1.编制依据 ⑴郑州市陇海路快速通道工程桥梁设计图纸 ⑵《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008) ⑶《建筑施工模板安全技术规范》(JGJ162-2008) ⑷《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)。 ⑸《混凝土结构工程施工规范》(GB50666-2011) ⑹《建筑结构荷载规范》(GB50009-2012) ⑺《建筑施工手册》第四版(缩印本) ⑻《建筑施工现场管理标准》(DBJ) ⑼《混凝土模板用胶合板》(GB/T17656-2008) ⑽《冷弯薄壁型钢结构技术规范》(GB 50018-2002) ⑾《钢管满堂支架预压技术规程》(JGJ/T194—2009) 2.工程参数 根据箱梁设计、以及箱梁支架布置特点,我们选取具有代表性的箱梁,拟截取箱梁以下部位为计算复核单元,对其模板支架体系进行验算,底模厚度15mm、次龙骨100×100mm方木间距以计算为依据,主龙骨为U型钢,其下立杆间距: ⑴(主线3跨标准联,跨径3*30m),宽高,箱梁断面底板厚22cm、顶板厚 25cm,跨中腹板厚,翼板厚度为20cm。 根据不同位置采用不同的支架间距。 方案一:箱梁横梁下60cm(纵向)×90cm(横向)排距进行搭设,腹板及翼缘转角下120cm(纵向)×90cm(横向)排距进行搭设,过渡段空箱下(距桥墩中线6m范围)按120cm(纵向)×90cm(横向) 排距进行搭设,其余空箱下按120cm (纵向)×180cm(横向)排距进行搭设,步距采用150cm。 方案二:箱梁横梁下60cm(纵向)×120cm(横向)排距进行搭设,过渡段腹

光伏支架基础桩基施工方案

第一章编制依据 1.1本工程有关设计参考图纸 1.2本工程地质勘察报告 1.3甲方提供的标高基准点 1.4《地基与基础工程施工及验收规范》(GB502002) 1.5《建筑工程质量检验评定标准》GB/T50221-1995; 1.6《建筑地基基础工程施工质量验收规范》GB50202-2002; 1.7《建筑地基基础设计规范》DB33/1001-2003; 1.8《混凝土结构工程施工质量验收规范》GB50204-2015。 第二章工程概况 2.1地理位置 南召县中机国能电力有限公司太山庙10MWp光伏电站工程位于河南省西南部,伏牛山南麓,南阳盆地北缘,东邻方城,南接南阳市卧龙区、镇平县,北靠鲁山、嵩县,属南阳市。场址中心位于东经112°38′、北纬33°21′,海拔高度197m~226m。东西长约95公里,南北宽约62公里,总面积2946平方公里。 2.2地形条件 南召县地势西北高,东南低,大体分为三个阶梯。秦岭山脉东延形成的伏牛山脉,绵亘于西北部、西南部和北部、东北部,大小群峰300余座。诸山呈弓形自西北向西南和北东北部蜿蜒展开,最高峰石人山海拔2153.1米。海拔在500米~2000米之间,为第一阶梯。中部丘陵起伏,有山地向平原过度,有西北向东南敞开,海拔在200米~500米之间,为第二阶梯。南部衔接南阳盆地,为平原地带,海拔在200米以下,为第三阶梯。全县地势整体轮廓略呈“箕”形。山地面积占34.4%,丘陵面积占62.5%,平原面积占3.1%。 2.3气象条件 南召县位于中国重要地理分界线“秦岭-淮河”线上,南北方交汇区,800毫米等降水线上,湿润带与半湿润带交汇处,属北亚热带季风型大陆性气候,具

钢结构强度稳定性计算书

钢结构强度稳定性计算书 计算依据: 1、《钢结构设计规范》GB50017-2003 一、构件受力类别: 轴心受压构件。 二、强度验算: 1、轴心受压构件的强度,可按下式计算: σ = N/A n≤ f 式中N──轴心压力,取N= 10 kN; A n──净截面面积,取A n= 298 mm2; 轴心受压构件的强度σ= N / A n = 10×103 / 298 = 33.557 N/mm2; f──钢材的抗压强度设计值,取f= 205 N/mm2; 由于轴心受压构件强度σ= 33.557 N/mm2≤承载力设计值f=205 N/mm2,故满足要求! 2、摩擦型高强螺栓连接处的强度,按下面两式计算,取最大值: σ = (1-0.5n1/n)N/A n≤ f 式中N──轴心压力,取N= 10 kN; A n──净截面面积,取A n= 298 mm2; f──钢材的抗压强度设计值,取f= 205 N/mm2; n──在节点或拼接处,构件一端连接的高强螺栓数目,取n = 4; n1──所计算截面(最外列螺栓处)上高强螺栓数目;取n1 = 2; σ= (1-0.5×n1/n)×N/A n=(1-0.5×2/4)×10×103/298=25.168 N/mm2; σ = N/A ≤ f 式中N──轴心压力,取N= 10 kN; A──构件的毛截面面积,取A= 354 mm2; σ=N/A=10×103/354=28.249 N/mm2; 由于计算的最大强度σmax = 28.249 N/mm2≤承载力设计值=205 N/mm2,故满足要求! 3、轴心受压构件的稳定性按下式计算: N/φA n≤ f

光伏支架受力计算书..

支架结构受力计算书 设计:___ ___ _日期:___ 校对:_ 日期:___ 审核:__ _____日期:____ 常州市**实业有限公司

1 工程概况 项目名称: *****30MW 光伏并网发电项目 工程地址: 新疆 建设单位: **集团 结构高度: 电池板边缘离地不小于500mm 2 参考规范 《建筑结构可靠度设计统一标准》GB50068—2001 《建筑结构荷载规范》GB50009—2012 《建筑抗震设计规范》GB50011—2010 《钢结构设计规范》GB50017—2003 《冷弯薄壁型钢结构设计规范》GB50018—2002 《不锈钢冷轧钢板和钢带》GB/T3280—2007 《光伏发电站设计规范》 GB50797-2012 3 主要材料物理性能 3.1材料自重 铝材——————————————————————327/kN m 钢材————————————————————3/78.5kN m 3.2弹性模量 铝材————————————————————270000/N mm 钢材———————————————————2206000/N mm 3.3设计强度 铝合金 铝合金设计强度[单位:2/N mm ]

钢材 钢材设计强度[单位:2/N mm ] 不锈钢螺栓 不锈钢螺栓连接设计强度[单位:2/N mm ] 普通螺栓 普通螺栓连接设计强度[单位:2/N mm ] 角焊缝 容许拉/剪应力—————————————————2160/N mm 4 结构计算 4.1 光伏组件参数 晶硅组件: 自重PV G :0.196kN (20kg /块) 尺寸(长×宽×厚)992164400mm ?? 安装倾角:37°

满堂支架计算.(DOC)

东乌-包西铁路联络线工程格德尔盖公路中桥 现浇箱梁模板及满堂支架计算书 一、荷载计算1.1荷载分析 根据本桥现浇箱梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q1——箱梁自重荷载,新浇混凝土密度取2600kg/m3。 ⑵q2——箱梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q2 =1.0kPa(偏于安全)。 ⑶q3——施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条 时取2.5kPa;当计算肋条下的梁时取1.5kPa;当计算支架立柱及替他承载构 件时取1.0kPa。 ⑷ q4——振捣混凝土产生的荷载,对底板取2.0kPa,对侧板取4.0kPa。 ⑸ q5——新浇混凝土对侧模的压力。 ⑹ q6——倾倒混凝土产生的水平荷载,取2.0kPa。 ⑺ q7——支架自重,经计算支架在不同布置形式时其自重如下表所示: 满堂钢管支架自重 1.2荷载组合 模板、支架设计计算荷载组合

1.3荷载计算 1.3.1 箱梁自重——q 1计算 根据跨G208国道现浇箱梁结构特点,我们取5-5截面(桥墩断面两侧)、6-6截面(跨中横隔板梁)两个代表截面进行箱梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。 ① 预应力箱梁桥墩断面q 1计算 根据横断面图,用CAD 算得该处梁体截面积A=12.7975m 2则: q 1 = B W =B A c ?γ=kPa 365.445.77975 .1226=? 取1.2的安全系数,则q 1=44.365×1.2=53.238kPa 注:B —— 箱梁底宽,取7.5m ,将箱梁全部重量平均到底宽范围内计算偏于安全。 ② 预应力箱梁跨中断面q 1计算 1200 4080 100 15 75025 200 145 113 60 1.5% 1.5% 25 200 连续梁支点断面图 1200 22 2040 15 75020 25 200 145 113 22 20 20 1.5% 1.5% 25 200 连续梁跨中断面图

常见的钢结构计算公式

2-5 钢结构计算 2-5-1 钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。

钢筋支架计算书(完整版)

钢筋支架计算书 一、参数信息: 钢筋支架(马凳)应用于高层建筑中的大体积混凝土基础底板或者一些大型设备基础和高厚混凝土板等的上下层钢筋之间。钢筋支架采用钢筋焊接制的支架来支承上层钢筋的重量,控制钢筋的标高和上部操作平台的全部施工荷载。型钢主要采用角钢和槽钢组成。 型钢支架一般按排布置,立柱和上层一般采用型钢,斜杆可采用钢筋和型钢,焊接成一片进行布置。对水平杆,进行强度和刚度验算,对立柱和斜杆,进行强度和稳定验算。 作用的荷载包括自重和施工荷载。 钢筋支架所承受的荷载包括上层钢筋的自重、施工人员及施工设备荷载。钢筋支架的材料根据上下层钢筋间距的大小以及荷载的大小来确定,可采用钢筋或者型钢。 上层钢筋的自重荷载标准值为 1.3kN/m 施工设备荷载标准值为 3.25kN/m 施工人员荷载标准值为1.95kN/m 横梁的截面抵抗矩 W=49cm3 横梁钢材的弹性模量 E=2.05×105N/mm2 横梁的截面惯性矩 I=245cm4 立柱的高度 h=1.50m 立柱的间距 l=1.20m 钢材强度设计值 f=205.00N/mm2 立柱的截面抵抗矩 W=49cm3 二、支架横梁的计算 支架横梁按照三跨连续梁进行强度和挠度计算,支架横梁在小横杆的上面。 按照支架横梁上面的脚手板和活荷载作为均布荷载计算支架横梁的最大弯矩和变形。 1.均布荷载值计算 静荷载的计算值 q1=1.2×1.3+1.2×3.25=5.46kN/m 活荷载的计算值 q2=1.4×1.95=2.73kN/m

支架横梁计算荷载组合简图(跨中最大弯矩和跨中最大挠度) 支架横梁计算荷载组合简图(支座最大弯矩) 2.强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下: 跨中最大弯矩为 M1=(0.08×5.46+0.10×2.73)×1.202=1.022kN.m 支座最大弯矩计算公式如下: 支座最大弯矩为 M2=-(0.10×5.46 +0.117×2.73)×1.202=-1.246kN.m 我们选择支座弯矩和跨中弯矩的最大值进行强度验算: =1.246×106/49000=25.429N/mm2 支架横梁的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度考虑为三跨连续梁均布荷载作用下的挠度 计算公式如下: 静荷载标准值q1= 1.3+3.25=4.55kN/m 活荷载标准值q2= 1.95kN/m 三跨连续梁均布荷载作用下的最大挠度 V=(0.677×4.55 +0.990×1.95)×12004/(100×2.05×105×2450000)=0.207mm 支架横梁的最大挠度小于1200/150与10mm,满足要求!

常见的钢结构计算公式

2-5 钢结构计算 2-5-1钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T700和《低合金高强度结构钢》GB/T1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2) 表2-77

给排水钢管道支架强度详细计算书

表1━各种型号规格管材支架安装选型及材料对照表

表2━各种型号规格管材支架安装选型及材料对照表

3-内筋嵌入式衬塑钢管支架的最大间距 表4-PPR塑铝稳态复合管固定支架的最大间距(单位:mm) 表5-铸铁管支架最大间距 表6-内衬塑钢管支架最大间距 表7-焊接钢管支架最大间距 附件:给排水钢管道支架强度计算书 一.每组支架承载说明: 按水管内盛满水,考虑水的重量,管道自重及保温重量,再按支架间距均分,得出附表之数据(为静载状态)。 二.膨胀螺栓在C13以上混凝土上允许的静荷载为: M10:拉力6860(N) M12:拉力10100(N) M16:拉力19020(N)

M20:拉力28000(N) 三.丝杆允许静荷载: 1.普通螺纹牙外螺纹小径d1=d-1.08253P d:公称直径 p:螺距:M10为1.5mm;M12为1.75mm;M16为2mm;M20为2.5mm; 2.M10丝杆的小径为:d1=10-1.08253*1.5=8.00mm; M12丝杆的小径为:d1=12-1.08253*1.75=10.1mm M14丝杆的小径为:d1=14-1.08253*2=11.8mm M16丝杆的小径为:d1=16-1.08253*2=13.8mm M20丝杆的小径为:d1=20-1.08253*2.5=17.3mm 3.取丝杆钢材的屈服极限为允许静载极限,其屈服极限为: бs=220至240Mpa 取бs=220Mpa=220N/mm2. 4.按丝杆最小截面积计算,丝杆允许拉力为:P=S×бs M10丝杆:P10=3.14×(8/2)2×220=11052N M12丝杆:P12=3.14×(10.1/2)2×220=17617N M14丝杆:P14=3.14×(11.8/2)2×220=24046N M16丝杆:P16=3.14×(13.8/2)2×220=32890N M20丝杆:P20=3.14×(17.3/2)2×220=51687N 10#槽钢:P#=1274×220=280280N

支架强度载荷计算

支架强度载荷计算 一、设计条件: 收集池曝气池35.*22米加盖采用玻璃钢平板瓦和横梁配合密闭,人字架构,两端配用玻璃钢板密封;35*22米池主横梁采用20#工字钢横置与水池上部,人字梁两端与主横梁直接用钢制支架固定;人字梁中间用100*100方管支撑。并辅以斜撑,斜撑采用6#角钢;主横梁南端直接搁置于水池主承重墙上,用膨胀螺栓固定,北端仄采用反吊梁式,在水池上部钢架引入托架,延伸至主横梁处,采用托板与之连接固定;主横梁上部安装60*80玻璃钢方管,间距1000mm,作为檩条,在檩条上部安装平板瓦。主横梁,人字梁及斜撑等均用玻璃钢进行防腐处理,螺栓等连接处在安装现场糊制防腐。由于横梁搁置于水池主承重墙上,高度增高,走道位置阻碍人员行走,故在横梁上铺设玻璃钢盖板,盖板宽度1250mm,长度按池长,并增设盖板支撑。 二、主横梁载荷计算 1、屋顶荷载的确定 (1)设计取值: ①采用固定荷重G和暴风雨产生的风压荷重W的短期复合荷重。 ②本计算最大风速设定为:32m/s。 ③对于平铺在屋面上的系统,只需计算从支架前面吹来(顺风)的风压引起的材料的弯曲强度和弯曲量,确认强度。 (2)结构材料: 主横梁:20a#工字钢,玻璃钢防腐。

A1=35.578cm2;q1=27.929kg/m;Ix1=2370cm4; 人字梁:100*100*5方管,玻璃钢防腐; A2=18.356cm2;q2=14.409kg/m;Ix2=271.071cm4; σb=160Mpa;E=206N/mm2 ; 支撑:6#角钢,玻璃钢防腐; 檩条、平板瓦:玻璃钢密度:2*103kg/m3 3.假定荷重: ①单品主横梁固定荷重G(按设计图纸,单池) a:主横梁采用20#工字钢,17根;L=22.5,计算长度L’=19.5m 单品计算长度重量:G1=27.929*19.5=544.6kg →5446N; b:人字梁:100*100*5方管,17根;计算长度L2=10m 单品计算长度重量:G2=14.409*10*2=288.18kg →2882N; c:支撑100*100*6玻璃钢方管,17根; 单根重量:G3=0.4*1.11*6*2=5.3kg →52N; d:(1)檩条60*80*6玻璃钢方管,11*2根; 重量:G4=0.28*32.5*6*2=109kg →1068N;22*1068=23496N (2)平板瓦,玻璃钢板,厚3mm;面积:A’=11.3*32.5*2=734.5m2 重量:G5=734.5*3*2=4406.4kg →44064N; 按单池设计图纸,共17品主横梁,

型钢支架的设计计算

支承搅拌机单根槽钢支架的设计计算 一、受力分析: 槽钢设计应考虑以下设计载荷: Q 1.搅拌机的重力引起的集中载荷 1 Q 2.流体作用在搅拌器上的轴向推力引起的集中载荷 2 3.槽钢梁自身质量均布载荷q 4.经验算,平盖自重引起的挠度影响可以忽略。 二、槽钢支架的应力计算: 槽钢支架俯视图(1) 容器设计条件和主要技术参数

槽钢强度计算 搅拌装置重量0m :4066(kg) 搅拌机重力引起的集中载荷1Q : 101 2 Q m g = =19944 (N) 转动装置效率(可按HG/T20569-94附录D 选取)1η:0.95 电动机额定功率N P :55(kw) 设计最终确定的密封部位实心轴的外径0d :125(mm) 单端面轴封处摩擦损耗功率m P : 1.23010m P d -=?=0.33(kw) 搅拌轴功率s P : 1s N P P η=?-m P =52.3(kw) XCK,XJ 搅拌器直径j D :1350(mm) 搅拌器的近似设计功率qi P (可按HG/T20569-94附录C ) : 55s ji qi ji P D P D = ∑ =17.4(kw) 搅拌器转速n :85(min/r) 桨叶断面中心线与轴中心线的夹角θ:45度 流体作用在搅拌器上对单根槽钢轴向推力引起的集中载荷2Q : 5 2125510tan 2qi j P Q D n θ=?????=1933(N ) 根据化工设备设计全书中的动载荷简化为相当静载荷P

动力系数μ:1.2 相当静载荷(扰力)P : 12()P Q Q μ=?+=26252(N ) 单根槽钢长度L :3605mm 集中载荷P 产生的弯矩1M : 14 P L M ?= =23659615(N.mm ) 槽钢自身质量m :136.4(kg) 槽钢自身均布载荷q : m g q L ?= =0.37(N.mm ) 均布载荷q 产生的弯矩2M : 2 28 q L M ?==601066(N.mm ) 最大弯矩max M : max 12M M M =+=24260681(N.mm ) 槽钢的抗弯截面系数W (可查阅机械设计手册):475000(3 mm ) 单根槽钢所承受的弯曲应力m σ:126MPa max m M W σ= =51MPa 设计温度下槽钢许用应力[]t σ: []t m σσ< 合格

相关文档
最新文档