考研数学高数习题—极限
考研数学复习教程答案详解高数部分

第一篇高等数学第一章函数、极限与连续强化训练(一)一、选择题1.2.提示:参照“例1.1.5”求解。
3.4.解因选项(D)中的 不能保证任意小,故选(D)5.6.7.8.9.10.二、填空题11.提示:由2cos 12sin 2xx =-可得。
12.13.提示:由1 未定式结果可得。
14.提示:分子有理化,再同除以n即可。
15.提示:分子、分母利用等价无穷小代换处理即可。
16.17.提示:先指数对数化,再利用洛必达法则。
18.19.解因()2000122(1cos )22cos 2lim lim lim lim lim 1x x x x x x x xx f x x xxx -----→→→→→⋅---=====- ()0lim lim xx x f x ae a --→→==, 而()0f a =,故由()f x 在 0x =处连续可知,1a =-。
20.提示:先求极限(1∞型)得到()f x 的表达式,再求函数的连续区间。
三、 解答题 21.(1)(2)提示:利用皮亚诺型余项泰勒公式处理12sin ,sin x x。
(3)(4)(5)提示:先指数对数化,再用洛必达法则。
(6)提示:请参照“例1.2.14(3)”求解。
22.23.解 由题设极限等式条件得21()ln(cos )201()lim ,limln(cos )1f x x xxx x f x e e x x x+→→=+=, 即 2201()1()limln(cos )lim ln(1cos 1)1x x f x f x x x x x x x→→+=+-+=, 利用等价无穷小代换,得201()lim(cos 1)1x f x x x x →-+=,即230cos 1()lim()1x x f x x x→-+=, 故 30()3lim 2x f x x →=。
24.提示:先指数对数化,再由导数定义可得。
25.26.28.提示:利用皮亚诺型余项泰勒公式求解。
考研高数极限试题及答案

考研高数极限试题及答案模拟试题:一、选择题(每题3分,共15分)1. 极限 \(\lim_{x \to 0} \frac{\sin x}{x}\) 的值是多少?A. 0B. 1C. -1D. \(\frac{1}{2}\)2. 函数 \(f(x) = \frac{x^2 - 1}{x - 1}\) 在 \(x = 1\) 处的极限是多少?A. 2B. 1C. 0D. 不存在3. 极限 \(\lim_{x \to +\infty} \frac{x^2}{e^x}\) 存在吗?A. 是B. 否4. 函数 \(g(x) = \begin{cases}x^2 & \text{if } x \neq 0 \\0 & \text{if } x = 0\end{cases}\) 在 \(x = 0\) 处的右极限是多少?A. 0B. 1C. \(\frac{1}{2}\)D. 不存在5. 极限 \(\lim_{x \to 1} (x^2 - 1)\) 等于多少?A. 0B. 1C. 2D. 3二、计算题(每题10分,共40分)6. 计算极限 \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2}\)。
7. 计算极限 \(\lim_{x \to 0} \frac{\cos x - 1}{x}\)。
8. 计算极限 \(\lim_{x \to +\infty} \frac{\sin x}{x}\)。
9. 计算极限 \(\lim_{n \to \infty} \frac{1}{n^2} +\frac{1}{n^3}\)。
三、解答题(每题20分,共40分)10. 证明 \(\lim_{x \to 0} x \sin \frac{1}{x} = 0\)。
11. 已知 \(\lim_{x \to 2} f(x) = 3\),证明 \(\lim_{x \to 2} [f(x)]^2 = 9\)。
有关极限考研试题及答案

有关极限考研试题及答案1. 计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,当分子分母同时趋向于0时,可以求导数来计算极限。
对于本题,我们有:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0}\frac{\cos x}{1} = 1\]2. 求函数 \(f(x) = x^3 - 3x\) 在 \(x = 1\) 处的左极限和右极限。
答案:- 左极限 \(\lim_{x \to 1^-} f(x) = 1^3 - 3 \times 1 = -2\) - 右极限 \(\lim_{x \to 1^+} f(x) = 1^3 - 3 \times 1 = -2\)由于左极限等于右极限,所以函数在 \(x = 1\) 处的极限存在,且为 \(-2\)。
3. 判断函数 \(g(x) = \frac{1}{x^2 + 1}\) 是否在 \(x = 0\) 处连续。
答案:函数 \(g(x)\) 在 \(x = 0\) 处的左极限和右极限都等于1,即:\[\lim_{x \to 0^-} g(x) = \lim_{x \to 0^+} g(x) = 1\]同时,\(g(0) = 1\),因此函数在 \(x = 0\) 处连续。
4. 计算不定积分 \(\int \frac{1}{1 + x^2} \, dx\)。
答案:这是一个标准积分形式,其积分结果为:\[\int \frac{1}{1 + x^2} \, dx = \arctan(x) + C\]其中 \(C\) 为积分常数。
5. 求函数 \(h(x) = \ln(x)\) 在 \(x = e\) 处的导数。
答案:函数 \(h(x)\) 的导数为 \(h'(x) = \frac{1}{x}\),因此在 \(x = e\) 处的导数为:\[h'(e) = \frac{1}{e}\]6. 判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2}\) 是否收敛。
(完整版)考研极限试题(卷).doc

“考研数学”——做到更好,追求最好南工程考研数学辅导材料之一高等数学主编:杨降龙杨帆刘建新翁连贵吴业军序近几年来,随着高等教育的大众化、普及化,相当多的大学本科毕业生由于就业的压力,要想找到自己理想的工作比较困难,这从客观上促使越来越多的大学毕业生选择考研继续深造,希望能学到专业的知识,取得更高的学历,以增强自己的竞争能力;同时还有相当多的往届大学毕业生由于种种的原因希望通过读研来更好地实现自我。
这些年的统计数据表明:应届与往届的考生基本各占一半。
自 1989 年起,研究生入学数学考试实行全国统一命题,其命题的范围与内容严格按照国家考试中心制定的“数学考试大纲” ,该考试大纲除了在1996 年实施了一次重大的修补以外,从1997 年起一直沿用至今,但期间也进行了几次小规模的增补。
因此要求考生能及时了解掌握当年数学考试大纲的变化,并能按大纲指明的“了解” ,“理解”,“掌握”的不同考试要求系统有重点的复习。
通常研究生入学数学考试与在校大学生的期末考试相比,考试的深度与难度都将大大的增加,命题者往往将考试成绩的期望值设定在80(按总分150 分)左右命题,试题涉及的范围大,基础性强,除了需要掌握基本的计算能力、运算技巧外,还需掌握一些综合分析技能(包括各学科之间的综合)。
这使得研究生数学入学考试的竞争力强,淘汰率很高。
为了我院学生的考研需要,我们编写了这本辅导讲义。
该讲义共分三个部分,编写时严格按照考试大纲,含盖面广、量大,在突出重点的同时,注重于基本概念的理解及基本运算能力的培养,力求给同学们做出有效的指导。
第一章函数极限与连续考试内容函数的概念及其表示,函数的有界性、单调性、奇偶性及周期性,复合函数、反函数、分段函数、隐函数,基本初等函数的图形与性质,初等函数的建立,数列极限与函数极限的性质,函数的左右极限,无穷小与无穷大的关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则,两个重要极限,函数连续的概念,函数间断点的类型,闭区间上连续函数的性质。
考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
2012考研数学:高数讲义重点题型解答(一)

f ( x )dx < 0 ,即 an 单调减少
3 n 2 n −1
an = f (1) − ∫ f ( x )dx + f (2 ) − ∫ f ( x)dx + " + f (n − 1) − ∫
1
f ( x )dx + f (n )
= ∑ ⎡ f (k ) − ∫ ⎢ k k =1 ⎣
n −1
1
2. lim (a n + b n + c n ) n ( a, b, c非负) ;
解:因为 f ( x ) 在 [0,+∞ ) 上单调减少、非负、连续, 故 f (k ) =
∫
k
k −1
f (k )dx < ∫
k
k −1
f (x )dx < ∫
k
k −1
f (k − 1)dx = f (k − 1) , k ≥ 1
则 an +1 − an = f (n + 1) −
2
∫
n +1
n
xn − xn −1 1 − xn + 1 − xn −1
且 x2 = 0 < x1 ,故 x2 < x1 , x3 < x2 " xn < xn −1 ,即 xn 单调减少; x1 ≥ −2 ,不妨假设 xn ≥ −2 则 xn +1 ≥ − 1 + 2 ,即 xn 有下届,单调有界数列必在极限,故极限存在。 不妨假设 lim xn = A ,则 A + 1 + A = 0 ,解得 A =
( )
sin x sin 2 x sin 3 x x x 2 x3 3 同理 1 + sin x = 1 + − + + o sin x = 1 + − − + o x3 2 2 16 2 2 48
高数第一章测试题答案(数二)

(11) 正确。考点:函数无穷小的考察, lim
x a
(12) 错误。考点:夹逼准则的考察。 lim ( x) 可以为其它常数,也可能不存在。如:
x 0
f ( x)
1 x2 , 2 x
2
( x)
1 1 此时 lim ( x ) ; 2 x 2 ,g ( x ) 2 3x 2 , 2 x 0 x x
( 3 )
x
lim x ne x
xn n! lim x 0 x x e x e lim
( 4 )
x 1/ t lim
lim x ln x
x 0
ln t 1 lim 0 t t t t ;
lim
x
ln x (5) lim p ( p 0) x x 1 (7)lim arctan x 0 x 2
2
又如: f ( x) 1 x , ( x ) 1 2 x , (13)错误。反例: f ( x )
g ( x ) 1 3x 2 ,此时 lim ( x ) 1 。
x0
1 1 , g ( x ) ,当 x 0 时 lim[ f ( x) g ( x)] 0 。 x x0 x x
1 , bn n , n2
1 n
1 , bn n 2 ,则 {an bn } {n} 发散。 n
(2) 错误。考点:极限基本性质的考察。收敛数列必有界,反之不然。如: {( 1) n } 有界但 不收敛。 (3) 正确。考点:数列极限基本性质的考察。去掉数列的有限项,不改变数列的收敛值。 (4) 错误 。考点: 函数连续 性的四则 运算。 f ( x) g ( x) 一定 不连续, 证明如下 :若
考研数学高数1极限与函数

第一讲:极限与函数数列极限:数列极限的严格定义不需要掌握,但需要理解如下定理:lim {}n n n x a x a →∞=⇔-是无穷小量数列极限的四则运算:设lim n n x x →∞=,lim n n y y →∞=,则:lim()n n n x y x y →∞±=±、lim()n n n x y xy →∞=、lim()(0)n n n x xy y y→∞=≠ 推论:若lim 0n n x →∞=,数列{}n y 有界,则lim 0n n n x y →∞=例:计算下列极限n n n n n 323)1(lim ++-∞→ )12(lim --+∞→n n n n数列极限的性质唯一性:如果数列{}n x 收敛,则其期限必唯一 有界性:如果数列{}n x 收敛,则该数列必定有界保序性:设数列{}n x 、{}n y 均收敛,且当n 足够大时,有n n x y >,则必有lim lim n n n n x y →∞→∞≥保序性的推论(保号性):设数列{}n x 收敛,且当n 足够大时,有0n x >,则必有lim 0n n x →∞≥注意:1、后面的不等式并不是严格的不等号;2、保序性的逆命题不一定成立思考:求如下几个数列的极限:1111{sin }{sin }{sin }n n n n n n、、数列极限的三个常用定理:数列与其子列的关系:如果数列{}n x 收敛,则其任意子列均收敛,且收敛于同一极限lim n n x →∞;如果数列{}n x 中存在两个子列收敛于不同的极限,或是一个收敛一个发散到无穷大,则{}n x必发散。
例:计算(1)1lim[]nn n n-→∞+夹逼准则:如果当n 足够大时,数列{}n x 、{}n y 、{}n z 满足不等式n n n x y z ≤≤,且{}n x 、{}n z 收敛于同一极限,则{}n y 必收敛于该极限例:计算下列极限1、设0>>>c b a ,nn n n n c b a x ++=,求222111lim (1)(2)nn n n →∞⎡⎤+++⎢⎥+⎣⎦2、2lim n n →∞⎛⎫+++ 3、222111lim (1)(2)n n n n →∞⎡⎤+++⎢⎥+⎣⎦4、(思考)⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n (需要用定积分来求)单调有界数列必收敛定理:如果数列{}n x 单调递增且有上界,或是单调递减且有下界,则{}n x 必收敛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一份好的考研复习资料,会让你的复习力上加力。
中公考研辅导老师为考生准备了【高等数学-极限知识点讲解和习题】,同时中公考研网首发2017考研信息,2017考研时间及各科目复习备考指导、复习经验,为2017考研学子提供一站式考研辅导服务。
模块二 极限
1、设221,0
()0,01,0x x f x x x x ⎧->⎪
==⎨⎪+<⎩
,则0
lim ()x f x →为( )
(A)不存在 (B)1- (C)0 (D)1 2、当0x →时,无穷小量sin22sin x x -是2x 的( )无穷小.
()A 高阶 ()B 低阶 ()C 等价 ()D 同阶但非等价
3、0→x 时,)1ln()cos 1(2x x +-是n x x sin 的高阶无穷小,而n x x sin 是12-x e 的高阶无穷小,则正整数n 等于
().A 1().B 2().C 3().D 4
4、0x +→
(A)
1-
(B)ln(1
1
(D)1-
5、求下列极限
(1)
()
()()10
2
2
322lim
211x x x x →∞
+++ (2
))
lim x x
x →+∞
(3)
()31101003lim
3ln 1x x x x x x +→+∞+-++ (4)()102
1210004ln 1lim 2x x x x x x --→-∞++++ 6、求下列极限
(1)
3
x x →
(2
)
(
1lim 1arctan
2x x
+
→-
(3)
()
22311lim arcsin 121x x x x x →∞++++ (4)30
tan sin lim sin x x x x
→-
(5)2
10lim
ln cos x x e e x +→- (6)()
tan sin 3
0lim ln 1x x x e e x →--
(7
)1x →(8
)021ln 1x x x →+ ⎪
-⎝⎭ 7、求下列极限
(1)0lim sin x x
x e e x -→- (2)()
20ln 1lim sec cos x x x x
→+-
(3)()02sin 22lim
arcsin ln 16x x x x x →-⎛⎫
+ ⎪⎝⎭ (4)0ln cos lim arctan x x x
x x
→- (5
)0
x x → (6)0
1
1lim cot sin x x x x →⎛⎫-
⎪⎝⎭
(7)2
10
lim x x xe → (8)2
1lim(ln(1))x x x x →∞
-+ 8、求下列极限 (1)(
)
1
lim x x
x x e
→+ (2)0
)x x π
+→ (3)tan 24
lim(tan )
x
x x π
→ (4)222lim 12x
x x x x →∞⎛⎫+ ⎪-+⎝⎭
(5) (
)
1lim x x
x x e
→+∞
+ (6
)tan 0lim x x +→ 9
、设)12n x x n ==≥,求lim n n x →∞
.
参考答案
1、()A
2、()A
3、().B
4、().B
5、(1)14 (2)12 (3)13 (4)1
2 6、(1)6 (2)1 (3)1
8 (4)12
(5)2e - (6)12- (7)16 (8)112-
7、(1)2
(2)1 (3)8- (4)32
(5)3 (6)1
6 (7)∞ (8)12
8、(1)2
e (2)2
e
π
-
(3)1
e
- (4)
2
e
(5)e (6)1 9、lim 2
n n x →∞
=
在紧张的复习中,中公考研提醒您一定要充分利用备考资料和真题,并且持之以恒,最后一定可以赢得胜利。
更多考研数学复习资料欢迎关注中公考研网。