二次函数的图像和性质第三课时
(3) 二次函数图像性质3-6课时

当x=h时,最小值为0.
当x=h时,最大值为0.
我思考,我进步
在同一坐标系中作出二次函数y=-3(x-1)2+2, y=-3(x-1)2-2,y=-3x² 和y=-3(x-1)2的图象 思考:
二次函数y=-3(x-1)2+2与y=-3(x-1)2-2和y=3x² ,y=-3(x-1)2的图象有什么关系? (2)它们是轴对称图形吗? (3)它的开口方向、对称轴和顶点坐标分别是什么? (4)当x取哪些值时,y的值随x值的增大而增大? (5)当x取哪些值时,y的值随x值的增大而减小?
(0,–1)
(2, 5) (– 4,2) (3,0)
4 y 2 x 2 5 2 5y 0.5x 4 2
向上 直线x= – 4
3 2 6 y x 3 4
向下
直线x=3
课堂练习 1.抛物线y=0.5(x+2)2–3可以由抛物线 y=0.5x2 先沿 x轴方向 左 平移 2 个单位,再沿y轴方向下 平 移 3 个单位得到。 2.已知s= –(x+1)2–3,当x为 –1 时,s取最 大 值 为 –3 。 3.顶点坐标为(1,1),且经过原点的抛物线的函数 解析式是( D ) A.y=(x+1)2+1 C.y=(x–1)2+1 B. y= –(x+1)2+1 D. y= –(x–1)2+1
开口向下, 当x=1时y有 最大值:且 对称轴仍是平行于y轴的直线 (x=1);增减性与y= -3x2类似. 最大值= 2 (或最大值= - 2)..
X=1
一般:
y = ax2
向上、下平移k 个 单位
y = ax2 ± k
向左平移h个单位 向右平移h个单位
九年级下册《二次函数的图像和性质》第三课时说课稿

学生通过上一环节的作图、观察、比较、归纳、交流讨论等过程, 已经积累了一些方法和经验,所以此环节由学生自己独立完成:
(1)作出二次函数的图象;
(2)观察、思考完成“想一想”
(3)一学生展示,其他同学与老师评价、完善。
Ⅳ.自主探索、小组互学、展学提升:
学生在前面作图、观察、思考、交流讨论的基础上,完成“猜一 猜”,然后师生共同利用计算机进行验证。最后,学生在交流讨论的基
(1)开口___________;
(2)对称轴是___________;
(3)顶点坐标是___________;
(4)当时,随的增大而___________;
当时,随的增大而___________;
(5)函数图象有___________点,函数有___________值;
当_____时,取得__________值____.
九年级下册《二次函数的图像和性质》第三课时 说课稿
九年级下册《二次函数的图像和性质》第三课时说课稿
一、教材及学情分析
《二次函数的图像与性质》是北师大版九年级下册第二章第二节 的内容,在学生已经学习过一次函数(包括正比例函数)、反比例函数 的图像与性质,以及会建立二次函数模型和理解二次函数的有关概念的 基础上进行的,它既是前面所学知识的应用、拓展,是对前面所学一次 函数、反比例函数图像与性质的一次升华,又是今后学习《确定二次函 数的表达式》《二次函数的应用》、《二次函数与一元二次方程》的预 备知识,又是学生高中阶段数学学习的基础知识,它在教材中起着非常 重要的作用。另外,本节课最大特点,是结合图形来研究二次函数的性 质,这充分体现了一个很重要的数学思想——数形结合数学思想。因 此,这一节课,无论是在知识上,还是对学生动手能力培养上都有着十 分重要的作用。
5.2二次函数的图像和性质 第3课时 二次函数y=ax^2 bx c的图像和性质(教学课件)-初中数

新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
二次函数y=-x2-4x-5 的图像如图所示.
由图像可知, 当x=-2时, y的值最大, 最大值是-1.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
y=
1 2
x2-6x+21
y=
1 2
(x2-12x)+21
你知道是怎样配方的吗? 1. “提”:提出二次项系数;
1 y= 2 (x2-12x+36-36)+21
y= 1 (x-6) 2+21-18 2
2.“配”:括号内配成完全平方式;
a<0时,抛物线开口向下,函数有最大值;
4ac - b2
函数在顶点处取得有最大(小)值 4a
.
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的图像
练一练:用配方法将二次函数y=x2-8x-9化为y=a(x-h)2+k的形式 为( B ) A.y=(x-4)2+7 B.y=(x-4)2-25 C.y=(x+4)2+7 D.y=(x+4)2-25
新知导入 课程讲授 随堂练习 课堂小结
y=ax2+bx+c(a≠0)的性质
例1 画出二次函数y=-x2-4x-5的图像,并指出它的开口方向、顶点坐 标、对称轴、最大值或最小值. 【分析】要画出二次函数y=-x2-4x-5的图像,可先将函数表达式变
2020学年湘教版数学九年级下册第1章二次函数1.2二次函数的图像与性质教案湘教版

第1课时二次函数2(0)=>的图象与性质y ax a教学目标【知识与技能】1.会用描点法画函数2(0)=>的图象,并根据图象认识、理解和掌握其性质.y ax a2.体会数形结合的转化,能用2(0)=>的图象和性质解决简单的实际问题.y ax a【过程与方法】经历探索二次函数2(0)=>图象的作法和性质的过程,获得利用图象研究函数的经y ax a验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数2(0)=>图象和性质的真正理y ax a解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画2(0)=>的图象.y ax a2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.教学过程一、情境导入,初步认识问题1请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数的图象是什么形状呢?问题2如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1画二次函数2(0)=>的图象.y ax a【教学说明】①要求同学们动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y 轴对称的特征. ③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势. 如图(1)就是y=x 2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形. 图(2)就是漏掉点(0,0)的y=x 2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.如图(3),就是到点(-2,4),(2,4)停住的y=x 2图象的错误画法. 探究2 2(0)y ax a =>图象的性质在同一坐标系中,画出y=x 2, 212y x =,y=2x 2的图象.【教学说明】要求同学们独立完成图象,教师帮助引导,强调画图时注意每一个函数图象的对称性.动脑筋观察上述图象的特征(共同点),从而归纳二次函数2(0)y ax a =>的图象和性质.【教学说明】教师引导学生观察图象,从开口方向,对称轴,顶点,y 随x 的增大时的变化情况等几个方面让学生归纳,教师整理讲评、强调.2(0)y ax a =>图象的性质1.图象开口向上.2.对称轴是y 轴,顶点是坐标原点,函数有最低点.3.当x >0时,y 随x 的增大而增大,简称右升;当x <0时,y 随x 的增大而减小,简称左降.三、典例精析,掌握新知 例 已知函数24(2)k k y k x +-=+是关于x 的二次函数.(1)求k 的值.(2)k 为何值时,抛物线有最低点,最低点是什么?在此前提下,当x 在哪个范围内取值时,y 随x 的增大而增大?【分析】此题是考查二次函数y=ax 2的定义、图象与性质的,由二次函数定义列出关于k 的方程,进而求出k 的值,然后根据k+2>0,求出k 的取值范围,最后由y 随x 的增大而增大,求出x 的取值范围.解:(1)由已知得22042k k k +≠⎧⎨+-=⎩,解得k=2或k=-3.所以当k=2或k=-3时,函数24(2)kk y k x +-=+是关于x 的二次函数.(2)若抛物线有最低点,则抛物线开口向上,所以k+2>0.由(1)知k=2,最低点是(0,0),当x≥0时,y 随x 的增大而增大. 四、运用新知,深化理解1.(广东广州中考)下列函数,当x >0时,y 值随x 值增大而减小的是( ) A .y=x 2B .y=x-1C .34y x =D .1y x=2.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y=x 2的图象上,则( ) A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 2<y 1 D .y 2<y 1<y 33.抛物线y=13x 2的开口向 ,顶点坐标为 ,对称轴为 ,当x=-2时,y= ;当y=3时,x= ,当x≤0时,y 随x 的增大而 ;当x >0时,y 随x 的增大而 .4.如图,抛物线y=ax 2上的点B ,C 与x 轴上的点A (-5,0),D (3,0)构成平行四边形ABCD ,BC 与y 轴交于点E (0,6),求常数a 的值.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.A 3.上,(0,0),y 轴,43,±3,减小,增大 4.解:依题意得:BC=AD=8,BC∥x 轴,且抛物线y=ax 2上的点B ,C 关于y 轴对称,又∵BC 与y 轴交于点E (0,6),∴B 点为(-4,6),C 点为(4,6),将(4,6)代入y=ax 2得:a=38.五、师生互动,课堂小结1.师生共同回顾二次函数2(0)y ax a =>图象的画法及其性质.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流. 课后作业教材练习第1、2题. 教学反思本节课是从学生画y=x 2的图象,从而掌握二次函数2(0)y ax a =>图象的画法,再由图象观察、探究二次函数2(0)y ax a =>的性质,培养学生动手、动脑、探究归纳问题的能力.第2课时 二次函数2(0)y ax a =<的图象与性质教学目标 【知识与技能】1.会用描点法画函数2(0)y ax a =<的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用2(0)y ax a =<的图象与性质解决简单的实际问题. 【过程与方法】经历探索二次函数2(0)y ax a =<图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯. 【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax 2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性. 【教学重点】①会画2(0)y ax a =<的图象;②理解、掌握图象的性质. 【教学难点】二次函数图象的性质及其探究过程和方法的体会. 教学过程一、情境导入,初步认识 1.在坐标系中画出y=12x 2的图象,结合y=12x 2的图象,谈谈二次函数y=ax 2(a >0)的图象具有哪些性质?2.你能画出y=12-x 2的图象吗?二、思考探究,获取新知探究1 画2(0)y ax a =<的图象请同学们在上述坐标系中用“列表、描点、连线”的方法画出y=12-x 2的图象.【教学说明】教师要求学生独立完成,强调画图过程中应注意的问题,同学们完成后相互交流,表扬图象画得“美观”的同学.问:从所画出的图象进行观察,y=12x 2与y=12-x 2有何关系? 归纳:y=12x 2与y=12-x 2二者图象形状完全相同,只是开口方向不同,两图象关于y 轴对称.(教师引导学生从理论上进行证明这一结论)探究2 二次函数2(0)y ax a =<性质问:你能结合y=12-x 2的图象,归纳出2(0)y ax a =<图象的性质吗?【教学说明】教师提示应从开口方向,对称轴,顶点位置,y 随x 的增大时的变化情况几个方面归纳,教师整理,强调2(0)y ax a =<图象的性质.1.开口向下.2.对称轴是y 轴,顶点是坐标原点,函数有最高点.3.当x >0时,y 随x 的增大而减小,简称右降,当x <0时,y 随x 的增大而增大,简称左升.探究3 二次函数2(0)y ax a =≠的图象及性质 学生回答:【教学点评】一般地,抛物线y=ax 2的对称轴是 ,顶点是 ,当a >0时抛物线的开口向 ,顶点是抛物线的最 点,a 越大,抛物线开口越 ;当a <0时,抛物线的开口向 ,顶点是抛物线的最 点,a 越大,抛物线开口越 ,总之,|a|越大,抛物线开口越 .答案:y 轴,(0,0),上,低,小,下,高,大,小 三、典例精析,掌握新知例 1 填空:①函数2(2)y x =-的图象是 ,顶点坐标是 ,对称轴是,开口方向是.②函数y=x2,y=12x2和y=22x-的图象如图所示,请指出三条抛物线的解析式.解:①抛物线,(0,0),y轴,向上;②根据抛物线y=ax2中,a的值的作用来判断,上面最外面的抛物线为y=12x2,中间为y=x2,在x轴下方的为y=22x-.【教学说明】解析式需化为一般式,再根据图象特征解答,避免发生错误.抛物线y=ax2中,当a>0时,开口向上;当a<0时,开口向下,|a|越大,开口越小.例2 已知抛物线y=ax2经过点(1,-1),求y=-4时x的值.【分析】把点(1,-1)的坐标代入y=ax2,求得a的值,得到二次函数的表达式,再把y=-4代入已求得的表达式中,即可求得x的值.解:∵点(1,-1)在抛物线y=ax2上,-1=a·12,∴a=-1,∴抛物线为y=-x2.当y=-4时,有-4=-x2,∴x=±2.【教学说明】在求y=ax2的解析式时,往往只须一个条件代入即可求出a值.四、运用新知,深化理解1.下列关于抛物线y=x2和y=-x2的说法,错误的是()A.抛物线y=x2和y=-x2有共同的顶点和对称轴B.抛物线y=x2和y=-x2关于x轴对称C.抛物线y=x2和y=-x2的开口方向相反D.点(-2,4)在抛物线y=x2上,也在抛物线y=-x2上2.二次函数y=ax2与一次函数y=-ax(a≠0)在同一坐标系中的图象大致是()3.二次函数226(1)mm y m x +-=-,当x <0时,y 随x 的增大而减小,则m= .4.已知点A (-1,y 1),B(1,y 2),C(a ,y 3)都在函数y=x 2的图象上,且a >1,则y 1,y 2,y 3中最大的是 .5.已知函数y=ax 2经过点(1,2).①求a 的值;②当x <0时,y 的值随x 值的增大而变化的情况.【教学说明】学生自主完成,加深对新知识的理解和掌握,当学生疑惑时,教师及时指导.【答案】1.D 2.B 3.2 4.y 3 5.①a=2 ②当x <0时,y 随x 的增大而减小 五、师生互动,课堂小结这节课你学到了什么,还有哪些疑惑?在学生回答的基础上,教师点评: (1)2(0)y ax a =<图象的性质;(2)y=ax 2(a≠0)关系式的确定方法. 课后作业教材练习第1~2题. 教学反思本节课仍然是从学生画图象,结合上节课y=ax 2(a >0)的图象和性质,从而得出2(0)y ax a =<的图象和性质,进而得出y=ax 2(a≠0)的图象和性质,培养学生动手、动脑、合作探究的学习习惯.第3课时 二次函数2()y a x h =-的图象与性质教学目标 【知识与技能】1.能够画出2()y a x h =-的图象,并能够理解它与y=ax 2的图象的关系,理解a ,h 对二次函数图象的影响.2.能正确说出2()y a x h =-的图象的开口方向、对称轴和顶点坐标. 【过程与方法】经历探索二次函数2()y a x h =-的图象的作法和性质的过程,进一步领会数形结合的思想. 【情感态度】1.在小组活动中体会合作与交流的重要性.2.进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识. 【教学重点】掌握2()y a x h =-的图象及性质. 【教学难点】理解2()y a x h =-与y=ax 2图象之间的位置关系,理解a ,h 对二次函数图象的影响. 教学过程一、情境导入,初步认识 1.在同一坐标系中画出y=12x 2与y=12(x-1)2的图象,完成下表.2.二次函数y=12(x-1)2的图象与y=12x 2的图象有什么关系? 3.对于二次函数12(x-1)2,当x 取何值时,y 的值随x 值的增大而增大?当x 取何值时,y 的值随x 值的增大而减小?二、思考探究,获取新知归纳二次函数2()y a x h =-的图象与性质并完成下表.三、典例精析,掌握新知例1 教材例3.【教学说明】二次函数y=ax2与y=a(x-h)2是有关系的,即左、右平移时“左加右减”.例如y=ax2向左平移1个单位得到y=a(x+1)2,y=ax2向右平移2个单位得到y=a(x-2)2的图象.例2 已知直线y=x+1与x轴交于点A,抛物线y=-2x2平移后的顶点与点A重合.①水平移后的抛物线l的解析式;②若点B(x1,y1),C(x2,y2)在抛物线l上,且12-<x1<x2,试比较y1,y2的大小.解:①∵y=x+1,∴令y=0,则x=-1,∴A(-1,0),即抛物线l的顶点坐标为(-1,0),又∵抛物线l是由抛物线y=-2x2平移得到的,∴抛物线l的解析式为y=-2(x+1)2.②由①可知,抛物线l的对称轴为x=-1,∵a=-2<0,∴当x>-1时,y随x的增大而减小,又12-<x1<x2,∴y1>y2.【教学说明】二次函数的增减性以对称轴为分界,画图象取点时以顶点为分界对称取点.四、运用新知,深化理解1.二次函数y=15(x-1)2的最小值是()A.-1 B.1 C.0 D.没有最小值2.抛物线y=-3(x+1)2不经过的象限是()A.第一、二象限 B.第二、四象限 C.第三、四象限 D.第二、三象限3.在反比例函数y=kx中,当x>0时,y随x的增大而增大,则二次函数y=k(x-1)2的图象大致是()4.(1)抛物线y=13x2向平移个单位得抛物线y=13(x+1)2;(2)抛物线向右平移2个单位得抛物线y=-2(x-2)2.5.已知抛物线y=a(x-h)2的对称轴为x=-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的大致图象;(3)从图象上观察,当x取何值时,y随x的增大而增大?当x取何值时,函数有最大值(或最小值)?【教学说明】学生自主完成,教师巡视解疑.【答案】1.C 2.A 3.B 4.(1)左,1 (2)y=-2x25.解:(1)y=13(x+2)2 (2)略(3)当x<-2时,y随x增大而增大;当x=-2时,y有最大值0.五、师生互动,课堂小结1.这节课你学到了什么?还有哪些疑惑?2.在学生回答的基础上,教师点评:(1)y=a(x-h)2的图象与性质;(2)y=a(x-h)2与y=ax2的图象的关系.课后作业教材练习第1、2题.教学反思通过本节学习使学生认识到y=a(x-h)2的图象是由y=ax 2的图象左右平移得到的,初步认识到a ,h 对y=a(x-h)2位置的影响,a 的符号决定抛物线方向,|a|决定抛物线开口的大小,h 决定向左右平移;从中领会数形结合的数学思想.第4课时 二次函数2()y a x h k =-+的图象与性质教学目标 【知识与技能】1.会用描点法画二次函数2()y a x h k =-+的图象.掌握2()y a x h k =-+的图象和性质.2.掌握2()y a x h k =-+与y=ax 2的图象的位置关系.3.理解2()y a x h k =-+,2()y a x h =-,2y ax k =+及2y ax =的图象之间的平移转化. 【过程与方法】经历探索二次函数2()y a x h k =-+的图象的作法和性质的过程,进一步领会数形结合的思想,培养观察、分析、总结的能力. 【情感态度】1.在小组活动中进一步体会合作与交流的重要性.2.体验数学活动中充满着探索性,感受通过认识观察,归纳,类比可以获得数学猜想的乐趣. 【教学重点】二次函数2()y a x h k =-+的图象与性质. 【教学难点】由二次函数2()y a x h k =-+的图象的轴对称性列表、描点、连线. 教学过程一、情境导入,初步认识 复习回顾:同学们回顾一下:① 2y ax =,2()y a x h =-,(a ≠0)的图象的开口方向、对称轴、顶点坐标,y 随x 的增减性分别是什么?② 如何由2y ax = (a ≠0)的图象平移得到2()y a x h =-的图象?③猜想二次函数2()y a x h k =-+的图象开口方向、对称轴、顶点坐标及y 随x 的增减性如何?二、思考探究,获取新知探究1 2()y a x h k =-+的图象和性质1.由老师提示列表,根据抛物线的轴对称性观察图象回答下列问题:①y=12-(x+1)2-1图象的开口方向、对称轴、顶点坐标及y 随x 的增减性如何?③ 将抛物线y=12-x 2向左平移1个单位,再向下平移1个单位得抛物线y=12-(x+1)2-1.2.同学们讨论回答:①一般地,当h >0,k >0时,把抛物线2y ax =向右平移h 个单位,再向上平移k 个单位得抛物线2()y a x h k =-+;平移的方向和距离由h ,k 的值来决定.②抛物线2()y a x h k =-+的开口方向、对称轴、顶点坐标及y 随x 的增减性如何? 探究2 二次函数2()y a x h k =-+的应用【教学说明】二次函数2()y a x h k =-+的图象是 ,对称轴是 ,顶点坐标是 ,当a >0时,开口向 ,当a <0时,开口向 .答案:抛物线,直线x=h ,(h ,k),上,下 三、典例精析,掌握新知例1 已知抛物线2()y a x h k =-+,将它沿x 轴向右平移3个单位后,又沿y 轴向下平移2个单位,得到抛物线的解析式为y=3-(x+1)2-4,求原抛物线的解析式.【分析】平移过程中,前后抛物线的形状,大小不变,所以a=3-,平移时应抓住顶点的变化,根据平移规律可求出原抛物线顶点,从而得到原抛物线的解析式.解:抛物线y=3-(x+1)2-4的顶点坐标为(-1,-4),它是由原抛物线向右平移3个单位,向下平移2个单位而得到的,所以把现在的顶点向相反方向移动就得到原抛物线顶点坐标为(-4,-2).故原抛物线的解析式为y=3-(x+4)2-2.【教学说明】抛物线平移不改变形状及大小,所以a 值不变,平移时抓住关键点:顶点(2=x-1 0 1 2 3 …21(1)32y x =+--3 -2.5 -1 1.5 5…描点和连线:画出图像在对称轴右边的部分,利用对称性,画出图像在对称轴左边的部分,这样就得到了21(1)32y x =+-的图像,如上图。
冀教版九年级下册数学第30章 二次函数 二次函数y=a(x-h)2的图像和性质

第三十章 二次函数
30.2 二次函数的图像和性质 第3课时 二次函数y=a(x-h)2的图像
和性质
1D 2A 3B 4C 5C
提示:点击 进入习题
6D 7 见习题 8C 9B 10 D
答案显示
11 D 12 B 13 B 14 h≥1 15 见习题
提示:点击 进入习题
16 见习题
解:当x<-2时,y随x的增大而增大;当x=-2时,函数有 最大值.
8.【易错:混淆左右平移后表达式的特点而致错】将函数y=x2 的图像向
左平移2个单位长度后,得到的新图像的表达式是( )
A.y=x2+2
B.y=x2-2
C.y=(x+2)2
C
D.y=(x-2)2
9.【2020·浙江衢州改编】二次函数y=x2的图像平移后经过点(2,0),则下
(2)若点C(-3,b)在该抛物线上,求S△ABC .
解:过点C作CD⊥x轴于D. 将C(-3,b)的坐标代入y=-(x+1)2中,得b=-4,即点C的坐标为(- 3,-4),∴S△ABC=S梯形OBCD-S△ACD-S△AOB= ×3×(1+4)- ×4×(3-1)-
×1×1=3.
1
1
1
2
2
2
17.已知抛物线y=x2如图所示. (1)将抛物线向右平移m(m>0)个单位长度后,经过点A(0,3),试求m的值;
解:由题意得,平移后得到的抛物线表 达式为y= (x-m)2. 把点A(0,3)的坐标
1 代入上式,得3= (0-m)2,解得m1=3,m2=-3. 3 ∵m>0,∴m=3.
1 3
(2)画出(1)中平移后的图像; 解:如图所示.
(3)设两条抛物线相交于点B,点A关于新抛物线对称轴的对称点为C,试在 新抛物线的对称轴上找出一点P,使BP+CP的值最小,并求出点P的坐 标.
《二次函数的图像和性质(第三课时)》教学片段及反思

《二次函数的图像和性质(第三课时)》教学片段及反思杨丽萍【摘要】教材分析本课时的教学是在学生学过二次函数知识的基础上,用运动变化的观点,从"坐标的数值变化"与"图形的位置变化"的关系着手,探索二次函数y=ax2+k、y=a(x+h)2的图像与二次函数y=ax2的图像的关系.运用类比探究的方法得出:把二次函数y=ax2的图像经过一定的平移变换,从特殊到一般得到二次函数y=a(x+m)2的图像.这样不仅符合学生的认知规律,而且还使学生进一步体会了数形结合的思想方法,培养了学生的创造性思维的能力和动手实践能力,突出体现了辩证唯物主义观点.【期刊名称】《中学数学》【年(卷),期】2012(000)002【总页数】1页(P17)【作者】杨丽萍【作者单位】江苏苏州草桥中学校【正文语种】中文教材分析本课时的教学是在学生学过二次函数知识的基础上,用运动变化的观点,从“坐标的数值变化”与“图形的位置变化”的关系着手,探索二次函数y=ax2+k、y=a (x+h)2的图像与二次函数y=ax2的图像的关系.运用类比探究的方法得出:把二次函数y=ax2的图像经过一定的平移变换,从特殊到一般得到二次函数y=a(x+m)2的图像.这样不仅符合学生的认知规律,而且还使学生进一步体会了数形结合的思想方法,培养了学生的创造性思维的能力和动手实践能力,突出体现了辩证唯物主义观点.1.1 检查预习作业:画出y=x2、y=x2+1与y=x2-1的图像并回答y=x2、y=x2+1与y=x2-1的位置关系;1.2 用实物投影仪展示学生预习作业:画出的二次函数y=x2、y=x2+1与y=x2-1的图像,学生自主归纳画图过程以及对图像以及性质的发现;1.3 教师课件演示、验证.设计理念检查预习作业主要是想通过检查学生所画的函数图像,从中得到学生掌握知识程度的反馈,微调本节课的教学内容,及时检查反馈学生对已学知识的掌握程度.给学生的这几个题目主要是让学生运用运用类比的方法找到这几个图像之间的关系,这种设计我感觉降低知识的起点,梯度较小,学生容易完成,达到为学生学习新知识作准备.展示学生的作业,发现好的作业应给予适宜的鼓励性评价.鼓励性评价是培养、保护学生创新思维的条件.教师要及时抓住学生稍纵即逝的新奇、独特的想法,给予赞扬,使学生的创造性思维得以发展.多给学生创造性思维活动的机会,鼓励学生勇于尝试,并在失败面前不气馁.数学课堂教学的整个过程中,教师要最大限度地创设和实施多种鼓励机制,充分调动全体学生学习的积极性,促进教学目标更好更快地达成,以便提高课堂效率和大面积提高教学质量.通过教师课件的演示,让学生能更直观地观察、分析到这几个函数图像之间的内在联系.教师要重视对数学史上成功观察事例的介绍,同时要经常结合教学内容,说明认真细致的观察在知识学习中的作用,教育学生要做观察的有心人,激励学生要仔细观察,善于观察.教学反思创设情境,引入新课的目的是显而易见的,学生很快找到了图像的变换方法.但是,由于教师给定了题目,使得学生的思维仅限于这几个函数图像之间的类比,限制了学生的思维的活跃程度和发散性.于是,我反思,如果先给学生这三个函数,然后让学生再考虑y=x2+k,当k取不同的值时,与y=x2的关系,这样就能增加学生更多的探究兴趣,而且还能给成绩优秀的学生提供探索的空间.我想作为教师,课堂教学中没有疏漏是不可能的,大可不必对此耿耿于怀.美国心理学家贝恩布里奇说过:“差错人皆有之,作为教师不利用是不能原谅的,没有大量的错误作为台阶就攀登不上正确结果的台阶.”这就启发我们正确对待数学教学中的出现的错误,通过对错误的反思来提高自己的认识,加深对数学知识理解,重视学生思维过程的形成,给他们展示自己思维过程的机会,有意提供学生的思维空间.2.1 用描点法画出函数y=2(x+h)2(h自选)的函数图像,以及画出函数y=2(x+h)2(h自选)的图像.①根据所画出的函数图像,指出其开口方向、对称轴和顶点坐标;②通过观察分析指出函数图像与函数y=2x2与y=2(x+h)2(h自选)的图像有什么关系.通过观察分析指出函数图像与函数y=-x2与y=-(x+h)2(h自选)的图像有什么关系.2.2 学生先自主画图验证.2.3 教师课件演示.(几何画板动态演示)设计理念通过学生动手画函数图像,给学生创设实践活动时间和空间,体现教师是主导,学生是主体的教学地位,让学生经历知识的发生、发展过程,并通过观察、分析、探索出函数图像的有关性质,培养学生数形给合的思想.教师及时进行课件演示,既调动课堂的学习气氛又能引导学生通过演示过程观察、分析,进一步验证、直观地得出函数图像的性质.利用几何画板课件演示,激发学生的学习兴趣,改变函数的解析式,通过图像的平移、变换观察函数图像间的关系,让学生体验、感受函数图像的性质取决各项系数的大小.教学反思函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识.在教学过程中,除了让学生多动手画图像,加深学生对函数图像的了解,加深他们对函数性质的了解外.更重要的是让学生参与到函数图像和性质的探索中去.要利用一切可以利用的材料来帮助学生理解所学的知识.教材内容在安排过程中是由特殊到一般,由y=x2的性质到y=a(x+h)2+k(a≠0)的性质,本节中都是通过学生观察、验证得到y=a(x+h)2(a≠0)的性质,并不知道y=a(x+h)2(a≠0)性质的生成过程,忽视了学生对知识产生、认知、感受、理解的过程,只是形式上认可这种性质,体现出来的都是表象的东西,并没有从本质上理解.本节课中通过表格上函数值的变化让学生猜想函数图像的位置变化,给学生留下较深刻的印象.在知识学习过程中给学生留有充分的思考与交流的时间和空间,让学生经历了观察、猜测、交流、反思等活动,体现了学生对学习过程的经历和体验也是学习的目的的理念.在课件的设计时采用了几何画板这个具有动态直观、数形结合、色彩鲜明、变化无穷等特点的有力工具来辅助教学,给学生良好的视觉感受,激发学生的学习兴趣,培养学生的观察、分析、归纳、概括能力,提高数学课堂教学的效率和效果,促使学生主动参与并“卷入”到“做”数学的活动中,从而更加深刻地认识二次函数y=a(x+h)2(a≠0)的性质.但是经过认真思考本节课中出现的一些情境,我感觉尽管新课改进行了好几年,但是有些不符合新课改精神的观念在我们脑子中根深蒂固.在教学中或多或少会出现一些影子.不过我相信,每位教师都能够从自身实际出发,不断学习探索,不断总结、反思,不断完善自身,就可以使我们的教学更加生动真实,使我们的课堂闪耀着智慧的光芒!。
【精】 《二次函数的图象和性质(第3课时)》精品教案

《二次函数(第3课时)》精品教案
(1)抛物线顶点坐标___________;
(2)对称轴为________;
(3)当x=____时,y有最大值是_____;
(4)当________时,y随着x得增大而增大.(5)当____________时,y>0.
4.将函数y=3x+1的图象向______平行移动_____个单位,可使它经过点(1,-1).
5.若将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到________________。
课堂小结通过本节课的内容,你有哪些收获?
(2)对称轴是x=h.
(3)顶点是(h,k).
(4)平移规律:h值正右移,负左移;k值正上移,负下移. 学会总结学
习收获,巩
固知识点,
理清知识间
的联系。
让学生
来谈本
节课的
收获,培
养学生
自我检
查、自我
小结的
良好习
惯,将知
识进行
整理并
系统化。
中考数学专题复习:二次函数

第三课时 二次函数的综合应用
考点
1.与几何图形有关的线段、周长、面积 的最值问题; 2.特殊三角形、四边形的存在问题; 3.动点产生的角度问题等综合题
教学思路
跨领域复合型综合题涵盖了初中数学几乎所有的数学 思想方法,一般以压轴题的形式出现.在有限的中考复习 时间里,应该做到以下几点,以提升学生的思维高度:
二。抛物线型
例2 (2022·河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面 0.7 m,水柱在距喷水头P水平距离5 m处达到最高,最高点距地面3.2 m;建立如图所示的平面直角坐标系, 并设抛物线的解析式为y=a(x-h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高 度.
中考ห้องสมุดไป่ตู้学专题复习
二次函数
第一课时二次函数的图像和性质
二
次
函
第二课时二次函数的实际应用
数
复
习
第三课时二次函数的综合应用
第一课时 二次函数的图像和性质
考点
二次函数的图像与性质通常以选择题或填 空题的形式出现,为历年必考题目。题目设计 主要有同一坐标系中多函数像问题、根据图像 做判断的多结论问题、根据表格形式呈现的多 结论问题等,考查a、b、c的符号、对称轴、最 值、大小比较、与一元二次方程的关系(与x轴、 平行于x轴的直线交点个数)、根据图像解不等 式、图像的平移等。
(1)要加强学生的做题意识,树立必胜的信心,教 师要让学生知道综合题常常是“起点低,坡度缓,尾巴略 翘”,要多鼓励学生大敢作答;
(2)是基础知识和基本技能训练要全面,重点内容 适当分类进行专题训练;
(3)是要教会学生一些常用的解题策略,重视数学 思想和方法的提炼,注意知识的迁移,让学生学会融会贯 通.