2020年高考押题卷
2020年江苏省高考数学押题试卷(6月份) (解析版)

2020年高考数学押题试卷(6月份)一、填空题(共14小题).1.已知集合M={﹣1,0,1,2},集合N={x|x2+x﹣2=0},则集合M∩N=.2.已知复数(i是虚数单位),则z的共轭复数为.3.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,100)中的频数为24,则n的值为.4.执行如图所示的算法流程图,则输出的b的值为.5.已知A、B、C三人在三天节日中值班,每人值班一天,那么A排在C后一天值班的概率为.6.底面边长和高都为2的正四棱锥的表面积为.7.在平面直角坐标系xOy中,已知双曲线经过点(﹣,6),且它的两条渐近线方程是y=±3x,则该双曲线标准方程为.8.已知sinα+cosα=,则sin2α+cos4α的值为.9.设S n为等差数列{a n}的前n项和,若2a3﹣a5=1,S10=100,则S20的值为.10.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单位分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够;每人,余,再将这分成5份,每人得,这样每人分得.形如(n=5,7,9,11,…)的分数的分解:,,,按此规律,=(n=5,7,9,11,…).11.在平面直角坐标系xOy中,已知圆C:(x﹣2)2+y2=4,点P是圆C外的一个动点,直线PA,PB分别切圆C于A,B两点.若直线AB过定点(1,1),则线段PO长的最小值为.12.已知正实数x,y满足,则的最小值为.13.如图,在平行四边形ABCD中,AB=2AD,E,F分别为AD,DC的中点,AF与BE 交于点O.若,则∠DAB的余弦值为.14.在△ABC中,角A,B,C的对边分别为a,b,c,且=1,则的最大值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A、B、C的对边分别为a、b、c.已知向量,,且.(1)求的值;(2)若,求△ABC的面积S.16.如图直三棱柱ABC﹣A1B1C1中,AC=2AA1,AC⊥BC,D、E分别为A1C1、AB的中点.求证:(1)AD⊥平面BCD;(2)A1E∥平面BCD.17.如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向3千米处,值班室C在值班室B的正东方向4千米处.(1)保安甲沿CA从值班室C出发行至点P处,此时PC=2.求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?18.(16分)在平面直角坐标系xOy中,已知椭圆C:(a>b>0)过点(1,),离心率为.A,B是椭圆上两点,且直线OA与OB的斜率之积为.(1)求椭圆C的方程;(2)求直线AB的斜率;(3)设直线AB交圆O:x2+y2=a2于C,D两点,且,求△COD的面积.19.(16分)已知数列{a n}的前n项和为S n,S n=(a n+λ)(λ为常数)对于任意的n∈N*恒成立.(1)当a1=1时,求λ的值;(2)证明:数列{a n}是等差数列;(3)若a2=2,关于m的不等式|S m﹣2m|<m+1有且仅有两个不同的整数解,求λ的取值范围.20.(16分)已知函数f(x)=(a∈R,且a为常数).(1)若函数y=f(x)的图象在x=e处的切线的斜率为(e为自然对数的底数),求a的值;(2)若函数y=f(x)在区间(1,2)上单调递增,求a的取值范围;(3)已知x,y∈(1,2),且x+y=3.求证:+≤0.附加题【选做题】本题包括,B,C三小题,每小题10分.请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换]21.曲线x2+y2=1在矩阵A=(a>0,b>0)对应的变换下得到曲线=1.(1)求矩阵A;(2)求矩阵A的特征向量.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.已知在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρ(sinθ+cosθ)=2,直线l与曲线C相交于A,B两点,求线段AB的值.C.[选修4-5:不等式选讲]23.已知a,b,c为正实数,满足a+b+c=3,求的最小值.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.五个自然数1、2、3、4、5按照一定的顺序排成一列.(1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻,称这两个数为一组“友好数”.随机变量X表示上述五个自然数组成的一个排列中“友好数”的组数,求X的概率分布和数学期望E (X).25.已知n≥2,n∈N*,数列T:a1,a2,…,a n中的每一项均在集合M={1,2,…,n}中,且任意两项不相等,又对于任意的整数i,j(1≤i<j≤n),均有i+a i≤j+a j.记所有满足条件的数列T的个数为b n.例如n=2时,满足条件的数列T为1,2或2,1,所以b2=2.(1)求b3;(2)求b n.参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合M={﹣1,0,1,2},集合N={x|x2+x﹣2=0},则集合M∩N={1}.【分析】可以求出集合N,然后进行交集的运算即可.解:∵M={﹣1,0,1,2},N={﹣2,1},∴M∩N={1}.故答案为:{1}.2.已知复数(i是虚数单位),则z的共轭复数为1﹣i.【分析】直接利用复数代数形式的乘除运算化简得答案.解:∵=,∴.故答案为:1﹣i.3.为了解学生课外阅读的情况,随机统计了n名学生的课外阅读时间,所得数据都在[50,150]中,其频率分布直方图如图所示.已知在[50,100)中的频数为24,则n的值为60.【分析】由频率分布直方图求出[50,100)中的频率,再由在[50,100)中的频数,能求出n.解:由频率分布直方图得:[50,100)中的频率为:(0.004+0.012)×25=0.4,因为在[50,100)中的频数为24,所以n==60,故答案为:60.4.执行如图所示的算法流程图,则输出的b的值为8.【分析】按照程序框图一步一步代入求值,直到跳出循环,输出结果.解:a=1,b=1;b=2,a=2;b=4,a=3,b=8,a=4;跳出循环,输出b=8,故答案为:8.5.已知A、B、C三人在三天节日中值班,每人值班一天,那么A排在C后一天值班的概率为.【分析】利用排列组合数公式易求三人值班有A种,A排在C后一天值班的情况有C A 种,相比即可.解:因为A、B、C三人在三天节日中值班有A=6种,其中A排在C后一天值班的情况有C A=2种,所以A排在C后一天值班的概率P==,故答案是.6.底面边长和高都为2的正四棱锥的表面积为4+4.【分析】由已知中正四棱锥的底面边长为2,高为2,求出棱锥的侧高,进而求出棱锥的侧面积,加上底面积后,可得答案.解:如下图所示:正四棱锥S﹣ABCD中,AB=BC=CD=AD=2,S0=2,E为BC中点,在Rt△SOE中,OE=AB=1,则侧高SE==,故棱锥的表面积S=2×2+4×(×2×)=4+4.故答案为:4+4.7.在平面直角坐标系xOy中,已知双曲线经过点(﹣,6),且它的两条渐近线方程是y=±3x,则该双曲线标准方程为﹣x2=1.【分析】根据题意,设要求双曲线的方程为x2﹣=t,(t≠0),将点坐标代入计算可得t的值,将t的值代入计算双曲线的方程,变形为标准方程即可得答案.解:根据题意,要求双曲线的两条渐近线方程是y=±3x,设其方程为x2﹣=t,(t ≠0),又由双曲线经过点(﹣,6),则有(﹣)2﹣=3﹣4=t=﹣1,则要求双曲线的方程为﹣x2=1;故答案为:﹣x2=1.8.已知sinα+cosα=,则sin2α+cos4α的值为.【分析】将已知等式两边平方,利用二倍角公式可求sin2α的值,进而根据二倍角的余弦函数公式可求cos4α的值,即可得解.解:∵sinα+cosα=,∴两边平方,可得1+sin2α=,sin2α=﹣,∴cos4α=1﹣2sin22α=1﹣2×(﹣)2=,∴sin2α+cos4α=﹣+=.故答案为:.9.设S n为等差数列{a n}的前n项和,若2a3﹣a5=1,S10=100,则S20的值为400.【分析】利用等差数列前n项和公式和通项公式列方程组,解得a1=1,d=2,由此能求出S20.解:∵S n为等差数列{a n}的前n项和,2a3﹣a5=1,S10=100,∴,解得a1=1,d=2,∴S20=20×1+=400.故答案为:400.10.埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单位分数和的形式.例如可以这样理解:假定有两个面包,要平均分给5个人,如果每人,不够;每人,余,再将这分成5份,每人得,这样每人分得.形如(n=5,7,9,11,…)的分数的分解:,,,按此规律,=+(n=5,7,9,11,…).【分析】由已知中=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+,类比可推导出=+.解:假定有两个面包,要平均分给n(n=5,7,9,11,…)个人,每人不够,每人分则余,再将这分成n份,每人得,这样每人分得+.故=+;故答案为:+11.在平面直角坐标系xOy中,已知圆C:(x﹣2)2+y2=4,点P是圆C外的一个动点,直线PA,PB分别切圆C于A,B两点.若直线AB过定点(1,1),则线段PO长的最小值为.【分析】设P(x0,y0),求出以AB为直径的圆的方程,与圆C联立,可得AB所在直线方程,代入(1,1),得P点轨迹,再由点到直线的距离公式求得线段PO长的最小值.解:设P(x0,y0),则PC的中点坐标为(),又|PC|=,∴以PC为直径的圆的方程为,即x2+y2﹣(x0+2)x﹣y0y+2x0=0,①又圆C:x2+y2﹣4x=0,②①﹣②得:(x0﹣2)x+y0y﹣2x0=0.∵直线AB过(1,1),∴x0﹣y0+2=0.即点P的轨迹为x﹣y+2=0.∴线段PO长的最小值为O到直线x﹣y+2=0的距离等于.故答案为:.12.已知正实数x,y满足,则的最小值为2.【分析】直接利用关系式的变换和不等式的性质的应用求出结果.解:已知正实数x,y满足,整理得:,所以=,所以(当且仅当y=2x等号成立)故的最小值为2.故答案为:213.如图,在平行四边形ABCD中,AB=2AD,E,F分别为AD,DC的中点,AF与BE 交于点O.若,则∠DAB的余弦值为.【分析】用表示出,根据条件列方程计算cos∠DAB.解:=+,设=λ=+λ=+2λ,∵B,O,E三点共线,∴+2λ=1,即λ=.∴==+,=+,∴==﹣,∴5•=(+)•(4﹣2)=﹣2+.若,则﹣2=,又AB=2AD,=AB•AD•cos∠DAB,∴6(4AD2﹣AD2)=51(2AD•AD•cos∠DAB),解得cos∠DAB==.故答案为:.14.在△ABC中,角A,B,C的对边分别为a,b,c,且=1,则的最大值为.【分析】由已知化切为弦可得3sin C=sin B(sin A﹣cos A),结合正弦定理可得3c=b(sin A ﹣cos A),得到,再由辅助角公式化积,利用正弦函数的有界性求得最大值.解:由=1,得,∴4cos A sin B+3cos B sin A=sin A sin B,∴3sin(A+B)+cos A sin B=sin A sin B,即3sin C=sin B(sin A﹣cos A),结合正弦定理可得3c=b(sin A﹣cos A),∴.∵0<A<π,∴<<,则当A﹣时,取得最大值为.即的最大值为.故答案为:.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.在△ABC中,角A、B、C的对边分别为a、b、c.已知向量,,且.(1)求的值;(2)若,求△ABC的面积S.【分析】(1)由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0法一:根据正弦定理可得,sin B cos A﹣2sin B cos C+sin A cos B﹣2sin C cos B法二:根据余弦定理可得,b×=0化简可得,然后根据正弦定理可求(2)由(1)c=2a可求c,由||可求b,结合余弦定理可求cos A,利用同角平方关系可求sin A,代入三角形的面积公式S=可求解:(1)法一:由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0根据正弦定理可得,sin B cos A﹣2sin B cos C+sin A cos B﹣2sin C cos B=0∴(sin B cos A﹣sin A cos B)﹣2(sin B cos C+sin C cos B)=0∴sin(A+B)﹣2sin(B+C)=0∵A+B+C=π∴sin C﹣2sin A=0∴(法二):由可得b(cos A﹣2cos C)+(a﹣2c)cos B=0根据余弦定理可得,b×=0整理可得,c﹣2a=0∴=2(2)∵由(1)可知c=2a=4∴b=3∴cos A==,sin A==∴△ABC的面积S===16.如图直三棱柱ABC﹣A1B1C1中,AC=2AA1,AC⊥BC,D、E分别为A1C1、AB的中点.求证:(1)AD⊥平面BCD;(2)A1E∥平面BCD.【分析】(1)只需证明BC⊥AD,DC⊥AD,证明即可AD⊥平面BCD(2)取BC中点O,连结DO、OE可得四边形A1DOE为平行四边形,即A1E∥OD,A1E∥平面BCD.【解答】证明:(1)∵直三棱柱ABC﹣A1B1C1中CC1⊥平面ABC,又BC⊂平面ABC,∴CC1⊥BC,又∵AC⊥BC,AC∩CC1=C,AC,CC1⊂平面AA1C1C,∴BC⊥平面AA1C1C,而AD⊂平面AA1C1C∴BC⊥AD…①又该直三棱柱中AA1⊥A1C1,CC1⊥A1C1,由已知AA1=AC=A1D,则∠A1DA=,同理∠C1DC=,则∠ADC=,即CD⊥AD,由①BC⊥AD,BC∩CD=C,BC,CD⊂平面BCD,∴AD⊥平面BCD;(2)取BC中点O,连结DO、OE,∵AE=EB,CO=BO∴OE平行等于AC,而A1D平行等于AC,∴A1D平行等于OE∴四边形A1DOE为平行四边形,∴A1E∥OD,而A1E⊄平面BCD,OD⊂平面BCD,∴A1E∥平面BCD.17.如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向3千米处,值班室C在值班室B的正东方向4千米处.(1)保安甲沿CA从值班室C出发行至点P处,此时PC=2.求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为5千米/小时,乙的速度为3千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【分析】(1)在△PBC中,根据余弦定理计算PB;(2)设行进时间为t,得出两人距离关于t的函数,解不等式得出t的范围即可得出结论.解:(1)AC==5,cos C==,在△PBC中,由余弦定理可得:PB2=PC2+BC2﹣2PC•BC•cos C=4+16﹣2•2•4•=,∴PB=千米.(2)设两保安出发t小时后,甲保安到达M处,乙保安到达N处(0≤t≤1).则AM=5(1﹣t),AN=3t,又cos A=,则MN2=25(1﹣t)2+9t2﹣2•5(1﹣t)•3t•=52t2﹣68t+25,令MN>3可得52t2﹣68t+25>9,即13t2﹣17t+4>0,又0≤t≤1,解得:0≤t<.∴两保安有小时不能通话.18.(16分)在平面直角坐标系xOy中,已知椭圆C:(a>b>0)过点(1,),离心率为.A,B是椭圆上两点,且直线OA与OB的斜率之积为.(1)求椭圆C的方程;(2)求直线AB的斜率;(3)设直线AB交圆O:x2+y2=a2于C,D两点,且,求△COD的面积.【分析】(1)由椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)当直线AB的斜率不存在时,k OA•k OB<0,与条件矛盾;可设直线AB的方程为y =kx+m,代入椭圆方程x2+2y2=4,运用韦达定理和直线的斜率公式,计算可得所求值;(3)不妨设直线AB的方程为y=x+m,运用点到直线的距离公式和弦长公式,化简整理,结合三角形的面积公式,计算可得所求值.解:(1)因为e==,所以a2=2b2,设椭圆方程为+=1,将点(1,)代入可得+=1,解得b=,则a=2,则椭圆的方程为+=1;(2)当直线AB的斜率不存在时,k OA•k OB<0,与条件矛盾.所以直线AB的斜率存在.可设直线AB的方程为y=kx+m,代入椭圆方程x2+2y2=4,可得(2k2+1)x2+4kmx+2m2﹣4=0,设A(x1,y1),B(x2,y2),可得x1+x2=﹣,x1x2=,于是y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,而k OA•k OB==,即x1x2=2y1y2,则=2•,解得k2=,即有k=±,所以直线AB的斜率为±;(3)不妨设直线AB的方程为y=x+m,即x﹣y+m=0,因为原点O到直线AB的距离d=,所以|CD|=2=2,由(2)当k=时,x1+x2=﹣m,x1x2=m2﹣2,所以|AB|=|x1﹣x2|=•=•,于是==,解得m2=3,因此△COD的面积S△OCD=CD•d=•2•=2.19.(16分)已知数列{a n}的前n项和为S n,S n=(a n+λ)(λ为常数)对于任意的n∈N*恒成立.(1)当a1=1时,求λ的值;(2)证明:数列{a n}是等差数列;(3)若a2=2,关于m的不等式|S m﹣2m|<m+1有且仅有两个不同的整数解,求λ的取值范围.【分析】(1)令n=1,结合S1=a1及题设条件可得2a1=a1+λ,进而得解;(2)利用S n+1﹣S n=a n及题设条件可得2a n+1=(n+1)a n+1﹣na n+λ,进而得到2a n+1﹣2a n=(n+1)a n+1﹣2na n+(n﹣1)a n﹣1,化简整理即可得证;(3)由(2)问题等价于,令,题目条件进一步转化为满足不等式t|m(m﹣3)|<m+1的整数解只有两个,然后再分类讨论得出结论.解:(1)当n=1时,,∴2a1=a1+λ,解得λ=a1=1;(2)证明:由题意知,,∴2a n+1=(n+1)a n+1﹣na n+λ,∴,∴2a n+1﹣2a n=(n+1)a n+1﹣2na n+(n﹣1)a n﹣1,∴(n﹣1)a n+1+(n﹣1)a n﹣1=2(n﹣1)a n,又n≥2,n∈N•,∴n﹣1>0,∴a n+1+a n﹣1=2a n对任意n≥2,n∈N•都成立,∴数列{a n}是等差数列;(3)由(2)可知,|S m﹣2m|<m+1,即,即,∴,令,题目条件转化为满足不等式t|m(m﹣3)|<m+1的整数解只有两个,若m=1符合,则2t<2,即t<1;若m=2符合,则2t<3,即;若m=3符合,则t为任意实数,即m=3以外只能有1个m符合要求;当m≥4,m∈N•时,tm(m﹣3)<m+1,解得,令x=m+1≥5,则,令,则,当x≥5时,f′(x)>0恒成立,∴f(x)在[5,+∞)上单调递增,∴,∴,∴当时,至少存在m=2,3,4满足不等式,不符合要求;当时,对于任意m≥4,m∈N•都不满足不等式,m=1也不满足,此时只有m=2,3满足;当时,只有m=3符合;故,即,解得或,∴λ的取值范围为.20.(16分)已知函数f(x)=(a∈R,且a为常数).(1)若函数y=f(x)的图象在x=e处的切线的斜率为(e为自然对数的底数),求a的值;(2)若函数y=f(x)在区间(1,2)上单调递增,求a的取值范围;(3)已知x,y∈(1,2),且x+y=3.求证:+≤0.【分析】(1)根据导数的几何意义知f′(e)=,由此构造方程求得结果.(2)将问题转化为ax+1﹣axlnx≥0且ax+1≠0,恒成立的问题,令φ(x)=ax+1﹣axlnx,分别在a=0,a>0和﹣≤a<0,或a≤﹣1时,结合函数单调性确定最小值,令φ(x)min≥0,从而求得a的取值范围.(3)根据(2)的结论可知f(x)在(1,2)上单调递增,分类讨论可确定≤2ln(2x﹣3),将不等关系代入所求不等式左侧,结合对数运算可整理得到结果.解:(1)由题意得:f′(x)==,因为y=f(x)的函数图象在x=e处的切线的斜率为,所以f′(e)=,所以,解得(ae+1)2=(1﹣e)2,所以ae+1=±(1﹣e),所以a=﹣1或.(2)因为函数f(x)在(1,2)上单调递增,所以对于任意的x∈(1,2),都有f′(x)≥0恒成立,即ax+1﹣axlnx≥0且ax+1≠0,当a=0,1≥0恒成立,满足题意,当a≠0时,由x≠﹣得:﹣,即a>0,或﹣或a≤﹣1,令φ(x)=ax+1﹣axlnx,则φ′(x)=﹣alnx,①当a>0且x∈(1,2)时,φ′(x)<0,所以φ(x)在(1,2)上单调递减,要使得ax+1﹣axlnx≥0,即要求φ(2)≥0,即2a+1﹣2aln2≥0,解得a≥,所以a>0满足题意,②当﹣≤a<0或a≤﹣1,且x∈(1,2)时,φ′(x)>0,所以φ(x)在(1,2)上单调递增,要使得ax+1﹣axlnx≥0,即要求φ(1)≥0,即a+1﹣aln1≥0,解得a≥﹣1,所以﹣≤a<0或a=﹣1,综上所述:a的取值范围是{﹣1}∪[﹣,+∞).(3)证明:由(2)知:当a=﹣1时,函数f(x)在(1,2)上单调递增,此时f(x)==,当1<x≤时,f(x)≤f()=﹣2ln,而2x﹣3≤0,所以(2x﹣3)f(x)≥﹣2ln(2x﹣3),即(2x﹣3)≥﹣2ln(2x﹣3),所以,当≤x<2时,f(x)≥f()=﹣2ln,而2x﹣3≥0,所以(2x﹣3)f(x)≥﹣2ln(2x﹣3),即(2x﹣3)≥﹣2ln(2x﹣3),所以,综上,对于任意x∈(1,2),都有,所以≤2ln(2x﹣3)+2ln(2y﹣3)=2ln(2x+2y﹣6)=0,结论得证.附加题【选做题】本题包括,B,C三小题,每小题10分.请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换]21.曲线x2+y2=1在矩阵A=(a>0,b>0)对应的变换下得到曲线=1.(1)求矩阵A;(2)求矩阵A的特征向量.【分析】(1)推导出=,从而,由点P'(x',y')在曲线=1,得=1.再由x2+y2=1,能求出矩阵A.(2)由|λI﹣A|==0,求出λ1=3,λ2=1,由此能求出矩阵A的特征向量.解:(1)P(x,y)为圆C上的任意一点,在矩阵A对应的变换下变为另一个点P'(x',y'),则=,即,又∵点P'(x',y')在曲线=1,∴=1.由已知条件可知,x2+y2=1,∴a2=9,b2=1.∵a>0,b>0,∴a=3,b=1.∴A=.(2)∵A=.∴|λI﹣A|==0,解得λ1=3,λ2=1,把λ1=3代入|λI﹣A|x=0,得=,∴x2=0,∴λ1=3的特征向量为,把λ1=1代入|λI﹣A|x=0,得=,∴x1=0,∴λ2=1的特征向量为.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.已知在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρ(sinθ+cosθ)=2,直线l与曲线C相交于A,B两点,求线段AB的值.【分析】化曲线的参数方程为普通方程,化直线的极坐标方程为直角坐标方程,进一步化为参数方程的标准形式,代入曲线的普通方程,得到关于t的一元二次方程,再由根与系数的关系及弦长公式求解.解:由(α为参数),消去参数α,得;由ρ(sinθ+cosθ)=2,得ρsinθ+ρcosθ﹣2=0,即x+y﹣2=0.设直线l的参数方程为,代入,得.∴,.∴|AB|=|t1﹣t2|==.C.[选修4-5:不等式选讲]23.已知a,b,c为正实数,满足a+b+c=3,求的最小值.【分析】根据条件,可得=,然后利用柯西不等式求出其最小值即可.解:∵a,b,c为正实数且满足a+b+c=3,∴,即,当且仅当,即时等号成立,∴的最小值为12.【必做题】第22题、第23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.五个自然数1、2、3、4、5按照一定的顺序排成一列.(1)求2和4不相邻的概率;(2)定义:若两个数的和为6且相邻,称这两个数为一组“友好数”.随机变量X表示上述五个自然数组成的一个排列中“友好数”的组数,求X的概率分布和数学期望E (X).【分析】(1)记“2和4不相邻”为事件A,则P(A)=;(2)X的所有可能取值为0,1,2,结合排列组合的思想逐一求出每个X的取值所对应的概率即可得分布列,进而求得数学期望.解:(1)记“2和4不相邻”为事件A,则P(A)=,所以2和4不相邻的概率为.(2)X的所有可能取值为0,1,2,P(X=2)=,P(X=1)=,P(X=0)=(先确定3的位置)或(P(X=0)=1﹣P (X=1)﹣P(X=2)=).所以X的分布列为X012P数学期望E(X)=.25.已知n≥2,n∈N*,数列T:a1,a2,…,a n中的每一项均在集合M={1,2,…,n}中,且任意两项不相等,又对于任意的整数i,j(1≤i<j≤n),均有i+a i≤j+a j.记所有满足条件的数列T的个数为b n.例如n=2时,满足条件的数列T为1,2或2,1,所以b2=2.(1)求b3;(2)求b n.【分析】(1)直接利用关系式的应用求出结果.(2)直接利用数列的通项公式的应用和递推关系式的应用求出结果.解:(1)若a1=3,则1+3≤2+a2,故a2=2,则a3=1.若a2=3,则2+a2≤3+a3,则a3≥2.故a2=2,则a1=1.若a3=3,则a1=1,a2=2,或a1=2,a2=3.所以当n=3时,满足条件的数列T为3,2,1;1,3,2;1,2,3;2,1,3.故满足条件的T为4.(2)设满足条件的数列T的个数为b n,显然b1=1,b2=2,b3=3.不等式i+a i≤j+a j中取j=i+1,则有i+a i≤i+1+a i+1,即a i≤1+a i+1.①当a1=n,则a2=n﹣1,同理a3=n﹣2,…,a n=1.②当a i=n,(2≤i≤n),则a i+1=n﹣1,同理a i+2=n﹣2,…,a n=i.即a i=n以后的各项是唯一确定的.a i=n之前的满足条件的数列的个数为b i﹣1.所以:当n≥2时,b n=b n﹣1+b n﹣2+…+b1+1.(*).当n≥3时,b n﹣1=b n﹣2+b n﹣3+…+b1+1.代入(*)式得到b n=b n﹣1+b n﹣1=2b n﹣1,且满足b2=2b1.所以对任意n≥2的,都有b n=2b n﹣1,又b1=1,所以.综上所述,满足条件的数列T的个数为2n﹣1.。
2020届全国卓越联盟新高考押题信息考试(七)英语试卷

2020届全国卓越联盟新高考押题信息考试(七)英语试题★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C和D四个选项中,选出最佳选项。
ACobb Theatres are showing kids' movies this summer at 10 am every Tuesday,Wednesday and Thursday. Doors open at 9:30 am,and many of the theaters fill quickly with summer campers,so arrive early if you want a seat.The films will be at three MiamiDade theaters:◆ Dolphin 19,11471NW 12th St.,Miami;Tel:3055910785.Ticket Pricing:$12.00 (adult);$9.00 (child under the age of 12)◆ Cobb Grand 18,17355 NW 59th Ave.,Miami Lakes;Tel:30523135252.Ticket Pricing:$13.00 (adult);$10.00 (child under the age of 12)◆ Miami Lakes 17,6711 Main St.,Miami Lakes;Tel:3055583810.Ticket Pricing:$11.00 (adult),$8.00 (child under the age of 12)The schedule is as follows:★June 14,15 and 16:Norm of the North (all three theaters) and Shaun the Sheep (Dolphin and Miami Lakes) ★June 21,22 and 23:Minions (all three theaters) and The Spongebob Movie;Sponge out of Water (Dolphin and Miami Lakes);★June 28,29 and 30:Penguins of Madagascar (all three theaters) and Dr.Seuss' Horton Hears a Who! (Dolphin and Miami Lakes)★July 5,6 and 7:Alvin & The Chipmunks;The Road Chip (all three theaters) and Shark Tale (Dolphin and Miami Lakes)★July 12,13 and 14:Home (all three theaters) and The Peanuts Movie (Dolphin and Miami Lakes)★July 19,20 and 21:The Peanuts Movie (Cobb Grand);Hotel Transylvania and Cloudy with a Chance of Meatballs (Dolphin and Miami Lakes)★July 26,27 and 28:Dr.Seuss' Horton Hears a Who! (Cobb Grand);Goosebumps and Smurfs 2 (Dolphin and Miami Lakes) ★Aug.2,3 and 4:HotelTransylvania (Cobb Grand);Teenage Mutant Ninja Turtles (2007) and Happy Feet (Dolphin and Miami Lakes)1. What can we learn about Cobb Theatres from the passage?A. They open at 8:30 am.B. They are busy on Monday.C. They close early on weekends.D. They are popular with campers.2. Which of the following movies is shown on July 5?A. Minions.B. Shark Tale.C. Goosebumps.D. The Peanuts Movie.3. How much should a 10 year old boy and his parents pay for Hotel Transylvania on Aug.3?A. $30.00.B. $33.00.C. $36.00.D. $38.00.【答案】1. D 2. B 3. C【解析】本文主要介绍了Cobb Theatres在上午十点播放儿童电影。
河北省宣化一中2020届高三下学期高考押题卷物理试题(含答案)

(1)如图乙所示,用游标卡尺测得小球的直径d=________mm。
1 (2)多次改变高度H,重复上述实验,作出 t 2 随H的变化图象如图丙所示,当图中已知量t0、H0
和重力加速度g及小球的直径d满足表达式____________时,可判断小球下落过程中机械能守恒。 (3)实验中发现动能增加量ΔEk总是稍小于重力势能减少量ΔEp,增加下落高度后,则ΔEp-ΔEk 将______(填“增大”“减小”或“不变”)。
O
V0
300
A
D
25.(20分)如图所示,半径R=0.5m的光滑圆弧形轨道固定在竖直面内,O为圆心,C为最低
点,D为最高点,CD为直径,BC弧对应的圆心角θ=37°。在圆弧形轨道左侧有一两端间距L=2.2m
的水平传送带,传送带与圆弧轨道在同一竖直平面内,工作轮半径r=0.1m,传送带顺时针转动,
速率恒为ν=4m/s。现在传送带水平部分的左端E点由静止释放一个质量M=1kg、可视为质点的滑
宣化第一中学 2020 年高考模拟试题(一) (物理答案) 14.C【解析】设经过第一段位移Δx 的起始位置对应时刻记为零,0~t1 中间时刻的速度为 v1,t1~
t2 中间时刻的速度为
v2
v2,则
v1
a
t1
t2 2
t1 2
,解得
0
bh
18. 图甲中理想变压器原、副线圈的匝数之比 n1∶n2=5∶1,电阻 R=20 Ω,L1、L2 为规格
【衡水金卷】河北省衡水中学2020届高考模拟押题卷(一)理科综合能力测试(含答案)

【衡水金卷】河北省衡水中学2020届高考模拟押题卷(一)理科综合能力测试注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H1C12N14O16Si28Fe56第I卷一、选择题:本题共13小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列关于细胞中某些物质的叙述,错误的是A.组成纤维素、淀粉、糖原的单体是相同的B.RNA可以在细胞核或某些细胞器中合成C.抗体的形成与分泌需要ATP直接提供能量D.激素和神经递质的合成是在核糖体上进行的2.甲乙两种物质在胰岛B细胞内、外的浓度情况如图所示,下列相关叙述正确的是A.甲可以是Na+,胰岛B细胞兴奋时Na+内流会导致细胞内Na+浓度高于细胞外B.甲可以是氧气,其进入细胞后可以在细胞质基质或线粒体参与相关反应C.乙可以是DNA,其运出细胞后可将遗传信息传递给其他细胞D.乙可以是胰岛素,其运出细胞时不需要载体的协助3.如图表示生物体内遗传信息的传递和表达过程,下列叙述不正确的是A.上述过程均需要模板、酶、能量和原料,并且均遵循碱基互补配对原则B.在神经细胞和甲状腺细胞中均能进行2过程,并且形成的RNA也相同C.过程3中涉及到5种碱基和8种核苷酸D.RNA发生改变,通过5过程形成的蛋白质不一定发生改变4.下列关于植物激素、植物生长调节剂的叙述中,不合理的是A.植物激素不直接参与细胞代谢,只传递调节代谢的信息B.用一定浓度的赤霉素处理种子可以促进其萌发C.给去掉尖端的胚芽鞘放置含生长素的琼脂块后仍能生长,说明生长素可促进生长D.生长素和细胞分裂素在促进植株生长方面存在协同关系5.下图是某家族甲病(A-a)和乙病(B-b)的遗传系谱图。
2020届 全国高考备战冲刺预测卷 地理考前热身押题练(七)(解析版)

2020届全国高考备战冲刺预测卷地理(七)(解析版)一、选择题“海草房”零星分布在胶东半岛的自然村中,屋顶用海草等覆盖,外面紧绷着渔网,屋顶呈50°角的“人”字坡形。
海草主要是用大叶海苔等野生藻类晒干后制成,含有大量卤盐和胶质。
海草房最大的特点是冬暖夏凉。
20世纪90年代以来,新建的海草房越来越少,旧的海草房大都弃之不用,一些经改良后仍然保留海草房特点的新式民居陆续出现。
如图为海草房景观图。
据此完成1~3题。
1.古代海草房的建筑工艺的最主要作用是( )A.海草为天然建筑材料,废弃后容易降解B.呈50°角的人字坡形屋顶,整齐美观C.海草含有大量卤盐和胶质,可防蚊虫D.外面紧绷着渔网,可防盗、防风、防鸟2.20世纪90年代以来,新建的海草房越来越少,旧的海草房大都弃之不用,一些经改良后仍然保留海草房特点的新式民居陆续出现。
其原因可能是( )A.近海水产养殖增多,海草产量大幅减少B.自然灾害增多,海草房的遮风避雨功能减弱C.海草房知名度高,需要保护D.城镇化水平提高,人口迁出增多3.针对现存海草房,最合理的保护性开发方向是( )A.保留海草房现状,留住乡愁B.发展租赁业,开发民俗旅游C.全面改造,融入现代化生活需要D.争取国际合作,建立民居博物馆解析:1.D 2.A 3.B 第1题,海草房屋顶用特有的海带草苫成,堆尖如垛,浅褐色中带着灰白色调,含有大量卤盐和胶质,海草房最大的特点是冬暖夏凉,因此古代海草房的建筑工艺的最主要作用是外面紧绷着渔网,可防盗、防风、防鸟,所以D正确。
第2题,20世纪90年代以来,新建的海草房越来越少,旧的海草房大都弃之不用,一些经改良后仍然保留海草房特点的新式民居陆续出现,主要原因是近海水产养殖增多,海草产量大幅减少,所以A正确。
第3题,海草房是世界上最具代表性的原生态民居之一,具有冬暖夏凉、居住舒适、百年不腐等特点,最合理的保护性开发方向是发展租赁业,开发民俗旅游,所以B正确。
2020届全国卓越联盟新高考押题信息考试(十)英语试卷

2020届全国卓越联盟新高考押题信息考试(十)英语试卷★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What will the woman do this weekend?A. Go swimming.B. Camp in the mountain.C. Go hiking.2. Who catches the fish?A. Jason.B. The man.C. The woman.3. How many people will go to the park?A. 2.B. 3.C. 4.4. What is going to be cleaned?A. The toilets.B. The bedrooms.C. The living room.5. What will the man buy?A. Nothing.B. A computer.C. A cellphone.第二节(共15 小题;每小题1.5 分,满分22.5 分)听下面5 段对话或独白。
2020高考理科数学押题密卷解析版 (12)

钉的间隙,又碰到下一排铁钉.如此继续下去,小球最后落入下方条状的格子内求小球落到第
7 个格子(从左开始)的概率是()
A. 9 128
B. 15 128
C. 21 128
5.下列命题中,正确命题的个数是()
D. 105 512
①若 , ,则
的充要条件是
;
②若 , 且 ,则
;
③若
,则
.
A. B.
C. D.
ab
ab
②. a b | a b | a | a b | b 恒成立;题中的结论正确;
③.当 a 2,b 1 时, a2 +b2 5 , 4ab 3b2 5 ,不满足 a2 +b2 4ab 3b2 ,题中的结论错误;
9
④. ab 2 2 ab 2 2 2 2 恒成立.题中的结论正确;
2
190
个奇数,
所以 a20 从左到右第一个数是第191个奇数,第 n 个奇数为 2n 1, 所以第191个奇数为 2 191 1 381 .
故选:
C.
【点睛】
7
本小题主要考查归纳推理、等差数列求和公式等基础知识,考查运算求解能力,属于中档
题.
4.C
解析:C
【解析】
【分析】
落入第 7 个格子需要 3 次左 6 次右,计算概率得到答案.
21.设已知函数
,
(1)当
时,求函数 的最大值的表达式
(2)是否存在实数 ,使得
有且仅有 3 个不等实根,且它们成等差数列,若存在,
求出所有 的值,若不存在,说明理由.
(二)选考题:共 10 分,请考生在 22、23 题中任选一道题作答。如果多做,则按所做的第
2020年全国高考物理考前冲刺押题卷(3)(解析版)

2020年全国高考物理考前冲刺押题卷(三)(考试时间:90分钟 试卷满分:110分)第Ⅰ卷一、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分。
1.下列说法不正确的是( )A .238 92U 经过一次α衰变后变为234 90ThB .由核反应方程137 55Cs →13756Ba +X ,可以判断X 为电子C .核反应方程42He +14 7N →17 8O +11H 为轻核聚变 D .若16 g 铋210经过15天时间,还剩2 g 未衰变,则铋210的半衰期为5天2.如图所示,水平直杆OP 右端固定于竖直墙上的O 点,长为L =2 m 的轻绳一端固定于直杆P 点,另一端固定于墙上O 点正下方的Q 点,OP 长为d =1.2 m ,重为8 N 的钩码由光滑挂钩挂在轻绳上处于静止状态,则轻绳的弹力大小为( )A .10 NB .8 NC .6 ND .5 N3.如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H4所用的时间为t 1,第四个H 4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<54.如图所示,MN 是流速稳定的河流,河宽一定,小船在静水中的速度大小一定,现小船从A 点渡河,第一次船头沿AB 方向与河岸上游夹角为α,到达对岸;第二次船头沿AC 方向与河岸下游夹角为β,到达对岸,若两次航行的时间相等,则( )A .α=βB .α<βC .α>βD .无法比较α与β的大小5.如图所示,一颗卫星绕地球做椭圆运动,运动周期为T ,图中虚线为卫星的运行轨迹,A 、B 、C 、D 是轨迹上的四个位置,其中A 距离地球最近,C 距离地球最远.B 和D 点是ABC 和ADC 的中点,下列说法正确的是( )A .卫星在C 点的速度最大B .卫星在C 点的加速度最大C .卫星从A 经D 到C 点的运动时间为T /2 D .卫星从B 经A 到D 点的运动时间为T /26.有5个完全相同的灯泡连接在理想变压器的原、副线圈中,如图所示.若将该线路与交流电源接通,且开关S 接在位置1时,5个灯泡发光亮度相同;若将开关S 接在位置2时,灯泡均未烧坏.则下列可能的是( )A .该变压器是降压变压器,原、副线圈匝数比为4∶1B .该变压器是升压变压器,原、副线圈匝数比为1∶4C .副线圈中的灯泡仍能发光,只是更亮些D .副线圈中的灯泡仍能发光,只是亮度变暗7.如图所示,a 、b 两点位于以负点电荷-Q (Q >0)为球心的球面上,c 点在球面外,则( )A .a 点场强的大小比b 点大B .b 点场强的大小比c 点小C .a 点电势与b 点电势相同D .b 点电势比c 点低8.如图,空间中存在一匀强磁场区域,磁场方向与竖直面(纸面)垂直,磁场的上、下边界(虚线)均为水平面;纸面内磁场上方有一个矩形导线框abcd ,其上、下两边均与磁场边界平行,已知矩形导线框长为2l ,宽为l ,磁场上、下边界的间距为3l .若线框从某一高度处自由下落,从cd 边进入磁场时开始,直至cd 边到达磁场下边界为止,不计空气阻力,下列说法正确的是( )A .线框在进入磁场的过程中感应电流的方向为adcbaB .线框下落的速度大小可能始终减小C .线框下落的速度大小可能先减小后增加D .线框下落过程中线框的重力势能全部转化为内能第Ⅱ卷二、非选择题:本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年北京高考押题卷(化学)(50分钟100分)
一、选择题(单选,42分)
6.下列用品的有效成分及用途对应错误
..的是( )
A B C D
用品
有效
NaCl Na2CO3Al(OH)3Ca(ClO)2成分
用途做调味品做发酵粉做抗酸药做消毒剂
7.下列解释实验现象的反应方程式正确的是( )
A.切开的金属Na暴露在空气中,光亮表面逐渐变暗2Na+O2= Na2O2
B.向AgCl悬浊液中滴加Na2S溶液,白色沉淀变成黑色2AgCl+S2-= Ag2S↓+2Cl-
C.Na2O2在潮湿的空气中放置一段时间,变成白色粘稠物2Na2O2+2CO2= 2Na2CO3+O2
D.向NaHCO3溶液中加入过量的澄清石灰水,出现白色沉淀
2HCO3—+Ca2++2OH-= CaCO3↓+CO32—+2H2O
8. 下列关于金属腐蚀与防护的说法不正确...的是( )
图① 图② 图③ A. 图①,放置于干燥空气中的铁钉不会生锈 B. 图②,若断开电源,钢闸门将发生吸氧腐蚀
C. 图②,若将钢闸门与电源的正极相连,可防止钢闸门腐蚀
D. 图③,若金属M 比Fe 活泼,可防止输水管腐蚀
9.用右图所示装置进行下列实验,实验结果与预测的现象不一致...
的是( )
①中的物质
②中的物质
预测①的现
象
金属M
地面
导线
钢铁输水管
碱石灰
空气
电源
海水
钢闸门 辅助电极
(不溶性)
A 淀粉KI溶液浓硝酸无明显变化
B 酚酞溶液浓盐酸无明显变化
C AlCl3溶液浓氨水有白色沉淀
D 湿润红纸条饱和氯水红纸条褪色
10.下列说法正确的是( )
A.天然植物油常温下一般呈液态,难溶于水,有恒定的熔点、沸点
B.麦芽糖与蔗糖的水解产物均含葡萄糖,故二者均为还原型二糖
C.若两种二肽互为同分异构体,则二者的水解产物不一致
D.乙醛、氯乙烯和乙二醇均可作为合成聚合物的单体
11. 硝基苯是一种重要有机合成中间体,实验室可用如下反应制备:
已知该反应在温度稍高的情况下会生成间二硝基苯。
有关数据如下表:
物
质
苯
硝基
苯
间二硝
基苯
浓硝
酸
浓硫
酸
沸
点/℃
80 211 301 83 338
溶解性
微溶
于水
难溶
于水
微溶于
水
易溶
于水
易溶
于水
下列说法不正确的是( )
A.制备硝基苯的反应类型为取代反应
B.采用蒸馏的方法可将硝基苯从反应所得产物中首先分离出来
C.该反应温度控制在50-60℃的原因是减少反应物的挥发和副产物的生成
D.采用加入NaOH溶液、水洗涤、以及分液的方法可除去粗硝基苯中混有的无机杂质
12. 常温下,向20 mL 0.01mol/L CH3COOH溶液中逐滴加入0.01mol/L 的NaOH溶液,溶液中水所电离
出的c(H+)随加入NaOH溶液的体积变化示意图如图所示,下列说法不正确
...的是( )。