六年级数学上册比例部分经典习题
六年级上册数学练习题比例

六年级上册数学练习题比例一、练习题一:小明骑自行车从学校到家,全程共10公里,他用1小时骑完。
请你计算小明平均每小时骑行多少公里?解答:平均速度 = 总距离 ÷总时间= 10公里 ÷ 1小时= 10公里/小时所以,小明平均每小时骑行10公里。
二、练习题二:小红家离学校有8公里,小明家离学校有12公里。
如果小红每天骑自行车花费30分钟上学,那小明每天骑自行车花费多少时间上学?解答:首先,我们可以根据小明和小红的距离来求出他们上学所需的时间。
小红上学时间 = 小红家离学校的距离 ÷小红每小时骑行的距离= 8公里 ÷ (30 ÷ 60)千米/小时= 8公里 ÷ 0.5千米/小时= 16小时所以,小红每天骑自行车花费16分钟上学。
同样地,我们可以计算小明上学所需的时间。
小明上学时间 = 小明家离学校的距离 ÷小明每小时骑行的距离= 12公里 ÷ (30 ÷ 60)千米/小时= 12公里 ÷ 0.5千米/小时= 24小时所以,小明每天骑自行车花费24分钟上学。
三、练习题三:航班从城市A飞往城市B的全程距离为800公里。
飞机平均每小时飞行速度为600公里。
请你计算这个航班飞行的时间是多少小时?解答:航班的时间 = 总距离 ÷平均速度= 800公里 ÷ 600千米/小时= 4/3小时= 1小时20分钟所以,这个航班飞行的时间是1小时20分钟。
四、练习题四:小明去书店买了两本书,第一本书的价格是20元,第二本书的价格是30元。
在付款时,店员说他们正举行打折活动,两本书的总价格打8折。
请你计算小明需要支付的总金额。
解答:首先,我们需要求出两本书的总价格。
第一本书的价格是20元,第二本书的价格是30元,所以两本书的总价格为20元 + 30元 = 50元。
然后,我们计算打折后的总价格。
打8折意味着总价格的80%,所以打折后的总价格为50元 × 80% = 40元。
六年级上册比例练习题及答案

六年级上册比例练习题及答案一、填一填1、叫做比例。
2、在一个比例中,两个内项正好互为倒数,已知一个外项是3、北京到天津的实际距离是120千米,在比例尺是2,则另一个外项是。
1的地图上,两地的图上距离是厘米。
0000004、如果2a=3b,那么a:b=:。
5、用12的因数中的任意四个数组成一个比例是。
6、:=6:10=:357、在总价、单价和数量三种量中,当一定时,与成正比例当一定时,与成正比例当一定时,与成反比例8、配置一种淡盐水,盐占盐水的119,盐与水的比是。
二、判断对错1、如果甲数是乙数的15,甲与乙的比是1:5。
2、用同样的方砖铺地,铺地面积与方砖块数成反比例。
3、一项工程,甲独做要10小时,乙独做要8小时,甲、乙工作效率的之比是4、圆的面积与它的半径成正比例关系。
5、求比例中的未知项,叫做解比例。
6、一幅地图的比例尺是1:500000m。
三、选一选,将正确答案的序号填在括号里。
1、一个加数一定,和与另一个加数。
A、成正比例 B成反比例C不成比例2、出粉率一定,面粉质量与小麦质量成A、成正比例 B成反比例C不成比例3、在一副平面图上,用图上距离2cm表示实际距离200m,这幅图的比例尺是A、1:100B、 1:1000C 1:100005: 14、按1:5将长方形缩小,就是将长方形的面积缩小到原来的A、111B、C、25105、用3、4、16、12四个数组成比例,正确的是A、3:16=4:1B、3:4=12:1C、16:12=4:3四、算一算,解比例x:10=11123: 0.4:x=1.2: =32.4x五、画一画,操作题。
学校要建一个长100m,宽60m的长方形操场用1:1000的比例尺画出操场的平面图。
六、想一想,解决问题1、六年级学生外出活动,每6人一组,可分为56组,如果每8人一组,可分为多少组?2、一辆汽车2小时行90km,照这样计算,行驶315km 要多少小时?3、一个长方形足球场,长180米,宽90米,把它画在比例尺是上的足球场面积是多少?4、一根木料,锯3段需要4分钟,如果钜5段,需要多少分钟?1的图纸上,画在图2000答案:一、填一填1、表示两个比相等的式子2、3、.44、:25、 1:6=2:126、 17、单价总价数量;数量总价单价;总价单价数量8、 1:18二、判断对错 1、√2、×3、×4、×5、√6、×三、选一选1、C2、A 、C 、C 、B C四、算一算1、x=7.、x=六、解决问题1、解、设可分为x组,8x=6×5x=6×56÷8x=4 答:可分为42组。
(完整word版)六年级数学上册比例练习题及答案

六年级数学上册比例练习题及答案分析与解答原来红球与白球的个数比是19:13,加入红球后,红球与白球数量之比是5:3,白球数量不变,所以红球与白球的个数比是57:39加入红球后,红球与白球数量之比是65:39,也就是说加入的红球是65-57=8份.放入若干只白球后,红球与白球数量之比是13:11。
红球不变,将上面的比转化为红球与白球数量之比是65:55。
白球增加了55-39=16份.已知放入的白球比红球多80只。
所以1份是80/=10只.原来有白球10*39=390只.例2:张家与李家本月收入钱数之比是8:5,本月开支的钱数之比是8:3,月底张家节余240元,李家节余510元,本月张家和李家分别收入多少元?解:设张家的开支为8X,李家的开支为3X.他们的收入分别为X+240,3X+510 所以/=8:524X+4080=40X+120016X=2880X=180张家的收入是8X+240=8*180+240=1680李家的收入是3X+510=3*180+510=1050例3:甲、乙两堆棋子中都有白子和黑子。
甲堆中白子与黑子的比是2:1,乙堆中白子与黑子的比是4:7。
如果从乙堆拿出3粒黑子放入甲堆,则甲堆中白子与黑子的比是7:4;如果把两堆棋子合在一起,白子与黑子数一样多。
问:原来甲乙两队各有多少棋子?解:甲堆中白子与黑子的比是2:1,如果从乙堆拿出3粒黑子放入甲堆,则甲堆中白子与黑子的比是7:4。
甲堆中白子数量不变,所以,甲堆中原来的白子与黑子的比是14:7,增加3粒黑子后,白子与黑子的比是14:8。
甲堆原来有黑子:3/*7=21粒甲堆原来有白子:3/*14=42粒。
甲堆共有42+21=63粒根据如果把两堆棋子合在一起,白子与黑子数一样多。
乙堆中白子与黑子的比是4:7。
甲的黑子比白子少42-21=21粒,所以乙堆的黑子有21/*7=49粒乙堆的白子有21/*4=28粒乙堆共有49+28=77粒例4:某食堂买回100个鸡蛋,每袋装十个,其中9只袋里装的鸡蛋,每个都是50克重,另一袋装的每个都是四十克重,这十袋混在一起,只准用称称一次就能找出哪一袋装的是40克重的鸡蛋,如何称法编号。
2024年数学六年级上册比例基础练习题2(含答案)

2024年数学六年级上册比例基础练习题2(含答案)试题部分一、选择题:1. 下列哪个比例式是正确的?()A. 3:6 = 9:12B. 4:8 = 12:24C. 5:10 = 15:30D. 6:8 = 12:162. 如果a:b = 4:5,那么a和b的和是9,求a的值。
()A. 3B. 4C. 5D. 63. 下列哪个比例是等比例?()A. 2:3, 4:6, 6:9B. 3:4, 6:8, 9:12C. 4:5, 8:10, 12:15D. 5:6, 10:12, 15:184. 在比例尺为1:1000的地图上,两城市之间的距离为15厘米,实际距离是多少千米?()A. 10C. 20D. 255. 如果3x = 4y,那么x和y的比例是()A. 3:4B. 4:3C. 3:2D. 2:36. 下列哪个比例式中的x和y成反比例?()A. x × y = 12B. x ÷ y = 12C. x + y = 12D. x y = 127. 在4:5 = 8:x中,x的值是()A. 9B. 10C. 11D. 128. 下列哪个比例式中的a和b成正比例?()A. a + b = 10B. a b = 10C. a × b = 10D. a ÷ b = 109. 如果a:b = 3:4,那么a和b的比值为()B. 0.80C. 0.85D. 0.9010. 在1:2 = 3:6中,如果第一个比例的第二个数由2变为4,那么第二个比例的第二个数应变为()A. 6B. 8C. 10D. 12二、判断题:1. 两个比例相等的比例式,称为等比例。
()2. 比例尺是表示实际长度与地图上长度之间的比例关系。
()3. 在比例式中,内项和外项是相对的。
()4. 两个正比例的比值一定相等。
()5. 两个反比例的乘积一定相等。
()6. 在比例式中,如果两个外项的比值等于两个内项的比值,那么这个比例式是正确的。
小学六年级简单比例运算练习题

小学六年级简单比例运算练习题一、简答题:1. 将3∶5与9∶15两个比例进行等比例的扩展。
2. 将4∶7与36∶63两个比例进行等比例的缩写。
3. 一条跑道有2000米长,如果按照比例1∶5降低长度,最后的跑道长度是多少?4. 营养饼干中蛋白质和脂肪的比例是3∶2,如果一块饼干中含有30克脂肪,那么这块饼干中蛋白质的含量是多少克?5. 一杯果汁中,橙汁和苹果汁的比例是2∶5,如果有8杯果汁,其中橙汁的杯数是多少?二、计算题:1. 小明用了50元钱买了2本书,如果每本书的价格都相同,那么一本书的价格是多少元?2. 小华用了30分钟走了7公里,如果小华以相同的速度继续行走,那么他用多少时间可以走完14公里?3. 在某学校的六年级班级中,有48个男生,比例是3∶5,那么这个班级中的女生人数是多少?4. 小明和小红一起做一个作业,小明用了1小时完成了四分之一的作业,小红用了50分钟完成了剩下的部分,请问小红用了多少时间完成了整个作业?5. 一块土地上80%是农田,剩下的部分是果园和花园,果园占土地的比例是5∶6,那么花园占土地的比例是多少?三、应用题:1. 小刚用18元钱买了2个苹果和3个梨,小华用24元钱买了4个苹果和若干个梨,请问小华买了多少个梨?2. 一栋高楼上有40层,电梯升一层需要4秒钟,小张从1楼坐电梯到了顶楼,耗时多长?3. 小明每天早上以相同的速度骑自行车上学,平均每分钟骑行3公里。
如果上学的路程是12公里,那么小明骑自行车上学需要多少时间?4. 甲、乙两个人按照比例1∶3分配了一堆零食,甲分到了12个,那么乙分到了多少个?5. 李明学习了40分钟,休息了20分钟,学习了30分钟,然后休息了10分钟。
李明一天中学习的时间和休息的时间各是多少?四、挑战题:1. 在一辆自行车上有4个轮子,如果一扇车门有5个轮子,那么需要多少扇车门才能和这辆车轮的数量比例相同?2. 一桶水中蓝色颜料和白色颜料的比例是3∶4,如果用相同的比例往桶中加入蓝色颜料和白色颜料,一共需要加多少次才可以使蓝色颜料和白色颜料达到相同的比例?3. 一块地上有80%是草地,剩下的部分是麦地和花园。
六年级上册求比值10道练习题

六年级上册求比值10道练习题1. 某学校有400名学生,其中男生和女生人数比是5:3,求男生和女生的人数各是多少?解析:设男生人数为5x,女生人数为3x。
根据题意,男生人数加上女生人数等于学生总人数,所以5x+3x=400。
解得8x=400,即x=50。
男生人数为5x=5*50=250,女生人数为3x=3*50=150。
所以男生人数为250,女生人数为150。
2. 甲、乙两个小组参加足球比赛,甲队有30人,乙队的人数是甲队人数的3/5,求乙队的人数是多少?解析:设乙队的人数为x。
根据题意,乙队的人数是甲队人数的3/5,所以x=30*(3/5)。
解得x=18。
所以乙队的人数是18。
3. 甲、乙两个商场的人流量比是2:3,如果甲商场的人流量是1500人,求乙商场的人流量是多少?解析:设乙商场的人流量为x。
根据题意,甲商场的人流量是1500人,乙商场的人流量是甲商场人流量的3/2,所以x=1500*(3/2)。
解得x=2250。
所以乙商场的人流量是2250人。
4. 一根木棍被分成了3段,第一段的长度是第二段的3倍,第二段的长度是第三段的2倍,如果第三段的长度是4米,求整根木棍的长度是多少?解析:设第二段的长度为x,第一段的长度为3x。
根据题意,第三段的长度是4米,第二段的长度是第三段的2倍,所以x=4/2=2。
第一段的长度是第二段的3倍,所以3x=3*2=6。
所以整根木棍的长度是2+4+6=12米。
5. 一项商品的原价是800元,现在打了8折出售,打完折后的价格是多少?打了8折意味着打了80%的折扣。
打完折后的价格是800元乘以80%,即800*80%=640元。
所以打完折后的价格是640元。
6. 去年甲队的积分是120分,乙队的积分是甲队积分的3/5,求乙队的积分是多少?解析:设乙队的积分为x。
根据题意,乙队的积分是甲队积分的3/5,所以x=120*(3/5)。
解得x=72。
所以乙队的积分是72分。
六年级上册比例题

六年级上册比例题
以下是一些六年级上册比例题,供您参考:
1. 学校把植树任务按5:3分给六年级和五年级。
六年级实际栽了108棵,超过原分配任务的20%。
原计划五年级栽树多少棵?
2. 一项工程,甲、乙两队合做12天可以完成,乙、丙两队合做10天完成,甲、丙两队合做15天完成。
丙队单独做多少天可以完成?
3. 一条公路,甲、乙两队合修6天可以完成,如果甲队单独修15天可以完成,那么乙队单独修几天可以完成?
4. 有一堆棋子,排列成NN的正方形方阵,多余出3只棋子;如果在这个
正方形方阵横纵两个方向各增加一行,则缺少8只棋子。
则这堆棋子有多少只?
5. 快车从甲地到乙地要行10小时,慢车从乙地到甲地要行15小时。
两车
同时从甲、乙两地相向而行,相遇时慢车离甲城还有192千米。
求甲、乙
两地的距离?
以上题目可以帮助学生掌握比例的概念和应用。
在解决这些问题的过程中,学生可以提高数学思维能力和问题解决能力。
六年级数学上册比例部分经典习题(二套)

六年级数学上册比例部分经典习题(二套)目录:六年级数学上册比例部分经典习题一六年级数学上册比和比的应用练习题二六年级数学上册比例部分经典习题一1、平均数的概念.例: 甲、乙、丙三个数的平均数是20.甲、乙、丙三个数的比是3︰2︰1.甲、乙、丙三个数分别是()、()、().2、求比值与化简比的区别,比值与比分别用哪些形式表示.例:求比值 24∶32 56∶1.4 0.15∶2.5 0.8 ∶1.2化简比 128︰34 0.54︰2.7 0.4米︰60厘米3、找准应用题中的单位一,是求部分还是求整体,是用乘法还是用除法求解.4、只要是牵扯到求比值的问题,就将其化作最简比(如果题目不做特殊要求的话)例:把0.85吨∶170千克化成最简单的整数比是()5、两个带有单位的数相比,比值一定不会带有单位的.例:判对错50米:5米=10米()6、分数除法以及分数乘法的意义分别是什么.(写在下面)比例部分检测题一、填空题(共12小题,认真书写)1、甲数是乙数的4/5,甲数与乙数的比是().2、2/7÷3/5的意义是( ),7/11⨯5/6的意义是().3、甲数除以乙数的商是0.75,甲乙两数的最简整数比是().4、3:9=()÷27=24÷()=().5、一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是(),比值是(),比值表示(单位时间所走过的路程),这辆汽车行驶的时间和路程的比是(),比值是(),比值表示().6、一个直角三角形的两个锐角度数的比是2︰1,这两个锐角分别是()度,()度.7、行同一段路,甲用12分钟,乙用18分钟,甲用的时间与乙用的时间的最简比是( ),甲的速度与乙的速度的比是( ∶ ).8、一项工程,甲队单独做8天完成,乙队单独做12天完成,甲乙两队单独完成这项工程的时间比是():(),每天完成的工作量的比是():().(要化成最简比)9、甲数是8/5 ,乙数是2.5,甲数与乙数的比值是( ),甲数与乙数的最简整数比是( ∶ );数A是数B的3.5倍,数B与数A的比值是( ),数B与数A的最简比是( ).10、用72厘米铁丝围成长与宽的比是5∶4的长方形,.长方形的面积是( )平方厘米.11、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4 :1.如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是().12、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为().二、求比值(共4小题,不能直接写结果)48∶32 5∶1.4 0.15∶2.5 2/3:4/5三、化简比(共3小题,不能直接写结果)128︰64 0.54︰2.7 4米︰60厘米四、判断(共10小题,有理有据)1、50米:5米=10米…………………………………………………()2、一杯盐水,盐占盐水的1/10 ,盐和盐水的比是1∶9…………………()3、4:3的后项加上6,要想比值不变,前项也要加上8.…………()4、2/5既可以看作比值,也可以看作比.………………………………()5、一场足球比赛的比分是2:0,因此,比的后项可以是0.………()6、0.8:0.4化简比的结果是2:1.…………………………………………()7、六一班有男生25人,女生24人,女生和全班人数的比是24∶25()8、苹果和梨的质量比是8:5,苹果的质量是梨的8/5.……………()9、六(1)班男生是女生的1.2倍,男生和女生的比是5:6.().10、小强身高1m,爸爸身高170cm,爸爸和小强身高的比是17:10.()五、解决问题(共10小题,务必写解写答)1、男工与女工的比是5︰7,女比男多4人,男、女各多少人?2、一个三角形的内角度数的比是2︰1︰1,按角分这是个什么三角形?3、一个长方形周长是120cm,长与宽的比是1︰4.长方形的长、宽各是多少厘米?面积是多少?4、小明和小华存钱数的比是3:7,如果小明再存入400元,就和小华的存钱一样多.小明原来存了多少钱?5、粮店有大米125袋,共重5125千克.求每袋大米的重量及大米的总重量与大米的袋数的比.6、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2.求大、小瓶里各装油多少千克?7、一瓶盐水,盐和水的重量比是1 :23,如果再放入60克水,这时盐与水的重量比是1 :27,原来瓶内盐重多少千克?8、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5.已知三种颜色的球共175个,红、黄、白球分别有多少个?9、小明读一本书,已读的和末读的页数比是1 :5.如果再读30页,则已读的和末读的页数之比为3 :5.这本书共有多少页?10、运输队要运一批货物,已经运走的和剩下的比是1 :4.如果再运走4吨,那么运走的和剩下的比为3 :7.这批货物共多少吨?六年级数学上册比和比的应用练习题二班级_______姓名________【基本训练】一、填一填.1、3:5 = ()÷()= 18:()=6÷()2、一个直角三角形两个锐角度数的比是1∶2,则这两个锐角分别是()和()度.3、女生人数占男生人数的56,则男生与女生人数的比是(),男生占总人数的().4、一个比的后项是8,比值是34 ,这个比的前项是().5、一段路,甲车用6小时走完,乙车用4小时走完,甲乙两车的速度比是().6、把20克糖放入100克水中,糖与糖水的比是().7、一箱苹果,吃了23,已吃了的和剩下的比是(),比值是().8、同一个圆半径与直径比是(),比值是().9、李明与王华身高的比是6:5,李明比王华高();王华比李明矮( ).10、三角形的三个内角的度数比是1:1:2,如果按角分它是一个()三角形.11、同一个圆中,其周长与直径的比是(),比值是().12、大正方形和小正形边长的比是3:2,那么大正方形和小正方形面积的比是().13、同一个圆中半径与其周长比是(),比值是().二、解决问题.1、甲乙两地相距360千米,客车和货车同时从两地出发,相对而行,它们的速度比是5:4.相遇时两车各行驶了多少千米?2、甲、乙两数的平均数是56,甲与乙的比是4:3,甲、乙各是多少?3、甲乙两个工程队共修路360米,甲乙两队所修的长度比是5 :4,甲队比乙队多修了多少米?4、有两堆货物.甲堆比乙堆多18吨.甲堆与乙堆重量的比是9:5,两堆货物各有多少吨?5、配制一种消毒药,药液和水的比是1:50,要配制这种消毒药300千克,需要药液和水各多少千克?6、配制一种消毒药,药液和水的比是1:50,现有药液300千克,需要加水多少千克?7、配制一种消毒药,药液和水的比是1:50,现有水300千克,需要加药液多少千克?8、甲乙两地相距450千米,客车和货车同时从两地出发,相对而行,3小时后相遇,它们的速度比是2:3.客车和货车速度各是多少千米?9、一个长方形周长是96cm,长与宽的比是5:7.长方形面积是多少?10. 用120厘米的铁丝做一个长方体的框架.长、宽、高的比是3:2:1.这个长方体的长、宽、高分别是多少?体积是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
重点及难点:
1、平均数的概念。
例: 甲、乙、丙三个数的平均数是20。
甲、乙、丙三个数的比是3︰2︰1。
甲、乙、丙三个数分别是()、()、()。
2、求比值与化简比的区别,比值与比分别用哪些形式表示。
例:求比值 24∶32 56∶
1.4 0.15∶
2.5 0.8 ∶1.2
化简比 128︰34 0.54︰
2.7 0.4米︰60厘米
3、找准应用题中的单位一,是求部分还是求整体,是用乘法还是用除法求解。
4、只要是牵扯到求比值的问题,就将其化作最简比(如果题目不做特殊要求的话)
例:把0.85吨∶170千克化成最简单的整数比是()
5、两个带有单位的数相比,比值一定不会带有单位的。
例:判对错50米:5米=10米()
6、分数除法以及分数乘法的意义分别是什么。
(写在下面)
比例部分检测题
一、填空题(共12小题,认真书写)
1、甲数是乙数的4/5,甲数与乙数的比是()。
2、2/7÷3/5的意义是( ),
7/11⨯5/6的意义是()。
3、甲数除以乙数的商是0.75,甲乙两数的最简整数比是()。
4、3:9=()÷27=24÷()=()。
5、一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是
(),比值是(),比值表示(单位时间所走过的路程),这辆汽车行驶的时间和路程的比是(),比值是(),比值表示()。
6、一个直角三角形的两个锐角度数的比是2︰1,这两个锐角分别是()度,()度。
7、行同一段路,甲用12分钟,乙用18分钟,甲用的时间与乙用的时间的最简比是( ),甲的速度与乙的速度的比是( ∶ ).
8、一项工程,甲队单独做8天完成,乙队单独做12天完成,甲乙两队单独完成这项工程的时间比是():(),每天完成的工作量的比是():()。
(要化成最简比)
9、甲数是8/5 ,乙数是2.5,甲数与乙数的比值是( ),甲数与乙数的最简整数比是( ∶ );数A是数B的3.5倍,数B与数A的比值是( ),数B与数A的最简比是( )。
10、用72厘米铁丝围成长与宽的比是5∶4的长方形,.长方形的面积是( )平方厘米。
11、两个相同的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是3 :1,另一个瓶中酒精与水的体积比是4 :1。
如果把这两个瓶中酒精溶液混合,混合溶液中酒精和水的比是()。
12、五角人民币与贰角人民币的张数比为12 :35,那么伍角与贰角的总钱数比为()。
二、求比值(共4小题,不能直接写结果)
48∶32 5∶1.4 0.15∶
2.5 2/3:4/5
三、化简比(共3小题,不能直接写结果)
128︰64 0.54︰
2.7 4米︰60厘米
四、判断(共10小题,有理有据)
1、50米:5米=10米…………………………………………………
()
2、一杯盐水,盐占盐水的1/10 ,盐和盐水的比是1∶9…………………
()
3、4:3的后项加上6,要想比值不变,前项也要加上8。
…………()
4、2/5既可以看作比值,也可以看作比。
………………………………()
5、一场足球比赛的比分是2:0,因此,比的后项可以是0。
………
()
6、0.8:0.4化简比的结果是2:1.…………………………………………
()
7、六一班有男生25人,女生24人,女生和全班人数的比是24∶25
()
8、苹果和梨的质量比是8:5,苹果的质量是梨的8/5。
……………()
9、六(1)班男生是女生的1.2倍,男生和女生的比是5:6。
()。
10、小强身高1m,爸爸身高170cm,爸爸和小强身高的比是17:10。
()
五、解决问题(共10小题,务必写解写答)
1、男工与女工的比是5︰7,女比男多4人,男、女各多少人?
2、一个三角形的内角度数的比是2︰1︰1,按角分这是个什么三角形?
3、一个长方形周长是120cm,长与宽的比是1︰4。
长方形的长、宽各是多少厘米?面积是多少?
4、小明和小华存钱数的比是3:7,如果小明再存入400元,就和小华的存钱一样多。
小明原来存了多少钱?
5、粮店有大米125袋,共重5125千克.求每袋大米的重量及大米的总重量与大米的袋数的比。
6、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3 :2。
求大、小瓶里各装油多少千克?
7、一瓶盐水,盐和水的重量比是1 :23,如果再放入60克水,这时盐与水的重量比是1 :27,原来瓶内盐重多少千克?
8、盒子里有三种颜色的球,黄球个数与红球个数的比是2 :3,红球个数与白球个数的比是4 :5。
已知三种颜色的球共175个,红、黄、白球分别有多少个?
9、小明读一本书,已读的和末读的页数比是1 :5。
如果再读30页,则已读的和末读的页数之比为3 :5。
这本书共有多少页?
10、运输队要运一批货物,已经运走的和剩下的比是1 :4。
如果再运走4吨,那么运走的和剩下的比为3 :7。
这批货物共多少吨?。