非稳态导热

合集下载

传热学第3章非稳态导热

传热学第3章非稳态导热
5、热量变化 Φ1--板左侧导入的热流量 Φ2--板右侧导出的热流量
(1)两个阶段的过程是有区别的;
(2)与热流方向向垂直的截面上热流量处处不等。
◆对于非稳态导热一般不能用热阻的方法来做问题的定量分析。
2020/5/3 - 5 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
6、非稳态导热问题的求解 (1) 温度分布和热流量分布随时间和空间的变化规律
t
tf
tf
h
h
0
x
t
tf
h
0
x
2020/5/3 - 7 -
第3章 非稳态导热——§3-1 非稳态导热的基本概念
(3) 第三类边界条件下Bi数对平板内温度分布的影响
Bi r h
rh
1h
无量纲数
无量纲数的简要介绍:
基本思想:当所研究的问题非常复杂,涉及到的参数很多,为了减少问题所涉
及的参数,于是人们将这样一些参数组合起来,使之能表征一类物理现象,或物 理过程的主要特征,并且没有量纲。
Bi r h
rh 1 h
当 Bi 时, 当 Bi 时0,
,r因此,r可h 以忽略对流换热热阻 ,r因 此,可rh以忽略导热热阻
0 Bi
2020/5/3 - 9 -
第3章 非稳态导热——§3-2 集中参数法
§3-2 零维问题的分析法——集中参数法
3.2.1 集中参数法温度场分布的解析解
]
J
s
2020/5/3 - 13 -
第3章 非稳态导热——§3-2 集中参数法
即与 1/
的量纲相同,当
Vc
hA
时,则
hA 1 Vc
此时,
e1 36.8% 0

11-2 传热学第三章-导热四学时-3非稳态导热

11-2 传热学第三章-导热四学时-3非稳态导热
度,最终达到热平衡。
物体的温度随时间的推移逐渐趋近于恒定的值。
下面用实例介绍这两类非稳态导热的特点。
§3-1 非稳态导热的基本概念
(1)周期性非稳态导热过程简介
室内墙 面温度
墙内各 处温度 最高值
★ 夏季室外空气温度以一天 24小时为周期变化;
★ 室外墙面温度也以24小时为 周期变化,但比室外空气温 度变化滞后一个相位、振幅 有所减小;
(
t n
)w
h(tw
t
f
)
★ 解的唯一性定理:
本章所介绍的各种分析法都被认为是满足特定问题的唯一解。
§3-1 非稳态导热的基本概念
5.第三类边界条件下Bi数对平板中温度分布的影响
在第三类边界条件下,确定非稳态导热物体中的温度变化特征 与边界条件参数的关系。
t
已知:平板厚2δ、平板导热系数λ、
初温t0,将其突然置于温度为
第三章 非稳态导热
2
§3-1 非稳态导热的基本概念
2.非稳态导热的分类及其特点
非稳态导热分为周期性和非周期性(瞬态导热)两大类。
周期性非稳态导热:物体温度按一定的周期发生变化;
非周期性非稳态导热(非稳态 稳态):
物体的温度随时间不断地升高(加热过程)或降低(冷却过 程);在经历相当长时间后,物体温度逐渐趋近于周围介质温
(3)求解方法:分析解法、近似分析法、数值解法。
分析解法: 分离变量法、积分变换、拉普拉斯变换; 近似分析法: 集中参数法、积分法; 数值解法: 有限差分法、蒙特卡洛法、有限元法、
分子动力学模拟。
§3-1 非稳态导热的基本概念
4.导热微分方程解的唯一性定律
非稳态导热问题的求解实质:在规定的初始条件及边界条 件下求解导热微分方程式。

第三章 非稳态导热详解

第三章  非稳态导热详解

第一节 非稳态导热的基本概念
3、非稳态导热的基本特点
①. t , 0这意味着任何非稳态导热过程必然伴随着加热 或冷却过程。
②.在非稳态导热过程中,热量传递方向上的不同位置的导热
量是不同的。
.
③.非稳态导热过程数学描写:
t
(
2t x 2
2t y2
2t z2
)
c
t(x, y,z,0) t0
第三章 非 稳 态 导 热
第一节 非稳态导热的基本概念 第二节 集中参数法 第三节 典型一维物体非稳态导热 第四节 半无限大物体非稳态导热 第五节 其它形状物体的瞬态导热
第一节 非稳态导热的基本概念
一、分类 物体的温度随时间而变化的导热过程叫非稳态导
热。根据物体的温度随时间而变化的特征可分为两类: 非稳态周非导期周热性期非性稳 非态稳导态热导热(又称为瞬态导热)
1.举例说明其
由tf1/升至tf1//所需时间 tw1
tw1/
ta
ta/
tb
tw1// ta//
tb//
tb/
tc
tc//
tc/ tw2/
tw2
tw2//
0 a b
c 0
第一节 非稳态导热的基本概念
二、非周期性非稳态导热(瞬态导热)
1.举例说明其过程特点:
qB
4>.墙内外表面热流密度的变化: a.内墙表面开始时,因温差大,q1
第一节 非稳态导热的基本概念
二、非周期性非稳态导热(瞬态导热)
1.举例说明其过程特点: 3>.墙内各处温度的变化:
t
tf1//
a bc
a.开始,因为tf1的上升→内墙表 面温度直线上升,靠近内墙的 墙体温度上升,而此时,a、b、

第四章 非稳态导热..

第四章 非稳态导热..



工程中:
机器启动、停机、变工况时部件的导热过程; 冶金、热加工、热处理工艺中工件的加热及冷却过程等; 石油工程中钻井、焖井、采油等过程中热量在地层内的扩散过程。

具有实际意义。
2
第三节
本节讨论:
非稳态导热
——基本概念和特点
——非稳态导热问题的求解及诺模图
——集总参数法
3
m (0, ) f1 ( Fo,Bi) 0
( x, ) ( x, ) m 0 m 0
意味着初始条件的影响已经消失, 这是正规状况阶段。
( x, ) x f 2 ( Bi, ) m (0, )

工程上常采用两种简化的计算方法:


诺模图方法——由海斯勒(Heisler)提出;
13
第四章 / 第三节 非稳态导热
(一)无限大平壁的分析解及诺模图
1、平壁内温度分布的求解
t 2t a 2 0 x , 0 x
初始条件: t | 0 t 0
0 x
边界条件: t | 0 (对称性) x 0
x
t |x h t |x t f x
物体内部各点在同一时刻的温度趋于一 致,温度场与空间位置无关,只是时间 的单值函数。
这样的物体称为集总热容系统。
工程中取Bi<0.1
25
第四章 / 第三节 非稳态导热
(一)无限大平壁的分析解及诺模图
2、Fo数和Bi数的物理意义以及对非稳态过程的影响
h Bi数的影响: Bi 1h

—出现在特征数中的几何尺度 —不同情况下,不同形状的物体特征长度是不同的。 Fo 数 、 Bi数称为特征数,习惯上又称准则数, 具有特定的物理意义。

第三章-非稳态导热

第三章-非稳态导热

工程上认为= 4τc时导热
体已达到热平衡状态
如果导热体的热容量( Vc )小、换
cV 热条件好(hA大),那么单位时间所
hA
传递的热量大、导热体的温度变化快, 时间常数小。
时间常数反映了物体对周围环境温度变化响 应的快慢,时间常数小的响应快,时间常数 大的响应慢,其主要影响因素为物体的热容 量和物体表面的对流换热条件。
非稳态导热的不同时刻物体的温度分布
2.两个阶段
非正规状况阶段(初始状况阶段)
在=3时刻之前的阶段,物体内的温度
分布受初始温度分布的影响较大。
正规状况阶段
在 = 3时刻之后,初始温度分布的影
响已经消失,物体内的温度分布主要 受边界条件的影响.
3.热量变化
与稳态导热的另一区别:由于有温 度变化要积聚或消耗热量,同一时刻 流过不同界面的热流量是不同的。
( x, ) e a 2 [ A cos( x ) B sin( x )]
( x, ) e a 2 [ A cos( x) B sin( x)] (a)
常数A、B和β可由边界条件确定。
0, t0-t 0
(1)
x 0, x 0
(2)
x , - x h
(3)
BiV FoV
0
BiV 越小表明内部导热热阻越小或外部热阻越
大,从而内部温度就越均匀,集总参数法
的误差就越小。 对热电偶测温情况,一
般使BiV=0.001量级或最小。
BiV 0.1M
为判定系统是否为集总参数系 统 ,M为形状修正系数。
厚度为2的大平板 V A= M 1 直径为2r的长圆柱体 V A= r 2 M 0.5
当几何形状及边界条件都比较简单时可获得分 析解。

第三章 非稳态导热

第三章 非稳态导热

2 、无限长圆柱体或球体
(r , ) a hR r r f ( 2 , , ) f ( Fo, Bi, ) 0 R R R
=
m a 1 f1 ( , 2 ) f1 ( , Fo) 0 hR R Bi
r 1 r f2 ( , ) f2 ( , ) m hR R Bi R
习题:3-13,3-15
(5)
3-3 一维非稳态导热的分析解
一、无限大平板的分析解
一块厚为 2 的无限大平板为例,
t ( x, )
1、导热微分方程式及定解条件
t
t ( x, )
导热微分方程式,由式(2-8)得 t 2t 0 )(3-11) a 2 ,( 0 x , x 初始条件:(1)t ( x,0) t0 ,( 0 x )(3-12) 边界条件:(1)t ( x, ) 0 x x0 (3-13)
二、求解一维非稳态导热问题的图线法
诺谟图:(1)按分析解第一项计算绘制的图线 m (0, ) 中心位置温度随时间变化量(x=0时) 0 ( x,0)
( x, ) f ( 1 ) 任意位置与中心位置的温度比值 m (0, ) 式(3-23)与x无关
其解为: e 0

hA exp( ) cV
说明:1) V A 具有长度的量纲,记作 l ,则 hA hV A2 h(V / A) a BiV FoV (3-6) 2 2 cV A cV (V / A)
a 一般地: Bi , Fo 2 l hl
只有两边同为某一常数时,该式才成立
只与 x 有关
分析解为
n n 1
( x , ) t ( x , ) t 0 t0 t

第3章 非稳态导热

第3章 非稳态导热

解之,得: 2 a 1 2 x, 2sin n x e cos n 0 n 1 n sin n cos n
式中离散值n是下列超越方程的根,称为特征值
tan n
hA d cV 0
hA cV

hA ln 0 cV
e 0

hA exp cV
l=V/A hA h V A hl cV c V A 2 c l 2
将微分方程分离变量并求解得分析解为 : t t0 1 2 u e u2 du erfc
物体内的温度分布 根据半无限大物体的定义,得出导热微 分方程为: 2 a x2 初始条件为: τ=0 时, ( x,0) t0 t0 0 边界条件为:x=0 时, t t
x0 w 0 w
x= ∞ 时,
x t0 t0 0
t 2t a 2 0 x , 0 x t x,0 t0 0 x t x, 0 x x 0 t x, h t x , t x x
对热量计算公式的说明
热量计算公式适用于物体被冷却时,温差取
热量计算公式适用于物体被加热时,温差取
t0 t t t0
物体内部导热热阻可以忽略时的加热或冷却,有时又称 为牛顿加热或牛顿冷却。
注意:由于用集总参数法求物体的温度分布时,认为物 体内没有温度梯度,温度只随时间而变化,所以不能 用傅立叶定律求热量。
中心点的温度
12
Fo
x cos 1
0, 2 sin 1 e 0 1 sin 1 cos 1

《传热学》第三章 非稳态导热

《传热学》第三章  非稳态导热

令:
—— 过余温度
使导热微分方程边界条件齐次化:
1.分离变量法求解导热微分方程:
对于此类偏微分方程,应采用分离变量法来进行求解: 假定:
代入导热微分方程,得出:
令:
并对两式分别求解
求解结果: 因φ 不可能是无限大或常数,所以只能有:μ <0,因而可令:
求解结果:
将两个求解结果合并,得到:
其中:
A c1c2 , B c1c3
集总热容体的温度分布:
其中:
L
V ——定型尺寸 A
cV
hA
——时间常数(表示物体温度接近流体温度的快慢)
集总热容体的温度分布亦可写成:
四、不同加热方式下的无限大平壁瞬态导热
t
qv
h, t f
h, t f
qw
qw
h, t f
h, t f
x
第三节 半无限大物体的瞬态导热
应用领域:大地 一、第一类边界条件
半无限大物体表面温度:
半无限大物体表热负荷:
——一定时间内将壁温提高至tw所需的热负荷
第四节 其他形状物体的瞬态导热
一、无限长圆柱体和球体——计算线图法 分无 布限 计长 算圆 步柱 骤温 度
计算Bi和Fo
由图3-13计算中心温度
由图3-14计算任意处温度 无限大平壁—— 半壁厚δ
定型尺寸
无限长圆柱体和球体—— 半径 R 其他不规则形状物体——V/A
或:
傅立叶准则——
二、正常情况阶段——Fo准则对温度分布的影响

进行收敛性分析: 随着β n的递增,级数中指数一项收敛很快,所以级数收敛很快,尤其当Fo较 大时,收敛性更加明显。 因此,当Fo>0.2时,仅用级数第一项来描述,已足够精确,即:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 非稳态导热的基本概念
一、分类 物体的温度随时间而变化的导热过程叫非稳态导
热。根据物体的温度随时间而变化的特征可分为两类: 非稳态周非导期周热性期非性稳 非态稳导态热导热(又称为瞬态导热)
二、非周期性非稳态导热(瞬态导热)
指物体温度随时间的推移逐渐趋近于恒定的值。 1.举例说明其过程特点:以采暖设备给室内供热为例,分析
第二节 集中参数法
四、时间常数:
当采用集中参数法分析导热物体时,其过于温度随时间成
指数曲线变化,见图3-5.指数 cV 称hA为时间常数 。当 c
时0, 0,即0.物36体8的过于温度已经降低到初始过于温
度值的36.8%。
热电偶测定流体温度时,其时间常数说明了热电偶对流体 温度变化响应快慢的指标。时间常数越小,热电偶越能迅速反 映出流体温度的变动。
③当两种热阻的数值比较接近,即Bi 为有限值时,其温度分布见图 3-4c。
第二节 集中参数法
一、集中参数法的实质:
当Bi≤0.1时,可忽略物体内部导热热阻而认为其内部温度场
均匀一致,此时的温度为 t而f与空间坐标无关。此简化分析
方法称为集中(总)参数法。因为物体的温度与空间坐标无关, 故集总参数法容易处理形状不规则的物体。
P116图3-4
①1 h

i
h
1
h
见图3-4a,由于表面换热热阻可以忽略,一开始平板表面温度就被
冷却到
于 tf。
tf
, 随着时间的推移,平板内各点的温度逐渐下降而趋近

1 h

i h0
见图3-4b,由于平板导热热阻可以忽略,任一时刻各点的温度一致,
即t=f(τ),并随时间的推移整体下降,逐渐趋近于 。 t f
第一节 非稳态导热的基本概念
3、非稳态导热的基本特点
①. t , 这0 意味着任何非稳态导热过程必然伴随着加热 或冷却过程。
②.在非稳态导热过程中,热量传递方向上的不同位置的导热
量是不同的。
.
③.非稳态导热过程数学描写: t (2t 2t 2t)
x2 y2 z2 t(x,y,z,0)t0
特征长度为 l V A ,对平板取半厚,对圆柱和球体取半径。
第二节 集中参数法
故温度分布为: =0e-Bi·Fo 或: =0exp(-Bi·Fo)
②导热量:
导热物体在时刻的瞬时热流量为:
cV d d t0he Ax ph cA V
物体自0时刻到时刻与流体交换的总热量为:
Q 0 d0cV 1ex p h cA V
呈直线上升(图中AB段),由
q1—内墙吸热量
于tw1先快后慢地上升,导致q1 也先快后慢地下降,直至q//不 变,达到新的稳态阶段;
q// C
b.外墙表面开始因tw2未变,故先
保持不变(图中AD段),后来
q/ A
q2—外墙放热量
D
由于tw2先快后慢地上升,导致 q2也先快后慢地上升,直至q// 不变,达到新的稳态阶段。
三、求解:
对方程进行分离变量有:
d hA d cV
积分上式(由0积至,由0积至)得:
ln0 hcAV
即:
ttf 0 t0tf
exphcA V
①温度场:
ehcAV 0
指数 h cV A h V /A cV 2 h L a L 2 B F i o A
式中 Bihl 为毕渥数,Fo l2称为傅里叶数,其中
0
0
5>.图中阴影面积:墙体热力学能 的增加(蓄热)。
第一节 非稳态导热的基本概念
二、非周期性非稳态导热(瞬态导热)
2.物体非稳态导热过程的温度分布可分为两种类型 ①非正规状况阶段:在初始阶段,物体内各点的温
度主要受初始温度的控制,随时间变化率是不一 样的,即各点的t/均不相同,且无规则; ②正规状况阶段:一定时间后,初始温度的影响逐 渐消失,物体的温度主要受热边界条件的影响, t/虽不一定相同,但有一定的规律可循。 一般,物体的整个非稳态导热过程主要处于正规状 况阶段,其温度分布是我们主要讨论内容。
c
nt wh(twtf)
数学上可以证明其解t=f(x,y,z,τ)是唯一的。
第一节 非稳态导热的基本概念
4、非稳态导热的三种情形
流设体一中块冷厚却2δ,的表金面属换平热板系,数初为始h温,度平为板的t 0,导突热然系将数它为置λ。于根温据度平为板的t的f
导热热阻与表面对流换热热阻的相对大小,其温度分布有三种情形。
墙内各点温度及热流密度的变化情况。 1>.已知:
a.墙外tf2始终保持不变; b.初始时刻,室内空气温度tf1/、墙体各点温度tw1/、ta/、 tb/、tc/、tw2/均稳定; c.供暖设备工作后,室内空气因热容小温度很快上升到tf1// 并保持稳定。 2>.问:墙内各点温度及热流密度如何变化?
第一节 非稳态导热的基本概念
1.举例说明其过程特点:
3>.墙内各处温度的变化:
由tf1/升至tf1//所需时间 tw1
tw1/
ta
ta/
tb
tw1// ta//
tb//
tb/
tc
tc//
tc/ tw2/
tw2
tw2//
0 a b
c 0
第一节 非稳态导热的基本概念
二、非周期性非稳态导热(瞬态导热)
1.举例说明其过程特点:
qB
4>.墙内外表面热流密度的变化: a.内墙表面开始时,因温差大,q1
二、非周期性非稳态导热(瞬态导热)
1.举例说明其过程特点: 3>.墙内各处温度的变化:
t
tf1//
a bc
a.开始,因为tf1的上升→内墙表 面温度直线上升,靠近内墙的 墙体温度上升,而此时,a、b、
tw1//
ta//
c及外墙在短促时间内可认为 不发生变化;
tf1/ tw1/ ta/
tb// tc// tw2//
二、数学描写:
已知:任意形状物体,、c、、体积V,参加换热的全表面积
A,流体tf、h,初始时t|=0=t0,即0=t0-tf,且有Bi ≤ 0.1。如
下图:
A
据热平衡关系式(冷却时):
V 物体在单位时间放出的能量==hA
0t0tf 0
h
tf
第二节 集中参数法
tb/ tc/ tw2/
b.随着时间的推移,a、b、c处的 温度分别自a、b、c时刻后 开始上升;
tf2
c.外墙tw2自0时刻后开始上升; d.当各点t上升至“//”状态后,室
内对内墙的对流换热量等于外
x
墙的换热量,即达到新的稳态
阶段。
第一节 非稳态导热的基本概念
二、非周期性非稳态导热(瞬态导热)
相关文档
最新文档