一维非稳态导热的数值计算
传热学11 一维稳态和非稳态导热

• 两个边界条件中:一个为r=R时,T=Tw,由于内热源均 匀分布,圆柱体表面温度均为Tw,圆柱体内温度分布对 称于中心线,另一个边界条件可表示为 r=0时,dT/dr=0。 将微分方程分离变量后两次积分,结果为:
11.2 通过圆筒壁的一维稳态导热
qv 2 qv 2 dT T r C1 ln r C2 r r C1 4 dr 2 • 根据边界条件,在r=0时, dT/dr=0。可得C1=0;利用 另一个边界条件,在r=R时,T=Tw,可得
• 可见,该条件下平壁内温度是按抛物线规律分布。令 温度分布关系式中的x=0,则得平壁中心温度为:
qv 2 T Tw s 2
11.1 通过平壁的一维稳态导热
• 例题2:炉墙内层为粘土砖,外层为硅藻土砖, 它们的厚度分别为s1=460 mm;s2=230 mm,导 热系数分别为:λ1=0.7+0.64× 10-3T W/m℃; λ2=0.14+0.12× 10-3T W/m℃。炉墙两侧表面温度 各为T1=1400℃;T3=100℃,求稳态时通过炉墙 的导热通量和两层砖交界处的温度。
1
2
Tf1 Tf2 dT q C1 1 s 1 dx
q K (Tf1 Tf2 )
1 s
1
2
1
综合传热系数或传热系数 多层平壁
K
Tf1 Tf2 q n si 1 1
1
2
1
1
i 1
i
2
平壁面积A
Tf1 Tf2 Q n si 1 1 1 A i 1 i A 2 A
11.1 通过平壁的一维稳态导热
对T求导,得: dT C1
传热学传热学 第三章第三节一维非稳态导热问题

§ 3-3 一维非稳态导热的分析解本节介绍第三类边界条件下:无限大平板、无限长圆柱、球的分析解及应用。
如何理解无 限大物体,女口:当一块平板的长度、 宽度 >> 厚度时,平板的长度和宽度的边缘向四周的散 热对平板内的温度分布影响很少,以至于可以把平板内各点的温度看作仅是厚度的函数时, 该平板就是一块 无限大”平板。
若平板的长度、宽度、厚度相差较小,但平板四周绝热良好, 则热量交换仅发生在平板两侧面,从传热的角度分析,可简化成一维导热问题。
、无限大平板的分析解已知:厚度2d 的无限大平板,初温t0,初始瞬间将其放于温度为 上9的流体中,而且上9 >(边界条件)E (边界条件)引入过余温度:(0<x< <5 , > 0)(3-9)3(x,0)=灵(0 -X - ^)(初始条件)传热学--第三章第三节维非稳态导热问题to,流体与板面间的表面传热系数为一常数 试确定在非稳态过程中板内的温度分布。
解:如图3-5所示,平板两面对称受热, 于x ±0的半块平板,其导热微分方程:定解条件:t (x,0)= t0(0 -x -占)所以其内温度分布以其中心截面为对称面。
—=说—7肮 即(0<x< 占,r>0)tan (氏&)= 其中离散值是下列超越方程的根,称为特征值。
a 5%其中Bi 是以特征长度为日T液2的毕渥数。
与( T )各自均与 T 有关,但其比值则与 T 无关,而仅取决于几何位置(X/ 6 )及边 界条件(Bi )。
也就是说,初始条件的影响已经消失,无论初始条件分布如何,只要(边界条件)朋(& T)dx(边界条件)3B 护日 —=a ------氏分离变量求解g Sb 等 外=君&0冲首+如(线6 g 貞(3-10由此可见:平板中的无量纲过余温度3/宀与三个无量纲数有关:以平板厚度一半 占为特征长度的傅立叶数、毕渥数及 %即:9E 畑g =畑、曲5(3-12)二、非稳态导热的正规状况阶段1 、平板中任一点的过余温度与平板中心的过余温度的关系前述得到的分析解是一个无穷级数,计算工作量大,但对比计算表明, 用该级数的第一项与采用完整的级数计算平板中心温度的误差小于当1% , Fo>0.2 时,采因此,当 Fo>0.2Ct/时,采用以下简化结果:丸(3-13 )其中特征值 之值与Bi 有关。
非稳态导热微分方程

非稳态导热微分方程非稳态导热问题是研究物体内部或者在不同温度环境下的温度分布变化的数学模型。
其核心是通过非稳态导热微分方程来描述温度随时间和空间的变化规律。
本文将从导热微分方程的基本概念、一维问题和二维问题等方面进行论述。
一、非稳态导热微分方程的基本概念非稳态导热问题是描述物体内部温度分布随时间变化的数学模型。
在一维情况下,我们可以将问题简化为描述物体内部温度分布随空间变化的微分方程。
非稳态导热微分方程的一般形式如下:∂u/∂t = α∂²u/∂x²其中,u(x,t)表示温度随空间和时间的变化,α是导热系数。
二、一维非稳态导热问题在一维情况下,我们考虑物体的温度分布只与空间变量x有关。
根据非稳态导热微分方程,我们可以通过分析边界条件和初始条件来求解问题。
具体的求解方法包括分离变量法、格林函数法等。
例如,我们考虑均匀杆的一维非稳态导热问题。
初始时刻杆上各点的温度分布u(x,0)已知,杆的两端分别与两个恒温热源接触。
边界条件可以表示为u(0,t)=T1和u(L,t)=T2,其中T1、T2为两个恒温热源的温度。
通过求解非稳态导热微分方程,我们可以得到随时间变化的温度分布u(x,t)。
三、二维非稳态导热问题在二维情况下,物体的温度分布与空间变量x和y都有关。
同样地,我们需要给定边界条件和初始条件来求解问题。
二维非稳态导热微分方程的一般形式如下:∂u/∂t = α(∂²u/∂x² + ∂²u/∂y²)例如,我们考虑矩形板的二维非稳态导热问题。
初始时刻板上各点的温度分布u(x,y,0)已知,板的边界上的温度分布也已知。
通过求解非稳态导热微分方程,我们可以得到随时间变化的温度分布u(x,y,t)。
结论非稳态导热微分方程是研究温度随时间和空间的变化规律的重要数学模型。
通过分析边界条件和初始条件,可以求解一维和二维非稳态导热问题,并得到随时间变化的温度分布。
(完整word版)一维非稳态导热的数值计算

int i,j,l;
float cha;
float a,x,y,Fo,Bi;
float t[N][K],b[N][K];
/*打印出题目*/
printf("\t\t\t一维非稳态导热问题\t\t");
printf("\n\t\t\t\t\t\t----何鹏举\n");
printf("\n题目:补充材料练习题三\n");
/*时刻为零时,赋予初场温度*/
for(i=0;i<N;i++)
t[i][0]=1000;
/*循环开始,每次计算一个时刻*/
for(j=0;j<K-1;j++)
{
for(i=0;i<N;i++)
b[i][j]=t[i][j];
/*下面对每一个时刻进行迭代求解对应的温度分布,公式按传热学课本P178页公式*/
y=1;/*y代表Δτ*/
x=0.05/(N-1);
a=34.89/(7800*712);
Fo=(a*y)/(x*x);
Bi=233*x/34.89;
printf("\n显示格式条件:");
printf("\n1、Fo=%3.1f<0.5\t",Fo);
printf("\t2、1-2Fo*Bi-2Fo=%4.2f>0\n\n",1-2*Fo*Bi-2*Fo);
{
printf("\n");
l=0;
}
}ห้องสมุดไป่ตู้
getchar();/*为了是生成的exe文件结果算的后不会立即退出,方便观看*/
传热学-学习课件-4-4 一维非稳态导热问题的数值求解

1
2
a x2
2h cx
2
a x2
t
i
N
1
2h cx
tf
③对称点
t (i)
-1
t (i)
2
传热学 Heat Transfer
2.直接用差分代替微分
①向前差分(forward difference)
i
t
t
i
n
1
t
i
n
n,i
②向后差分(backward difference)
t
t
i
n
t
i
n
1
n,i
i n,i+1
n-1,i n,i n+1,
t
i
n
1
t
n
i
a
t (i1) n 1
2
t
( n
i
1
)
x2
t (i1) n 1
(1,1)
n,i-1 i
n
x
整理成隐式格式:
传热学 Heat Transfer
传热学 Heat Transfer
主讲老师:王舫 适用专业:能源与动力工程专业
传热学 Heat Transfer
§4.4 一维非稳态导热问题的数值求解
在非稳态导热问题中,不但需要对空间区域进 行离散,还需要对时间变量进行离散,接下来以一 个一维非稳态导热问题为例,重点介绍对非稳态项 的离散方法,以及不同离散方法对计算带来的影响 等。
第三章第三节 一维非稳态导热的分析解

θ
( x,τ θ0
)
=
μ1
+
2 sin μ1 sin μ1 cos
μ1
cos(
μ1
e x ) − μ12F0 δ
θ
(0,τ θ0
)
=
θ m (τ θ0
)
=
μ1
+
2 sin μ 1 sin μ1 cos
μ1
e − μ12 F0
第三节一维非稳态导热的分析解
θ
( x,τ θ0
)
=
μ1
+
2 sin μ1 sin μ1 cos
式中常数a ,b ,c ,d 见P75表3-3 a`,b`,c`,d`见P75表3-4
第三节一维非稳态导热的分析解
3 正规热状况的实用计算方法-线算图法
诺谟图
以无限大平板为例,F0>0.2 时,取其级数首项即可
θ (x,τ ) =θ0
μ1
+
2sin μ1 sin μ1 cos
μ1
e−μ12
F0
cos(μ1
第三节一维非稳态导热的分析解
上式化为:
∂θ = a ∂ 2θ
∂τ
∂x 2
θ =θ0
∂θ = 0 ∂x
0 < x < δ ,τ > 0 τ =0 x=0
− λ ∂θ = hθ x = δ ∂x
第三节一维非稳态导热的分析解
用分离变量法可得其分析解为:
θ
( x,τ θ0
)
=
∞
∑
n =1
2 sin( β nδ ) cos( β n x) β nδ + sin( β nδ ) cos( β nδ
4-3非稳态导热的数值计算

t k 1 i 1
)
tik
已知k时层的温度值,求k+1 时层的温度值要联立求解方 程组,即求解复杂,但无条件稳定(、x的取值不受 限制)。
三、边界节点的离散方程
t
1. 第三类边界条件:已知tf、h
tf、h
L
节点的热平衡:
N-1点导入 对流换热传 N节点内
+
=
N点的热量 入N点的热量 能的增量 0 1 N 1 N x
2t ( x2 )i,k
tk i 1
tk i 1
2tik
(x)2
节点 时层
( t
)i,k
t k 1 i
tik
空间用中心差分格式 时间用向前差分格式
将上面两式代入微分方程:
t k 1 i
tik
a
tk i 1
tk i 1
(x)2
2tik
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
tik 1
k N
稳定性条件: 1 2Fo Bi 2Fo 0
或:
Fo 1 2Bi 2
2. 第二类边界条件:已知qw
建立节点0的差分方程(显式格式) t
t k 1 0
2Fo t1k
(1
2Fo)t0k
tf、
L
稳定性条件:
1 2Fo 0
0 1 N 1 N x 绝热
THANKS
非稳态导热 的数值计算
讨论: 一维、无内热源、常物性、非稳态导热
t f (x, )
t
a
2t x 2
一、显式差分格式
1. 内节点
k 1
1) 离散化: t f (x, )
k
第五章 导热问题的数值方法

5 热传导问题的数值方法5.1一维稳态导热一维稳态导热在直角坐标系下的控制方程可表示为:0)(=+s dxdT k dx d (5-1) 式中k 为导热系数,T 是温度,s 是单位容积的热产生率。
首先选定控制体和网格,如图5.1所示,并对方程(5-1)在所选定的控制体进行积分,即得:0)()(=+-⎰dx s dxdTk dx dT ke w w e (5-2)图5.1 控制体和网格然后进行离散化。
如果用分线段性分布来计算方程(5-2)中的微商dxdT,那么最终的方程为:0)()()()(=∆+---x s x T T k x T T k wW P w e P E e δδ (5-3)假设源项s 在任一控制体中之值可以表示为温度的线性函数,即P P c T s s s +=,则导出的离散化方程为:b T a T a T a W W E E P P ++= (5-4)式中x s b xs a a a x k a x k a c P W E P w wW ee E ∆=∆-+=δ=δ=)()( (5-5) 式(5-4)就是一维稳态导热方程的离散形式,系数a E 和a W 分别代表了节点P 与E 间及W 与P 间导热阻力的倒数,它们的大小反映了节点W 和E 处的温度对P 点的影响程度。
式中的k e 和k w 是控制容积中的e 和w 界面上的当量导热系数。
进行计算时,物理参数值存储在节点的位置上。
为了确定k e 和k w ,还需规定由节点上的物理量来计算相应界面上的量的方法。
常用的方法由两种,即算术平均法与调和平均法。
1、算术平均法假定k 与x 呈线性关系,由P 与E 点的导数系数确定e k 的公式为:eeEe e P e x x k x x k k )()()()(δδ+δδ=-+ (5-6) 2、调和平均法利用传热学的基本公式可以导出确定界面上当量导热系数的调和平均公式。
控制容积中P 和E 的导热系数不相等,但界面上热流密度应该连续,则由Fourier 定律可得:()()()()EePePE EeeE PePe e k x k x T T k x T T k x T T q +-+-δ+δ-=δ-=δ-=(5-7)而()Pe PE e k x T T q δ-=则()()()Ee Pe eek x k x k x +-+=δδδ (5-8)这就是确定界面上当量导热系数的调和平均公式,它反映了串联过程热阻的迭加原则。