期末冲刺卷(二)

合集下载

部编语文九年级上册期末冲刺卷02(解析版)含答案

部编语文九年级上册期末冲刺卷02(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!期末冲刺卷02一、积累与运用。

(24分)1.下面加点字的注音完全正确的一项是()(2分)A.箴言(zhēn)恪守(kè)瞥见(piě)忸怩作态(niē)B.带挈(qiè)赦免(huò)行事(háng)顿开茅塞(sè)C.豢养(huàn)作揖(zuò)脊梁(jĭ)矫揉造作(jiǎo)D.纶巾(guān)报帖(tiě)劫掠(lüè)前仆后继(pú)【答案】C【详解】A.瞥见(piě)——piē,忸怩作态(niē)——ní;B.赦免(huò)——shè ,行事(háng)——xíng;D.前仆后继(pú)——pū;故选C。

阳光同学期末复习冲刺卷二答案

阳光同学期末复习冲刺卷二答案

阳光同学期末复习冲刺卷二答案一、判断、(正确的打√,错误的打、每题1分,共10分、)1、(1分)圆、三角形和平行四边形都是轴对称图形、(判断对错)2、(1分)17/100吨,可以写作17%吨、(判断对错)3、(1分)用110粒种子做发芽试验,结果有100粒发芽,发芽率是100%、(判断对错)4、(1分)10:3/5的比值是50:3、(判断对错)5、(1分)a/b=0、6,b比a多约66、7%、(判断对错)6、(1分)射线比直线短、(判断对错)7、(1分)a和b是两种相关联的量,a=5b,a和b成正比例、(判断对错)8、(1分)甲数的1/6等于乙数的1/5(甲、乙两数均不为0),则甲数与乙数的比是6:5、(判断对错)9、(1分))一种商品,先提价10%,再降价10%,售价与原价相等、(判断对错)10、(1分)6个同学相互之间都要握手一次,一共要握手15次、(判断对错)(1分)一种彩电先涨价1/10,又降价1/10,现价和原价相比()A、便宜了B、贵了C、价格不变13、(1分)等底等高的圆锥和圆柱,体积相差10立方厘米,圆柱的体积是()A、30立方厘米B、5立方厘米C、15立方厘米14、(1分)把7米长的钢筋锯4次,平均分成一些小段,每小段的长度是()A、7/5米B、5/7米C、7/4米15、(1分)鸡兔同笼,共有24个头,68只脚,鸡有()只、A、10B、14C、1216、(1分)从家去超市,爸爸用了0、4时,淘气用了小时1/4,爸爸和淘气速度的比是()A、2/5:1/4B、8:5C、5:817、(1分)一个圆柱和一个圆锥的底面半径之比是2:3,体积之比是3:2,它们高的比是()A、1:3B、3:4C、9:818、(1分)下面哪组中的三条线段不可以围成一个三角形、()A、5厘米、6厘米、7厘米B、5厘米、5厘米、10厘米C、3厘米、6厘米、4厘米19、(1分)把一根木材截成两段,第一段长3/5米,第二段占全长的3/5,那么两根木材相比()A、第一段长B、第二段长C、同样长20、(1分)从下列图形中,不是轴对称图形的是()A、平行四边形B、半圆性C、环形21、(1分)(2009&邵阳)一个三角形的三个内角的度数比是1:2:1,这个三角形是()A、锐角三角形B、直角三角形C、钝角三角形二、填空、(每空1分,共10分)22、(2分)xy=3,则想,x与y成比例,时间一定,路程和速度成比例、24、(2分)一个圆柱体的侧面展开图是一个正方形,这个正方形的边长是6、28cm,那么这个圆柱体的底面半径是cm,体积是立方厘米、25、(1分)每袋味精的标准质量是100克,记作“0”、为了检验味精重量是否合格,一个检验员抽查了5袋,记录数据如下:﹣2,+2,﹣5,+3,﹣4,这5袋味精的总重量是克、三、解决问题、(每题4分,共16分)26、(4分)学校食堂购买一堆煤,原计划每天烧1、25吨,可以烧16天,开展节约活动后,食堂每天可节约0、25吨,照这样计算这堆煤可以烧多少天?27、(4分)张大伯家有一堆小麦,堆成圆锥形、张大伯量得麦堆的底面周长是12、56米,高2米,这堆小麦的体积是多少立方米?如果每立方米小麦的质量为700千克,这堆小麦有多少千克?28、(4分)把一块三角形的地画在比例尺是1:500的图纸上,量得图上三角形的底是12厘米,高8厘米,这块地的实际面积是多少?29、(4分)把一块底面半径和高都是2分米的圆柱形铁块铸造成一块横截面是边长为2分米的方钢,这块方钢的长是多少分米?30、(6分)次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分。

人教版七年级数学上学期期末冲刺模拟测试卷 (二)含答案与解析

人教版七年级数学上学期期末冲刺模拟测试卷 (二)含答案与解析

人教版七年级上学期期末冲刺模拟测试卷 (二)数 学学校:___________姓名:___________班级:___________考号:___________(考试时间:120分钟 试卷满分:120分)注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。

一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16 2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A .A→C→D→B B .A→C→F→BC .A→C→E→F→BD .A→C→M→B 3.若|b+2|与(a ﹣3)2互为相反数,则b a 的值为( )A .﹣bB .﹣18C .﹣8D .8 4.下列说法中,正确的是( )A .单项式223x y -的系数是﹣2,次数是3 B .单项式a 的系数是0,次数是0C .﹣3x 2y+4x ﹣1是三次三项式,常数项是1D .单项式232ab -的次数是2,系数为92- 5.下列说法正确的是( )A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+27.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=69.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.13.3x m+5y2与x3y n是同类项,则m n的值是13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 20.(8分)解方程:(1)x+5(2x ﹣1)=3﹣2(﹣x ﹣5)(2)32x +﹣2=﹣225x -. 21.(6分)已知多项式x 2y m+1+xy 2﹣3x 3﹣6是六次四项式,单项式6x 2n y 5﹣m 的次数与这个多项式的次数相同,求m+n 的值.22.(8分)线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长?(2)若AC=4cm ,求DE 的长.23.(8分)一位同学做一道题:“已知两个多项式A 、B ,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x 2﹣2x+7,已知B=x 2+3x ﹣2,求正确答案.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);时间销售总额(元) 线上销售额(元) 线下销售额(元) 2019年4月份a x a-x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.26.(10分)如图,已知OE 是∠AOC 的角平分线,OD 是∠BOC 的角平分线. (1)若∠AOC=120°,∠BOC=30°,求∠DOE 的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE 的度数.参考答案与解析一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16【答案】B【解析】根据绝对值的定义,得|6|6-=,故选:B .2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 【答案】B【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.3.若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.﹣18C.﹣8 D.8【答案】C【解析】∵|b+2|与(a﹣3)2互为相反数,∴|b+2|+(a﹣3)2=0,∴b+2=0,a﹣3=0,解得:b=﹣2,a=3.∴b a=(﹣2)3=﹣8.故选:C.4.下列说法中,正确的是()A.单项式223x y-的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-【答案】D【解析】A、单项式223x y-的系数是﹣23,次数是3,系数包括分母,错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,错误;D、单项式232ab-的次数是2,系数为92-,符合单项式系数、次数的定义,正确;故选:D.5.下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位【答案】D【解析】A、近似数4.60精确到百分位,4.6精确到十分位,故错误;B、近似数5千万精确到千万位,近似数5000万精确到万位,故错误;C、近似数4.31万精确到百位.故错误;D、正确.故选:D.6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2【答案】D【解析】设“□”内数字为x,根据题意可得;3×(20+x)+5=10x+2,故选D.7.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【答案】C【解析】设该商品每件的进价为x元,依题意,得12×0.8-x=2,解得,x=7.6.故选C.8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=6【答案】D【解析】A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程23t=32,未知数系数化为1,得t=94,故本选项错误;D、方程10.20.5x x--=1化成3x=6,故本选项正确.故选:D.9.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长【答案】B【解析】以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为圆心画弧时,b必须大于12DE,否则没有交点.故选:B.10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21【答案】A【解析】第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…第n个相同的数是6(n-1)+1=6n-5,所以6n-5=103,解得n=18.故选:A.二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.【答案】3.【解析】1﹣x﹣5xy2、6xy+1、a2﹣b2是多项式,共3个,故答案为:3.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.【答案】0或8.【解析】∵xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,∴n-2=0,1+|m-n|=3,∴n-n=2或n-m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.13.3x m+5y2与x3y n是同类项,则m n的值是【答案】4【解析】∵3x m+5y2与x3y n是同类项,∴m+5=3,n=2,解得:m=﹣2,n=2,∴m n=(﹣2)2=4.故答案为:4.13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.【答案】7【解析】∵x=5-y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)-4xy=3×5-4×2=15-8=7.故答案为:7.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.【答案】﹣1,92.【解析】由一元一次方程的特点得10 ||1aa-≠⎧⎨=⎩,解得:a=﹣1,将a=﹣1代入方程得﹣2x+3=6,解得:x=92.故答案为:﹣1,92.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.【答案】72°,162°.【解析】∵BO⊥AO,∠BOC与∠BOA的度数之比为1:5,∴∠COA=45×90°=72°,则∠BOC=18°,故∠BOC的补角=180°﹣18°=162°.故答案为:72°,162°.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm【答案】C【解析】∵C是线段AB的中点,AB=12cm,∴AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点.①当AD=23AC时,如图,BD=BC+CD/=BC+13AC=6+4=10(cm).所以线段BD的长为10cm或8cm.17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.【答案】35°【解析】∵OE ⊥AB ,∴∠AOE=90°∵∠1=55°,∴∠AOC=90°﹣55°=35°,∴∠BOD=∠AOC=35°(对顶角相等).18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.【答案】S =202111m m --. 【解析】设S =1+m +m 2+m 3+m 4+…+m 2020,在所示设式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021,两式相减可得出答案.设S =1+m +m 2+m 3+m 4+…+m 2020…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021 …………………② ②一①得:mS ―S =m 2021-1.∴S =202111m m --. 三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 【答案】﹣2a 2+6ab ,1.【解析】原式=﹣6a 2+12ab ﹣6b 2+4a 2﹣6ab+6b 2=﹣2a2+6ab,当a=1、b=12时,原式=﹣2×12+6×1×1 2=﹣2+3=1.20.(8分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)32x+﹣2=﹣225x-.【答案】(1)x=2;(2)x=1.【解析】(1)去分母,得:x+10x﹣5=3+2x+10,移项,得:x+10x﹣2x=3+10+5,合并同类项,得:9x=18,系数化为1,得:x=2;(2)去分母,得:5(x+3)﹣20=﹣2(2x﹣2),去括号,得:5x+15﹣20=﹣4x+4,移项,得:5x+4x=4﹣15+20,合并同类项,得:9x=9,系数化为1,得:x=1.21.(6分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.【答案】m+n=3+2=5.【解析】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.22.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.【答案】(1)DE的长是6cm;(2)DE的长是6cm.【解析】(1)∵AB=12cm,点C恰好是AB中点,∴AC=BC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=3cm,∴DE=CD+CE=6cm,即DE的长是6cm;(2)∵AB=12cm,AC=4cm,∴CB=8cm,∵点D、E分别是AC和BC的中点,∴DC=2cm,CE=4cm,∴DE=DC+CE=6cm,即DE的长是6cm.23.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.【答案】2A+B=15x2﹣13x+20.【解析】根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.所以2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【解析】(1)50×(1-50%)=25(万元),故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是x辆,则今年每改装的无人驾驶出租车是(260-x),辆,依题意有50×(260-x)+25x=9000,解得,x=160.故明年改装的无人驾驶出租车是160辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【答案】(1)该超市2020年4月份线下销售额为1.04(a-x)元;(2)2020年4月份线上销售额与当月销售总额的比值为0.2.【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a-x)元.(2)依题意,得1.1a=1.43x+1.04(a-x),解得:x=213a,∴21.43 1.430.22130.21.1 1.1 1.1ax aa a a⋅===答:2020年4月份线上销售额与当月销售总额的比值为0.2.26.(10分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.【答案】(1)∠DOE=45°;(2)∠DOE=45°.【解析】(1)∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOC=120°,∠BOC=30°,∴∠EOC=60°,∠DOC=15°,∴∠DOE=∠EOC﹣∠DOC=60°﹣15°=45°;(2))∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOB=90°,∠BOC=α,∴∠EOC=12(90°﹣α),∠DOC=12α,∴∠DOE=∠EOC﹣∠DOC=12(90°﹣α)﹣12α=45°.。

人教版八年级上册数学期末冲刺试卷(二)附答案

人教版八年级上册数学期末冲刺试卷(二)附答案

3.下列各条件中,不能画出唯一三角形的是( )
A.已知两边和其中一边的对角
B.已知三边
C.已知两角和夹边
D.已知两边和夹角
4.下列图形中,△A’B’C’与△ABC 关于直线 MN 成轴对称的是( )
5.如图所示,在 4×4 的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小 正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形,那么符合条件 的小正方形共有( )
°,∠γ= 75°,则∠β的度数为_____.
4.如图,在△ABC 中,高 AD,BE 交于点 F,AD= BD,那么△ADC≌_____,理由是____.
5.(x²-x+m)(x-8)中不含 x 的一次项,则 m 的值为_______.
1
1
6.已知 y= 5 x -1,则 5 x²-2xy+5y²-2 的值是______.
二、填空题
1.如图所示,已知 AB=DE,AF=CD,EF=BC,∠A=30°,∠B= 100°,则∠EFD=_____.
2.如图所示,P,Q 是△ABC 的边 BC 上的两点,且 BP=PQ=QC=AP=AQ,则∠BAC 的大小等 于_____.
第 2 题图
第 3 题图
第 4 题图
3.如图所示,光线 L 照射到平面镜Ⅱ上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α= 55
别交 AD 于 E,交 BD 于 F,则有 AE= ED=DF= FB.
A.0 个 B.1 个 C.2 个 D.3 个 2x 5 3
9.分式方程 x 3 3 x 的解是( )
A.x=-3 B.x=3 C.x=1 D.x=1 或 x=3
1 m .(m2 1)

六年级语文上册期末培优冲刺卷二

六年级语文上册期末培优冲刺卷二

六年级语文上册期末冲刺卷(二)(时间:90分钟满分:100分)一、积累与运用。

(37分)1. 下列加点字注音有误的一项是(4分) ( )A.辐.射(fú) 毡.帽( zhān) 追悼.(dào) 叱咤.(zhà) 风云B.蟠.龙(pán) 虚拟.(nǐ) 瘦削.(xuē) 入场券.(quàn)C.伽.蓝(qié) 排闼.(tà) 冠.冕(guān) 戛.然而止(jiá)D.渲.染(xuàn) 菜畦.(qí) 焖.饭(mèn) 绱.鞋底(shāng)2. 画出下列词语中的错别字,并改正在后面的括号里。

(8分)矫键( ) 拐仗( ) 技高一畴( ) 龙凤呈详( ) 弛骋( ) 荡羡( ) 别出心载( ) 沧海一栗( )3.下列加点的成语运用不恰当的一项是(4分) ( )A.尽管我们举手投足都那么小心翼翼....,但还是惊动了正在弹琴的蟋蟀。

B 春天的植物园,百花齐放,争奇斗艳,栩栩如生....。

C.我终于爬上去了,蹲在小山道上,心惊肉跳....,尽量往里靠。

D.御花园的建筑布局、环境气氛,和前几部分迥然不同....。

4.下列标点符号使用有误的一项是(4分) ( )A.一过夏天,小学生有的成了中学生,中学生有的成了大学生。

升级、跳班,快点儿,慢点儿,总是要长。

B."这真是太不可思议了!"王华说,“我一定要把它拍摄下来!”C.这件事是让你去做好呢?还是让我去做好呢?D.我们的院子里种了好多花,像菊花啦、月季啦、山竹啦、美人蕉等什么都有。

5.下列句子没有语病的一项是(4分) ( )A.为了优化育人环境,提升办学水平,学校加快了校园环境改造的速度和规模。

B.近年来,中国汽车企业将在整体研发能力、市场竞争力上获得提升。

C.大约在46亿年前,地球刚刚形成。

那时候地球的温度很高,地面的环境与现在的完全不同。

2022-2023学年上学期七年级数学期末复习冲刺卷(02)

2022-2023学年上学期七年级数学期末复习冲刺卷(02)

2022-2023学年上学期七年级数学期末复习冲刺卷(02)(满分120分,完卷时间120分钟)注意事项:1.本试卷分选择题、填空题、解答题三部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、单选题(每题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.在0、π、0.010*******…(每两个0之间的1依次增加)、﹣3.14、中,无理数的个数有()A.4个B.3个C.2个D.1个3.下列计算正确的是()A.x2y+2xy2=3x2y2B.2a+3b=5abC.﹣2xy+3yx=xy D.a3+a2=a54.若﹣a m b n与5a2b可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.15.若表示一个整数,则整数a可取的值共有()A.2个B.3个C.4个D.5个6.如图是由10个同样大小的小正方体搭成的几何体,它的主视图、左视图和俯视图中面积相等的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.面积都一样7.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.ab>0B.﹣a+b>0C.a+b<0D.|a|﹣|b|>08.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取n=25时,运算过程如图.若n=34,则第2022次“F运算”的结果是()A.16B.5C.4D.19.如图,点O在直线AB上,∠AOC与∠BOD互余,∠AOD=148°,则∠BOC的度数为()A.122°B.132°C.128°D.138°10.如图,长方形ABCD中,AB=8cm,AD=6cm,P,Q两动点同时出发,分别沿着长方形的边长运动,P点从B点出发,顺时针旋转一圈,到达B点后停止运动,Q点的运动路线为B→C→D,P,Q点的运动速度分别为2cm/秒,1cm/秒,当一个动点到达终点时,另一个动点也同时停止运动.设两动点运动的时间为t秒,要使△BDP和△ACQ的面积相等,满足条件的t值的个数为()A.2B.3C.4D.5二、填空题(每题3分,共24分)11.比较大小:﹣|﹣9|﹣(﹣3)2(填“<”、“=”、“>”).12.2021年5月,第七次全国人口普查结果公布,全国人口约1412000000人,数据1412000000用科学记数法表示为.13.如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为.14.如果两个单项式5x m y5与﹣4x2y n是同类项,则5x m y5﹣(﹣4x2y n)=.15.多项式﹣a2b3+a3b+1的次数是.16.若2y﹣x=16,则化简3(x﹣2y)﹣23(x﹣2y)﹣4(x﹣2y)﹣13(x﹣2y)并代入后的结果是.17.已知x=﹣2是方程的解,则=.18.某地铺设矩形人行道,由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.现在街道上铺设一条这样的人行道,一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).三、解答题(共66分)19.计算:(1)(+﹣)×24;(2)10+32÷(﹣2)3+|﹣1|×5.20.解方程:(1)5x﹣8=8x+1;(2)1﹣=.21.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣.22.图①是一个的简单几何体.请在图②的4×4方格纸中分别画出它的主视图、左视图和俯视图(请将所画线加粗).23.如图,点P是∠AOB的边OB上的一点.(1)过点P画OA的垂线,垂足为H.(2)过点P画OB的垂线,交OA于点C.(3)线段PH的长度是点P到的距离.是点C到直线OB的距离.(4)线段PC、PH、OC的大小关系是(用“<”号连接).24.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=b2+2ab,如:1*4=42+2×1×4=24.(1)求2*(﹣5)的值;(2)若(3x﹣2)*1=x,求x的值.25.如图,已知DB=2,AC=10,点D为线段AC的中点,分别求线段CD、BC的长度.26.某超市第一次以4450元购进甲、乙两种商品,其中乙商品的件数是甲商品件数的2倍多15件,甲、乙两种商品的进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)2030售价(元/件)2540(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中乙商品的件数不变,甲商品的件数是第一次的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样,求第二次甲商品是按原价打几折销售?27.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.28.(1)如图1:正方形ABCD边长为5,点P、点Q在正方形的边上.点P从点A以每秒3个单位长度的速度沿A→B→C→D→A折线循环运动,同时点Q从点C以每秒1个单位长度的速度沿C→D →A→B→C折线循环运动.设点P运动时间为x秒.①当x为何值时,点P和点Q第一次相遇.②当x为何值时,点P和点Q第二次相遇.(2)如图2:是长为6,宽为4的长方形ABCD,点E为边CD的中点,点M从点A以每秒2个单位长度的速度沿A→B→C→E折线运动,到达点E停止.设点M运动时间为t秒,当△AME的面积等于9时,请求出t的值.答案与解析三、单选题(每题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.在0、π、0.010*******…(每两个0之间的1依次增加)、﹣3.14、中,无理数的个数有()A.4个B.3个C.2个D.1个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0是整数属于有理数;﹣3.14是有限小数,属于有理数;是分数,属于有理数;无理数是π、0.010*******…(每两个0之间的1依次增加),共2个.故选:C.【点评】此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…(每两个1之间0的个数依次加1),等有这样规律的数.3.下列计算正确的是()A.x2y+2xy2=3x2y2B.2a+3b=5abC.﹣2xy+3yx=xy D.a3+a2=a5【分析】根据合并同类项法则即可求出答案.【解答】解:A、x2y与2xy2不是同类项,故不能合并,故A不符合题意.B、2a与3b不是同类项,故不能合并,故B不符合题意.C、﹣2xy+3yx=xy,故C符合题意.D、a2与a2不是同类项,故不能合并,故D不符合题意.故选:C.【点评】本题考查合并同类项,解题的关键是熟练运用合并同类项法则,本题属于基础题型.4.若﹣a m b n与5a2b可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【分析】根据同类项的定义可求出m与n的值,然后代入m﹣n即可求出答案.【解答】解:由题意可知:﹣a m b n与5a2b是同类项,∴m=2,n=1,∴m﹣n=2﹣1=1,故选:D.【点评】本题考查合并同类项,解题的关键是正确求出m与n的值,本题属于基础题型.5.若表示一个整数,则整数a可取的值共有()A.2个B.3个C.4个D.5个【分析】根据题意列出等式即可求出答案.【解答】解:由题意可知:a﹣1=±1或±3,∴a=0,2,﹣2,4,故选:C.【点评】本题考分式的值,解题的关键是正确列出等式,本题属于基础题型.6.如图是由10个同样大小的小正方体搭成的几何体,它的主视图、左视图和俯视图中面积相等的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.面积都一样【分析】利用结合体的形状,结合三视图的定义判断即可.【解答】解:它的主视图有三列,从左到右小正方形的个数分别为:3、1、2,故有6个小正方形的面;左视图有三列,从左到右小正方形的个数分别为:3、2、1,故有6个小正方形的面;俯视图有三列,从左到右小正方形的个数分别为:3、2、1,故有6个小正方形的面;所以它的主视图、左视图和俯视图面积都一样.故选:D.【点评】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.7.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.ab>0B.﹣a+b>0C.a+b<0D.|a|﹣|b|>0【分析】根据a,b两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【解答】解:由数轴可知,﹣1<a<0<1<b,|b|>|a|.∵a<0,b>0,∴ab<0,∴A选项错误;∵a<0,∴﹣a>0,又∵b>0,∴﹣a+b>0,∴B选项正确;∵a<0,b>0,|b|>|a|,∴a+b>0,∴C选项错误;∵|b|>|a|,∵|a|﹣|b|<0,∴D选项错误.故选:B.【点评】本题考查了实数与数轴的对应关系,解题的关键是确定a,b的符号和绝对值的大小关系.8.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算可以重复进行,例如,取n=25时,运算过程如图.若n=34,则第2022次“F运算”的结果是()A.16B.5C.4D.1【分析】按新定义的运算法则,分别计算出当n=34时,第一、二、三、四、五、六、七、八、九次运算的结果,发现循环规律即可解答.【解答】解:由题意可知,当n=34时,历次运算的结果是:=17,3×17+1=52,,13×3+1=40,=5,3×5+1=16,=1,3×1+1=4,…,故17→52→13→40→5→16→1→4→1…,即从第七次开始1和4出现循环,偶数次为4,奇数次为1,∴当n=34,第2022次“F运算”的结果是4.故选:C.【点评】本题考查的是整数的奇偶性新定义,通过若干次运算得出循环规律是解题的关键.9.如图,点O在直线AB上,∠AOC与∠BOD互余,∠AOD=148°,则∠BOC的度数为()A.122°B.132°C.128°D.138°【分析】再根据余角和补角的定义求解即可.【解答】解:∵点O在直线AB上,∠AOC与∠BOD互余,∴∠AOC+∠BOD=90°,∠COD=180°﹣(∠AOC+∠BOD)=180°﹣90°=90°,∵∠AOD=148°,∴∠BOD=180°﹣∠AOD=180°﹣148°=32°,∵∠BOC=∠COD+∠BOD=90°+32°=122°,故选:A.【点评】本题考查了余角和补角的知识,解答本题的关键是理解余角和补角的定义.10.如图,长方形ABCD中,AB=8cm,AD=6cm,P,Q两动点同时出发,分别沿着长方形的边长运动,P点从B点出发,顺时针旋转一圈,到达B点后停止运动,Q点的运动路线为B→C→D,P,Q点的运动速度分别为2cm/秒,1cm/秒,当一个动点到达终点时,另一个动点也同时停止运动.设两动点运动的时间为t秒,要使△BDP和△ACQ的面积相等,满足条件的t值的个数为()A.2B.3C.4D.5【分析】分五种情况,根据运动的路径和△BDP和△ACQ的面积相等列出方程,求解即可.【解答】解:由题意进行分类讨论:①当P点在AB上,Q点在BC上时(t≤4),BP=2t,CQ=6﹣t,∵△BDP与△ACQ面积相等,∴×6×2t=×8×(6﹣t),解得:t=2.4;②当P点在AD上,Q点在BC上时(4<t≤6),DP=14﹣2t,CQ=6﹣t,要使△BDP与△ACQ面积相等,则DP=CQ,即14﹣2t=6﹣t,解得:t=8(舍去);③当P点在AD上,Q点在CD上时(6<t≤7),DP=14﹣2t,CQ=t﹣6,∵△BDP与△ACQ面积相等,∴×8×(14﹣2t)=×6×(t﹣6),解得t=;④当P点在CD上,Q点在CD上时(7<t≤11),DP=2t﹣14,CQ=t﹣6,要使△BDP与△ACQ面积相等,则DP=CQ,即2t﹣14=t﹣6,解得:t=8;⑤当P点在BC上,Q点在CD上时(11<t≤14),BP=28﹣2t,CQ=t﹣6,∵△BDP与△ACQ面积相等,∴×8×(28﹣t)=×6×(t﹣6),解得:t=;综上可得共有4种情况满足题意,所以满足条件的t值得个数为4.故选:C.【点评】本题考查了矩形的性质、三角形的面积以及一元一次方程的应用,读懂题意,找到等量关系,列出方程是解题的关键,注意:需要分类讨论.四、填空题(每题3分,共24分)11.比较大小:﹣|﹣9|=﹣(﹣3)2(填“<”、“=”、“>”).【分析】分别根据相反数和绝对值的性质化简,再比较大小即可.【解答】解:﹣|﹣9|=﹣9,﹣(﹣3)2=﹣9,故答案为:=.【点评】本题考查了相反数,绝对值以及有理数的比较大小,掌握相反数和绝对值的定义是解题的关键.12.2021年5月,第七次全国人口普查结果公布,全国人口约1412000000人,数据1412000000用科学记数法表示为 1.412×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1412000000=1.412×109,故答案为:1.412×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.13.如图,输入数值1921,按所示的程序运算(完成一个方框内的运算后,把结果输入下一个方框继续进行运算),输出的结果为2021.【分析】把1921代入程序中计算,判断即可得到结果.【解答】解:把1921代入得:(1921﹣1840+50)×(﹣1)=﹣131<1000,把﹣131代入得:(﹣131﹣1840+50)×(﹣1)=1921>1000,则输出结果为1921+100=2021.故答案为:2021.【点评】此题考查了有理数的混合运算,弄清程序中的运算过程是解本题的关键.14.如果两个单项式5x m y5与﹣4x2y n是同类项,则5x m y5﹣(﹣4x2y n)=9x2y5.【分析】直接利用同类项的定义得出关于m,n的值,进而求出答案.【解答】解:∵两个单项式5x m y5与﹣4x2y n是同类项,∴m=2,n=5,∴5x m y5﹣(﹣4x2y n)=5x2y5﹣(﹣4x2y5)=5x2y5+4x2y5=9x2y5,故答案为:9x2y5.【点评】此题主要考查了同类项以及合并同类项,正确得出m,n的值是解题关键.15.多项式﹣a2b3+a3b+1的次数是5.【分析】先找出多项式各项的次数,再确定多项式的次数.【解答】解:该多项式各项的次数依次为:5,4,0.∵多项式的次数是最高次项的次数,∴该多项式的次数是5.故答案为:5.【点评】本题考查多项式次数的概念,正确掌握多项式次数的求法是求解本题的关键.16.若2y﹣x=16,则化简3(x﹣2y)﹣23(x﹣2y)﹣4(x﹣2y)﹣13(x﹣2y)并代入后的结果是592.【分析】由2y﹣x=16可得x﹣2y=﹣16,把3(x﹣2y)﹣23(x﹣2y)﹣4(x﹣2y)﹣13(x﹣2y)合并化简后代入计算即可.【解答】解:∵2y﹣x=16,∴x﹣2y=﹣16,∴3(x﹣2y)﹣23(x﹣2y)﹣4(x﹣2y)﹣13(x﹣2y)=(3﹣23﹣4﹣13)(x﹣2y)=﹣37(x﹣2y)=﹣37×(﹣16)=592,故答案为:592.【点评】本题考查了整式的加减—化简求值,把整式正确化简是解题的关键.17.已知x=﹣2是方程的解,则=18.【分析】根据一元一次方程的解的定义解决此题.【解答】解:由题得,a•(﹣2+3)=.∴a=﹣4.∴=16﹣(﹣1)+1=18.故答案为:18.【点评】本题主要考查一元一次方程的解,熟练掌握一元一次方程的解的定义是解决本题的关键.18.某地铺设矩形人行道,由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推.现在街道上铺设一条这样的人行道,一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(2n+4)(用含n的代数式表示).【分析】观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1;图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,据此可得答案.【解答】解:观察图1可知:中间的每个正方形都对应了两个等腰直角三角形,所以每增加一块正方形地砖,等腰直角三角形地砖就增加2块;观察图形2可知:中间一个正方形的左上、左边、左下共有3个等腰直角三角形,它右上和右下各对应了一个等腰直角三角形,右边还有1个等腰直角三角形,即6=3+2×1+1=4+2×1,图3和图1中间正方形右上和右下都对应了两个等腰直角三角形,均有图2一样的规律,图3:8=3+2×2+1=4+2×2,归纳得:4+2n(即2n+4),∴若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(2n+4)块,故答案为:(2n+4);【点评】本题以等腰直角三角形和正方形的拼图为背景,关键是考查规律性问题的解决方法,探究规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题(共66分)19.计算:(1)(+﹣)×24;(2)10+32÷(﹣2)3+|﹣1|×5.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【解答】解:(1)原式=×24+×24﹣×24=16+4﹣21=﹣1;(2)原式=10+32÷(﹣8)+1×5=10﹣4+5=11.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)5x﹣8=8x+1;(2)1﹣=.【分析】(1)方程移项、合并同类项、系数化为1即可;(2)方程去分母、去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)5x﹣8=8x+1,移项,得5x﹣8x=8+1,合并同类项,得﹣3x=9,系数化为1,得x=﹣3;(2)1﹣=,去分母,得6﹣3(1﹣x)=2(2x﹣1),去括号,得6﹣3+3x=4x﹣2,移项,得3x﹣4x=3﹣2﹣6,合并同类项,得﹣x=﹣5,系数化为1,得x=5.【点评】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解答本题的关键.21.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=,b=﹣.【分析】根据去括号、合并同类项,可化简整式,根据代数式求值,可得答案.【解答】解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=,b=﹣时,原式=3×()2×(﹣)﹣×(﹣)2=﹣.【点评】本题考查了整式的加减,去括号是解题关键,括号前是负数去括号都变号,括号前是正数去括号不变号.22.图①是一个的简单几何体.请在图②的4×4方格纸中分别画出它的主视图、左视图和俯视图(请将所画线加粗).【分析】根据三视图的定义画出图形即可.【解答】解:如图所示:【点评】本题考查三视图,解题的关键是理解题意,学会正确画出三视图,属于中考常考题型.23.如图,点P是∠AOB的边OB上的一点.(1)过点P画OA的垂线,垂足为H.(2)过点P画OB的垂线,交OA于点C.(3)线段PH的长度是点P到直线OA的距离.线段PC的长度是点C到直线OB的距离.(4)线段PC、PH、OC的大小关系是PH<PC<OC(用“<”号连接).【分析】(1)和(2)利用方格线画垂线即可;(3)根据点到直线的距离的定义得到线段PH的长度是点P到OA的距离,线段OP的长是点C到直线OB的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC>PH,CO>CP,即可得到线段PC、PH、OC的大小关系.【解答】解:(1)如图,直线PH即为所求:(2)如图,直线PC即为所求:(3)线段PH的长度是点P到直线OA的距离;线段PC的长度是点C到直线OB的距离.(4)线段PC、PH、OC的大小关系是PH<PC<OC.故答案为:直线OA,线段PC的长度;PH<PC<OC.【点评】本题考查了基本作图以及垂线段最短:直线外一点到直线上各点连接的所有线中,垂线段最短.解题时注意:点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.24.用“*”定义一种新运算:对于任意有理数a和b,规定a*b=b2+2ab,如:1*4=42+2×1×4=24.(1)求2*(﹣5)的值;(2)若(3x﹣2)*1=x,求x的值.【分析】(1)原式利用已知的新定义计算即可求出值;(2)已知等式利用题中的新定义化简,即可求出x的值.【解答】解:(1)根据题中的新定义得:原式=(﹣5)2+2×2×(﹣5)=25﹣20=5;(2)根据题中的新定义化简得:1+2(3x﹣2)=x,去括号得:1+6x﹣4=x,移项合并得:5x=3,解得:x=.【点评】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键.25.如图,已知DB=2,AC=10,点D为线段AC的中点,分别求线段CD、BC的长度.【分析】根据点D为线段AC的中点,得AD=DC=5,再根据BC=DC﹣BD得出结果.【解答】解:∵点D为线段AC的中点,AC=10,∴AD=DC=AC=5,∵DB=2,∴BC=DC﹣BD=3,∴CD=5,BC=3.【点评】本题主要考查了两点间的距离,熟练掌握线段中点定义的应用,线段之间的数量转化是解题关键.26.某超市第一次以4450元购进甲、乙两种商品,其中乙商品的件数是甲商品件数的2倍多15件,甲、乙两种商品的进价和售价如下表:(注:利润=售价﹣进价)甲乙进价(元/件)2030售价(元/件)2540(1)该超市第一次购进甲、乙两种商品各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种商品,其中乙商品的件数不变,甲商品的件数是第一次的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润与第一次获得的总利润一样,求第二次甲商品是按原价打几折销售?【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(2x+15)件,根据第一次以4450元购进甲、乙两种商品得:20x+30(2x+15)=4450,即可解得答案;(2)设第二次甲商品是按原价打m折销售,根据获得的总利润与第一次获得的总利润一样得:50×2×(25×﹣20)+115×(40﹣30)=50×(25﹣20)+115×(40﹣30),即可解得答案.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(2x+15)件,根据题意得:20x+30(2x+15)=4450,解得x=50,∴购进乙种商品2x+15=2×50+15=115,答:第一次购进甲种商品50件,购进乙种商品115件;(2)设第二次甲商品是按原价打m折销售,根据题意得:50×2×(25×﹣20)+115×(40﹣30)=50×(25﹣20)+115×(40﹣30),解得m=9,答:第二次甲商品是按原价打9折销售.【点评】本题考查一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.27.如图,∠AOB=m°,OC是∠AOB内的一条射线,OD、OE分别平分∠BOC、∠AOC.(1)若∠BOC=90°,∠AOC=30°,求∠DOE的度数;(2)试用含m的代数式表示∠DOE;(3)在图中,将OC反向延长,得到OP,OM、ON分别平分∠BOP、∠AOP.请将图补充完整,并用含m的代数式表示∠MON.【分析】(1)根据角平分线的定义得∠DOE=,代入即可得出答案;(2)由(1)知,∠DOE===;(3)首先得出∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,再由角平分线的定义得∠MON=∠MOP+∠NOP=.【解答】解:(1)∵OD、OE分别平分∠BOC、∠AOC,∴∠DOE==60°;(2)由(1)知,∠DOE===;(3)补充图形如下:∵∠AOB=m°,∴∠BOP+∠AOP=360°﹣∠AOB=360°﹣m°,∵OM、ON分别平分∠BOP、∠AOP,∴∠MON=∠MOP+∠NOP==.【点评】本题主要考查了角平分线的定义,角的和差关系等知识,等量代换是找出两个角之间关系常用的方法.28.(1)如图1:正方形ABCD边长为5,点P、点Q在正方形的边上.点P从点A以每秒3个单位长度的速度沿A→B→C→D→A折线循环运动,同时点Q从点C以每秒1个单位长度的速度沿C→D→A →B→C折线循环运动.设点P运动时间为x秒.①当x为何值时,点P和点Q第一次相遇.②当x为何值时,点P和点Q第二次相遇.(2)如图2:是长为6,宽为4的长方形ABCD,点E为边CD的中点,点M从点A以每秒2个单位长度的速度沿A→B→C→E折线运动,到达点E停止.设点M运动时间为t秒,当△AME的面积等于9时,请求出t的值.【分析】(1)①点P和点Q第一次相遇,P比Q多运动10个单位,可得3x﹣x=5×2,即可解得答案;②点P和点Q第二次相遇,P比Q多运动30个单位,列方程即可解得答案;(2)由已知可得CE=2,分三种情况分别列方程:①当M在AB上,即t≤2时,×2t×6=9,②当M在BC上,即2<t≤5时,×(2+4)×6﹣×4×(2t﹣4)﹣×2×(4+6﹣2t)=9,③当M在CE上,即5<t≤6时,×(4+6+2﹣2t)×6=9,即可解得答案.【解答】解:(1)①根据题意得:3x﹣x=5×2,解得x=5,答:当x为5时,点P和点Q第一次相遇,②根据题意得:3x﹣x=5×2+4×5,解得x=15,答:当x为15时,点P和点Q第二次相遇;(2)由已知可得CE=2,①当M在AB上,即t≤2时,如图:根据题意得:×2t×6=9,解得t=,②当M在BC上,即2<t≤5时,如图:根据题意得:×(2+4)×6﹣×4×(2t﹣4)﹣×2×(4+6﹣2t)=9,解得t=,③当M在CE上,即5<t≤6时,如图:根据题意得:×(4+6+2﹣2t)×6=9,解得t=(不符合题意,舍去),综上所述,当△AME的面积等于9时,t的值为秒或秒.【点评】本题考查一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.。

北师大版六年级数学下册期末考前冲刺卷(二)(含答案)

北师大版六年级数学下册期末考前冲刺卷(二)(含答案)

北师大版六年级数学下册期末考前冲刺卷学校:_______ 班级:_______ 姓名:_______ 考号:_______一、选择题1.一个平行四边形的相邻两条边长分别是10厘米和6厘米,其中一条边上的高是8厘米,这个平行四边形的面积是()平方厘米。

A. 40B. 48C. 60D. 802.下面几组相关联的量中,成正比例的是( )A. 看一本书,每天看的页数和看的天数B. 圆锥的体积一定它的底面积和高C. 修一条路已经修的米数和未修的米数D. 同一时间、地点每棵树的高度和它影子的长度3.在一幅图纸上,图上距离( ) 实际距离。

A. 大于B. 小于C. 可能大于,也可能小于或等于D. 无法确定4.一个钟表零件是5mm,把它画在比例尺是20∶1的地图上,应画( ) cm。

A. 0.1B. 1C. 10D. 1005.下面四种说法中,()是错误的。

A. 等边三角形的周长与边长成正比例B. 看一本书,已看的页数与剩下的页数成反比例C. 比例尺一定,图上距离与实际距离成正比例D. 平行四边形的面积一定,底与对应的高成反比例二、判断题1.所有的三角形都是轴对称图形。

( )2.在对折的正方形彩纸上的任意位置打孔,将彩纸展开后,孔都是对称的。

( )3.时间一定,路程和速度成正比例。

( )4.如果长方形的面积一定,则长方形的长和宽成反比例。

( )5.在一幅区域地图上,图上距离和实际距离成比例.( )三、填空题1.汽车在笔直的公路上行驶,车身做( ) 运动,车轮做( ) 运动。

2.时针从2时到6时,按( )方向旋转了( )°。

3.如果5y =6x ,那么x 和y 成( ) 比例;如果5y =6x ,那么x 和y 成( ) 比例.4.如果5x=8y (x 、y≠0),x 与y 成( ) 比例.5.一个零件的高是5mm ,在图纸上的高是2cm ,那么这幅图纸的比例尺( ) 。

6.把一个直角三角形按3∶1进行放大,面积会扩大( ) 倍。

专题11:期末冲刺卷(新高考海南卷)(二)(原卷版)

专题11:期末冲刺卷(新高考海南卷)(二)(原卷版)

专题11期末冲刺卷(新高考海南卷)(二)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成下面小题。

材料一:像牛一样耕耘像牛一样奋发陈凌“在中华文化里,牛是勤劳、奉献、奋进、力量的象征。

人们把为民服务、无私奉献比喻为孺子牛,把创新发展、攻坚克难比喻为拓荒牛,把艰苦奋斗、吃苦耐劳比喻为老黄牛。

”在2021年春节团拜会上,习近平总书记深情礼赞牛所代表的精神品质,并赋予孺子牛、拓荒牛、老黄牛以新的时代内涵。

古往今来,中国人民爱牛、敬牛、颂牛,或咏之、或绘之、或塑之。

在唐朝诗人柳宗元看来,牛是“日耕百亩”的勤劳符号;在宋代名将李纲眼中,牛代表的是“但得众生皆得饱,不辞赢病卧残阳”的牺牲精神;在现代诗人藏克家笔下,牛具有的是“深耕细作走东西”的开拓品格。

体悟牛的品格、弘扬牛的精神、激发牛的干劲,是中华优秀传统文化的重要特色,也是中国人民精气神的具体精现。

“俯首甘为孺子牛”,鲁迅先生曾以这样饱含真情的诗句歌颂牛。

千百年来,牛都是任劳任怨、无私奉献的象征。

这也是人们爱牛、敬牛、颂牛的一个原因。

画家李可染便曾将自己的画室堂号定为“师牛堂”,他这样解释自己为何喜欢画牛:“牛也,力大无穷,俯首孺子而不逞强。

”不辞劳苦、不计得失,脚踏实地、默默奉献,这是牛身上的品格,也是值得每个人学习的精神。

“天开于子,地辟于丑”,古人历来将牛视为开天辟地的力量之一。

人们之所以赞颂牛,也在于牛所拥有的这种勇于开拓的劲头。

而这种劲头,恰恰是我们在攻坚克难中奋进、在披荆斩棘中前行的力量所在。

著名物理学家钱三强教授在年逾花甲时,仍干劲十足,经常工作到深夜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末冲刺卷(二)一、选择题1.下面词语中画线字的注音全部正确的一项是()A.亘古(gèng)澎湃(pài)污秽(huì)屏息凝神(bǐng)B.镐头(hào)取缔(dì)怆然(chuàng)诲人不倦(huì)C.羸弱(léi)金柝(tuò)毋宁(wú)仙露琼浆(qióng)D.震悚(sǔ)恍惚(huǎng驿路(yì)锲而不舍(qì)2.下列各句中画线的成语使用不恰当的一项是()A.参加保险,虽不能使人化险为夷,但却能在灾祸不期而至时,使投保者得到一笔赔偿,尽量减轻损失……B.乡邻们在一起常常戏称:“你们家的台阶高!”言外之意,就是你们家有地位啊。

C.每一朵盛开的花就像是一个小小的张满了的帆,帆下带着尖底的舱。

船舱鼓鼓的,又像一个忍俊不禁的笑容,就要绽开似的。

D.人的一生是无法全盘计划好的。

因此,我觉得人生扑朔迷离:紧张刺激,充满变数,有时让人振奋不已。

3.下列对句子主干的提取正确的一项是()A.我市在驻澳门特派员公署成功举办了以“运河名城,精致扬州”为主题的城市推介会。

(驻澳门特派员公署举办城市推介会。

)B.贺知章的《咏柳》描绘了杨柳柔长的枝条和嫩绿的新叶在春风吹拂下摇曳的迷人姿态。

(贺知章描绘枝条和新叶。

)C.素有“淮左名都,竹西佳处”之称的扬州是一座古城风貌保存较好的历史文化名城。

(扬州是名城。

)D.能够品尝到清香醇厚的龙井茶,对外国游客来说,真是一种难得的享受。

(龙井茶真是难得。

)4.下列说法不正确的一项是()A.《假如生活欺骗了你》选自《普希金诗集》,作者普希金是俄国著名诗人。

B.《最后一课》的作者是法国作家都德,本文的历史背景是普法战争。

C.《登飞来峰》的作者王安石是唐朝的政治家、文学家、思想家。

他还是“唐宋八大家”之一。

D.《阿长与〈山海经〉》选自鲁迅的散文集《朝花夕拾》。

二、填空题1.下面这段文字在标点使用、语言结构、用词方面各有一处不当,请加以修改。

①要弄清楚蛋白质在体内为什么不可或缺?就要了解它对人体的作用。

②蛋白质在人体中担负着传递信息、大脑活动的维持、促进化学反应和抵御外来“入侵者”等任务,③在人体生长和组织修复方面有着极为要紧的作用。

因此,我们需要经常吃一些含有丰富蛋白质的豆制品、鸡蛋、瘦肉、鱼虾等。

①________________________________________________________②________________________________________________________③________________________________________________________2.请用“成功”“奋斗”“汗水”编写一句格言,词语顺序不拘。

(30字左右)_____________________________________________________________________ _____________________________________________________________________ 3.下面一段文字摘自某同学的作文,表达上有一些问题,请你结合具体语句写两段评语。

要求:(1)指出并分析存在的问题;(2)请就写作与生活的关系有针对性地谈一点看法。

(80字以内)正月十五的晚上,窗外是碧海般的青天,一弯金月,好似灯火辉煌的扁舟,载着美丽的幻想在飘游。

望星空,意朦胧,根根雨丝湿润了我燥热的心。

(1)________________________________________________________________ (2)________________________________________________________________ 4.读下列语句,写出你的理解。

俄国作家列夫•托尔斯泰说:“一个人就好像是一个分数,他的实际才能好比分子,而他对自己的估计好比分母,分母愈大则分数的值就愈小。

”_____________________________________________________________________ _____________________________________________________________________ 5.裉据下面这句话的句式,仍以“幸福是”开头,恰当引用古诗词名句,仿写两句话,组成一个排比句。

幸福是“临行密密缝,意恐迟迟归”的牵挂;________________________;____________________________________________________________________。

二、阅读理解(一)阅读下列文段,回答下面问题。

孟母戒子孟子少时,诵,其母方织。

孟子辍然①中止,乃复进。

其母知其谖②也,呼而问之:“何为中止?”对曰:“有所失,复得。

”其母引刀裂③其织,以此戒④之。

自是之后,孟子不复矣。

【注释】①辍(chuò)然:突然终止的样子。

辍,停止,废止,如“辍学”“辍笔”。

②谖(xuān):遗忘。

③裂:割断。

④戒:警告。

1.解释下列画线词。

(1)其母方织___________________(2)自是之后___________________2.翻译文中画线的句子。

有所失,复得。

_____________________________________________________________________ 3.文中哪句话表明了孟母对其子的要求极为严格?_____________________________________________________________________ _____________________________________________________________________ 4.这个故事告诉我们一个什么道理?_____________________________________________________________________ _____________________________________________________________________ 5.阅读下面的古诗,再结合“孟母戒子”这件事简要谈谈你对“母爱”的认识及对孟母的评价。

游子吟孟郊慈母手中线,游子身上衣。

临行密密缝,意恐迟迟归。

谁言寸草心,报得三春晖。

_____________________________________________________________________ _____________________________________________________________________ (二)阅读下列文段,回答下面问题。

换票①两个乡下人,外出打工,一个去上海,一个去北京。

可是在候车厅等车时,又都改变了主意,因为邻座的人议论说,上海人精明,外地人问路都收费;北京人质朴,见吃不上饭的人,不仅给馒头,还送旧衣服。

②去上海的人想,还是北京好,挣不到钱也饿不死,幸亏车还没到,不然真掉进了火坑。

③去北京的人想,还是上海好,给人带路都能挣钱,还有什么不能挣钱的?我幸亏还没上车,不然真失去一次致富的机会。

④于是他们在退票处相遇了。

原来要去北京的得到了去上海的票,要去上海的得到了去北京的票。

⑤去北京的人发现,北京果然好。

他初到北京的一个月,什么都没干,竟然没有饿着。

不仅银行大厅里的太空水可以白喝,而且大商场里欢迎品尝的点心也可以白吃。

⑥去上海的人发现,上海果然是一个可以发财的城市,干什么都可以赚钱。

带路可以赚钱,看厕所可以赚钱,弄盆凉水让人洗脸也可以赚钱。

只要想点办法,再花点力气都可以赚钱。

⑦凭着乡下人对泥土的感情和认识,第二天,他在建筑工地装了十包含有沙子和树叶的土,以“花盆土”的名义,向看不见泥土而又爱花的上海人兜售。

当天他在城郊间往返六次,净赚了五十元钱。

一年后,凭“花盆土”他竟然在大上海拥有了一间小小的门面。

⑧在常年的走街串巷中,他又有一个新的发现:一些商店楼面亮丽而招牌较黑。

一打听才知道是清洗公司只负责洗楼不负责洗招牌的结果。

他立即抓住这一空当,买了人字梯、水桶和抹布,办起一个小型清洗公司,专门负责擦洗招牌。

如今他的公司已有150多个打工仔,业务已由上海发展到杭州和南京。

⑨前不久,他坐火车去北京考察清洗市场,在北京车站,一个捡破烂的人把头伸进软卧车厢,向他要一只啤酒瓶,就在递瓶时,两人都愣住了,因为五年前,他们曾换过一次车票。

1.用简洁的语言概括故事的主要内容。

_____________________________________________________________________ _____________________________________________________________________ 2.小说描写了两个打工者的两次相遇,这样安排有什么作用?(1)第一次相遇:____________________________________________________ (2)第二次相遇:____________________________________________________ 3.通读全文,简要概括两个人的性格特点。

(1)成功者:________________________________________________________ (2)捡破烂的人:____________________________________________________ 4.品读小说⑥〜⑧段,写出自己的感悟。

_____________________________________________________________________ _____________________________________________________________________ 5.问题探究:假如当初两个打工者没有“换票”,小说的结局又会怎样呢?为什么?_____________________________________________________________________ _____________________________________________________________________ 四、作文题目:我终于战胜了_________________要求:①把题目补充完整;②通过一件或几件事的记叙来表现中心;③不少于600字。

相关文档
最新文档